ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 3041a37a31d5b07d7d6ff27ee6d41ed9ee0bf096
parent fd580db32388d4d35d9c95c07828b876a69cdaa5
Author: miksa234 <milutin@popovic.xyz>
Date:   Mon, 26 Jul 2021 10:45:03 +0200

checkpoint

Diffstat:
Msrc/thesis/back/title.tex | 4++--
Msrc/thesis/chapters/electroncg.tex | 49+++++++++++++++++++++++++------------------------
Msrc/thesis/chapters/heatkernel.tex | 184++++++++++++++++++++++++++++++++++++++++---------------------------------------
Msrc/thesis/chapters/twopointspace.tex | 2+-
Msrc/thesis/main.pdf | 0
Msrc/thesis/main.tex | 4++++
6 files changed, 125 insertions(+), 118 deletions(-)

diff --git a/src/thesis/back/title.tex b/src/thesis/back/title.tex @@ -20,7 +20,7 @@ \vspace*{1.5cm} {\fontsize{12}{0} \selectfont submitted by}\\ -\vspace*{0.4cm} +\vspace*{0.3cm} { \fontsize{14}{0} \selectfont Popović Milutin}\\ @@ -44,7 +44,7 @@ \fontsize{10}{0} \selectfont\\ \fontsize{10}{0} \selectfont degree - programme a0 it appears on / & \fontsize{10}{0} \selectfont Physics \\ + programme as it appears on / & \fontsize{10}{0} \selectfont Physics \\ \fontsize{10}{0} \selectfont the student record sheet:\vspace*{0.4cm} & \fontsize{10}{0} \selectfont \\ diff --git a/src/thesis/chapters/electroncg.tex b/src/thesis/chapters/electroncg.tex @@ -63,9 +63,9 @@ interchange particles with antiparticles by the following equations &J_F e_L = \bar{e_L}, \\ \nonumber \\ &\gamma _F e_R = -e_R,\\ - &\gamma_F e_L = e_L \\ + &\gamma_F e_L = e_L, \end{align} -where $J_F$ and $gamma_F$ have to following properties +where $J_F$ and $\gamma_F$ have to following properties \begin{align} &J_F^2 = 1,\\ & J_F \gamma_F = - \gamma_F J_F. @@ -99,7 +99,7 @@ $\{e_L, e_R, \bar{e}_L, \bar{e}_R\}$ is represented by \end{align} Do note that this action commutes wit the grading and that $[a, b^\circ] = 0$ with $b:= J_F b^*J_F$ because both the left and the right -action is given by diagonal matrices by equation \ref{eq:leftrightrepr}. Note +action is given by diagonal matrices by equation \eqref{eq:leftrightrepr}. Note that we are still left with $D_F = 0$ and the following spectral triple \begin{align}\label{eq:fedfail} @@ -149,8 +149,8 @@ We can now define the finite space $F_{ED}$. \begin{align} F_{ED} := (\mathbb{C}^2, \mathbb{C}^4, D_F; J_F, \gamma_F) \end{align} -where $J_F$ and $\gamma_F$ are like in equation \ref{eq:fedfail} and $D_F$ -from equation \ref{eq:feddirac}. +where $J_F$ and $\gamma_F$ are like in equation \eqref{eq:fedfail} and $D_F$ +from equation \eqref{eq:feddirac}. \subsubsection{Almost commutative Manifold of Electrodynamics} The almost commutative manifold $M\times F_{ED}$ has KO-dimension 2, and is @@ -288,7 +288,8 @@ anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have \begin{align} \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi) := &-\frac{2f_2\Lambda^2}{4\pi^2}\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2} - \text{Tr}(\Phi^4) + \frac{f(0)}{24\pi^2} \Delta(\text{Tr}(\Phi^2))\\ + \text{Tr}(\Phi^4) + \frac{f(0)}{24\pi^2} + \Delta(\text{Tr}(\Phi^2))\nonumber\\ &+ \frac{f(0)}{48\pi^2}s\text{Tr}(\Phi^2) \frac{f(0)}{8\pi^2}\text{Tr}((D_\mu \Phi)(D^\mu \Phi)). \end{align} @@ -298,10 +299,10 @@ anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have an $x \in M$, we have an asymptotic expansion of the term $\text{Tr}(f(\frac{D_\omega}{\Lambda}))$ as $\Lambda$ goes to infinity, which can be written as - \begin{align}\label{eq:trheatkernel} + \begin{align} \text{Tr}(f(\frac{D_\omega}{\Lambda})) \simeq& \ 2f_4 \Lambda ^4 - a_0(D_\omega ^2)+ 2f_2\Lambda^2 a_2(D_\omega^2) \\&+ f(0) a_4(D_\omega^4) - +O(\Lambda^{-1}). + a_0(D_\omega ^2)+ 2f_2\Lambda^2 a_2(D_\omega^2)\nonumber \\&+ f(0) a_4(D_\omega^4) + +O(\Lambda^{-1}).\label{eq:trheatkernel} \end{align} We have to note here that the heat kernel coefficients are zero for uneven $k$, and they are dependent on the fluctuated Dirac operator @@ -310,8 +311,8 @@ anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have \text{Tr}\mathbbm{1_{H_F}})$ and write \begin{align} a_0(D_\omega^2) &= Na_0(D_M^2),\\ - a_2(D_\omega^2 &= Na_2(D_M^2) - \frac{1}{4\pi^2}\int_M. - \text{Tr}(\Phi^2)\sqrt{g}d^4x + a_2(D_\omega^2 &= Na_2(D_M^2) - \frac{1}{4\pi^2}\int_M + \text{Tr}(\Phi^2)\sqrt{g}d^4x. \end{align} For $a_4$ we extend in terms of coefficients of $F$, \textbf{REWRITE: look week9.pdf for the standard version} @@ -355,20 +356,20 @@ anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have Finally plugging the results into the coefficient $a_4$ and simplifying we get \begin{align} a_4(x, D_\omega^4) &= Na_4(x, D_M^2) + \frac{1}{4\pi^2}\bigg(\frac{1}{12} s - \text{Tr}(\Phi^2) + \frac{1}{2}\text{Tr}(\Phi^4) \\ + \text{Tr}(\Phi^2) + \frac{1}{2}\text{Tr}(\Phi^4) \nonumber \\ &+ \frac{1}{4} \text{Tr}((D_\mu\Phi)(D^\mu \Phi)) + \frac{1}{6} \Delta\text{Tr}(\Phi^2) + \frac{1}{6} \text{Tr}(F_{\mu\nu}F^{\mu\nu})\bigg). \end{align} The only thing left is to substitute the heat kernel coefficients into the - heat kernel expansion in equation \ref{eq:trheatkernel}. + heat kernel expansion in equation \eqref{eq:trheatkernel}. \end{proof} \subsubsection{Fermionic Action} -We remind ourselves the definition of the fermionic action in +We remind ourselves the definition of the fermionic action in definition \ref{def:fermionic action} and the manifold we are dealing with in equation -\ref{eq:almost commutative manifold}. The Hilbertspace $H_F$ is separated +\eqref{eq:almost commutative manifold}. The Hilbertspace $H_F$ is separated into the particle-antiparticle states with ONB $\{e_R, e_L, \bar{e}_R, \bar{e}_L\}$. The orthonormal basis of $H_F^+$ is $\{e_L, \bar{e}_R\}$ and consequently for $H_F^-$, $\{e_R, \bar{e}_L\}$. We can decompose a spinor @@ -402,31 +403,31 @@ for a $\xi \in H^+$. Then the straight forward calculation gives \begin{align} D_F)\tilde{\xi})\label{eq:fermionic3}, \end{align} (note that we add the constant $\frac{1}{2}$ to the action). -For the term in \ref{eq:fermionic1} we calculate +For the term in \eqref{eq:fermionic1} we calculate \begin{align} \frac{1}{2}(J\tilde{\xi}, (D_M\otimes 1)\tilde{\xi}) &= - \frac{1}{2}(J_M\tilde{\chi}_R,D_M\tilde{\psi}_L)+ + \frac{1}{2}(J_M\tilde{\chi}_R,D_M\tilde{\psi}_L)+\nonumber \frac{1}{2}(J_M\tilde{\chi}_L,D_M\tilde{\psi}_R)+ - \\&+\frac{1}{2}(J_M\tilde{\psi}_L,D_M\tilde{\psi}_R)+ + \\&+\frac{1}{2}(J_M\tilde{\psi}_L,D_M\tilde{\psi}_R)+\nonumber \frac{1}{2}(J_M\tilde{\chi}_R,D_M\tilde{\chi}_L)\\ &= (J_M\tilde{\chi},D_M\tilde{\chi}). \end{align} -For the term in \ref{eq:fermionic2} we have +For the term in \eqref{eq:fermionic2} we have \begin{align} \frac{1}{2}(J\tilde{\xi}, (\gamma^\mu \otimes B_\mu)\tilde{\xi})&= -\frac{1}{2}(J_M\tilde{\chi}_R, \gamma^\mu Y_\mu\tilde{\psi}_R) - -\frac{1}{2}(J_M\tilde{\chi}_L, \gamma^\mu Y_\mu\tilde{\psi}_R)+\\ + -\frac{1}{2}(J_M\tilde{\chi}_L, \gamma^\mu Y_\mu\tilde{\psi}_R)+\nonumber\\ &+\frac{1}{2}(J_M\tilde{\psi}_L, \gamma^\mu Y_\mu\tilde{\chi}_R)+ - \frac{1}{2}(J_M\tilde{\psi}_R, \gamma^\mu Y_\mu\tilde{\chi}_L)=\\ + \frac{1}{2}(J_M\tilde{\psi}_R, \gamma^\mu Y_\mu\tilde{\chi}_L)=\nonumber\\ &= -(J_M\tilde{\chi}, \gamma^\mu Y_\mu\tilde{\psi}). \end{align} -And for \ref{eq:fermionic3} we can write +And for \eqref{eq:fermionic3} we can write \begin{align} \frac{1}{2}(J\tilde{\xi}, (\gamma_M\otimes D_F)\tilde{\xi})&= +\frac{1}{2}(J_M\tilde{\chi}_R, d\gamma_M\tilde{\chi}_R) - +\frac{1}{2}(J_M\tilde{\chi}_L, \bar{d}\gamma_M\tilde{\chi}_L)+\\ + +\frac{1}{2}(J_M\tilde{\chi}_L, \bar{d}\gamma_M\tilde{\chi}_L)+\nonumber\\ &+\frac{1}{2}(J_M\tilde{\chi}_L, \bar{d}\gamma_M\tilde{\chi}_L) - +\frac{1}{2}(J_M\tilde{\chi}_R, d\gamma_M\tilde{\chi}_R)=\\ + +\frac{1}{2}(J_M\tilde{\chi}_R, d\gamma_M\tilde{\chi}_R)=\nonumber\\ &= i(J_M\tilde{\chi}, m\tilde{\psi}). \end{align} A small problem arises, we obtain a complex mass parameter $d$, but we can diff --git a/src/thesis/chapters/heatkernel.tex b/src/thesis/chapters/heatkernel.tex @@ -22,7 +22,7 @@ gauge field, the heat kernel reads then K(t;x,y;D) = \langle x|e^{-tD}|y\rangle. \end{align} We can expand the heat kernel in $t$, still having a -singularity from the equation \ref{eq:standard} as $t \rightarrow 0$ thus the +singularity from the equation \eqref{eq:standard} as $t \rightarrow 0$ thus the expansion reads \begin{align} K(t;x,y;D) = K(t;x,y;D_0)\left(1 + tb_2(x,y) + t^2b_4(x,y) + \dots @@ -30,75 +30,75 @@ expansion reads \end{align} where $b_k(x,y)$ become regular as $y \rightarrow x$. These coefficients are called the heat kernel coefficients. -%----------------------- KANN WEGGELASSEN WERDEN -\newline -\textbf{KANN WEGELASSEN WERDEN BIS ZUM NÄCHSTEN KAPITEL} -Let's turn our attention to a propagator $D^{-1}(x,y)$ defined through the -heat kernel, with an integral representation -\begin{align} - D^{-1} (x,y) = \int_0^\infty dt K(t;x,y;D). -\end{align} -If we assume the heat kernel vanishes for $t\rightarrow \infty$, we can -integrate formally to get -\begin{align} - D^{-1}(x,y) \simeq - 2(4\pi)^{-n/2}\sum_{j=0}\left(\frac{|x-y|}{2m}\right)^{-\frac{n}{2}+j+1} - K_{-\frac{n}{2}+j+1}(|x-y|m)b_{2j}(x,y), -\end{align} -where $b_0 = 1$ and $K_\nu (z)$ is the Bessel function -\begin{align} - K_\nu(z) = \frac{1}{\pi} \int_0^\pi \cos(\nu\tau-z\sin(\tau))d\tau. -\end{align} -The Bessel function solves the following differential equation -\begin{align} - z^2 \frac{d^2K}{dz^2} + z \frac{dK}{dz} + (z^2 - \nu^2)=0. -\end{align} -By looking at an integral approximation for the propagator we conclude that -the singularities of $D^{-1}$ coincide with the singularities of the heat -kernel coefficients. Thus we can say, that a generating functional in terms of -$\det(D)$ is called the one-loop effective action (quantum field theory) -\begin{align} - W = \frac{1}{2}\ln(\det D). -\end{align} -We have a direct relation with one-loop effective action $W$ and the -heat kernel. Furthermore notice that for each eigenvalue $\lambda >0$ of $D$ -we can write the identity. -\begin{align} - \ln \lambda = -\int_0^\infty \frac{e^{-t\lambda}}{t}dt -\end{align} -This expression is correct up to an infinite constant which does not depend -on the eigenvalue $\lambda$, thus we can ignore it. By substituting -$\ln(\det D) = \text{Tr}(\ln D)$ we can rewrite the one-loop effective action -$W$ into -\begin{align} - W = -\frac{1}{2} \int_0^\infty dt \frac{K(t, D)}{t}, -\end{align} -where -\begin{align} - K(t, D) = \text{Tr}(e^{-tD}) = \int d^n x \sqrt{g}K(t;x,x;D). -\end{align} -The problem now is that the integral of $W$ is divergent at both limits. Yet -the divergences at $t\rightarrow \infty$ are caused by $\lambda \leq 0$ of $D$ -(infrared divergences) and can be ignored. The divergences at $t\rightarrow 0$ -are cutoff at $t=\Lambda^{-2}$, simply written as -\begin{align} - W_\Lambda = -\frac{1}{2} \int_{\Lambda^{-2}}^\infty dt \frac{K(t, D)}{t}. -\end{align} -We can calculate $W_\Lambda$ up to an order of $\lambda ^0$ -\begin{align} - W_\Lambda &= -(4\pi)^{-n/2} \int d^n x\sqrt{g}\bigg( - \sum_{2(j+l)<n}\Lambda^{n-2j-2l}b_{2j}(x,x) \frac{(-m^2)^l l!}{n-2j-2l} +\\ - &+ \sum_{2(j+l) =n }\ln(\Lambda) (-m^2)^l l! b_{2j}(x,x) - \mathcal{O}(\lambda^0) \bigg) -\end{align} -There is an divergence at $b_2(x,x)$ for $k\leq n$. Computing the limit -$\Lambda \rightarrow \infty$ we get -\begin{align} - -\frac{1}{2}(4\pi)^{n/2}m^n\int d^n x\sqrt{g} \sum_{2j>n} - \frac{b_{2j}(x,x)}{m^{2j}}\Gamma(2j-n), -\end{align} -where $\Gamma$ stands for the gamma function. -%----------------------- KANN WEGGELASSEN WERDEN +%%----------------------- KANN WEGGELASSEN WERDEN +%\newline +%\textbf{KANN WEGELASSEN WERDEN BIS ZUM NÄCHSTEN KAPITEL} +%Let's turn our attention to a propagator $D^{-1}(x,y)$ defined through the +%heat kernel, with an integral representation +%\begin{align} +% D^{-1} (x,y) = \int_0^\infty dt K(t;x,y;D). +%\end{align} +%If we assume the heat kernel vanishes for $t\rightarrow \infty$, we can +%integrate formally to get +%\begin{align} +% D^{-1}(x,y) \simeq +% 2(4\pi)^{-n/2}\sum_{j=0}\left(\frac{|x-y|}{2m}\right)^{-\frac{n}{2}+j+1} +% K_{-\frac{n}{2}+j+1}(|x-y|m)b_{2j}(x,y), +%\end{align} +%where $b_0 = 1$ and $K_\nu (z)$ is the Bessel function +%\begin{align} +% K_\nu(z) = \frac{1}{\pi} \int_0^\pi \cos(\nu\tau-z\sin(\tau))d\tau. +%\end{align} +%The Bessel function solves the following differential equation +%\begin{align} +% z^2 \frac{d^2K}{dz^2} + z \frac{dK}{dz} + (z^2 - \nu^2)=0. +%\end{align} +%By looking at an integral approximation for the propagator we conclude that +%the singularities of $D^{-1}$ coincide with the singularities of the heat +%kernel coefficients. Thus we can say, that a generating functional in terms of +%$\det(D)$ is called the one-loop effective action (quantum field theory) +%\begin{align} +% W = \frac{1}{2}\ln(\det D). +%\end{align} +%We have a direct relation with one-loop effective action $W$ and the +%heat kernel. Furthermore notice that for each eigenvalue $\lambda >0$ of $D$ +%we can write the identity. +%\begin{align} +% \ln \lambda = -\int_0^\infty \frac{e^{-t\lambda}}{t}dt +%\end{align} +%This expression is correct up to an infinite constant which does not depend +%on the eigenvalue $\lambda$, thus we can ignore it. By substituting +%$\ln(\det D) = \text{Tr}(\ln D)$ we can rewrite the one-loop effective action +%$W$ into +%\begin{align} +% W = -\frac{1}{2} \int_0^\infty dt \frac{K(t, D)}{t}, +%\end{align} +%where +%\begin{align} +% K(t, D) = \text{Tr}(e^{-tD}) = \int d^n x \sqrt{g}K(t;x,x;D). +%\end{align} +%The problem now is that the integral of $W$ is divergent at both limits. Yet +%the divergences at $t\rightarrow \infty$ are caused by $\lambda \leq 0$ of $D$ +%(infrared divergences) and can be ignored. The divergences at $t\rightarrow 0$ +%are cutoff at $t=\Lambda^{-2}$, simply written as +%\begin{align} +% W_\Lambda = -\frac{1}{2} \int_{\Lambda^{-2}}^\infty dt \frac{K(t, D)}{t}. +%\end{align} +%We can calculate $W_\Lambda$ up to an order of $\lambda ^0$ +%\begin{align} +% W_\Lambda &= -(4\pi)^{-n/2} \int d^n x\sqrt{g}\bigg( +% \sum_{2(j+l)<n}\Lambda^{n-2j-2l}b_{2j}(x,x) \frac{(-m^2)^l l!}{n-2j-2l} +\\ +% &+ \sum_{2(j+l) =n }\ln(\Lambda) (-m^2)^l l! b_{2j}(x,x) +% \mathcal{O}(\lambda^0) \bigg) +%\end{align} +%There is an divergence at $b_2(x,x)$ for $k\leq n$. Computing the limit +%$\Lambda \rightarrow \infty$ we get +%\begin{align} +% -\frac{1}{2}(4\pi)^{n/2}m^n\int d^n x\sqrt{g} \sum_{2j>n} +% \frac{b_{2j}(x,x)}{m^{2j}}\Gamma(2j-n), +%\end{align} +%where $\Gamma$ stands for the gamma function. +%%----------------------- KANN WEGGELASSEN WERDEN \subsubsection{Spectral Functions} @@ -139,7 +139,8 @@ There is an asymptotic expansion where the heat kernel coefficients with an odd index $k=2j+1$ vanish $a_{2j+1}(f,D) = 0$. On the other hand coefficients with an even index are locally computable in terms of geometric invariants \begin{align} - a_k(f,D) &= \text{Tr}_V\left(\int_M d^n x\sqrt{g}(f(x)a_k(x;D)\right) =\\ + a_k(f,D) &= \text{Tr}_V\left(\int_M d^n x\sqrt{g}(f(x)a_k(x;D)\right) + =\nonumber\\ &=\sum_I \text{Tr}_V\left(\int_M d^nx \sqrt{g}(fu^I \mathcal{A}^I_k(D))\right). \end{align} @@ -156,7 +157,7 @@ separate functions acting on operators and on coordinates linearly by the following \begin{align} e^{-tD} &= e^{-tD_1} \otimes e^{-tD_2},\\ - f(x_1, x_2) &= f_1(x_1)f_2(x_2),\\ + f(x_1, x_2) &= f_1(x_1)f_2(x_2), \end{align} thus the heat kernel coefficients are separated by \begin{align} @@ -167,7 +168,7 @@ can obtain the heat kernel asymmetries with the Poisson summation formula giving us an approximation in the order of $e^{-1/t}$ \begin{align} K(t, D_1) &= \sum_{l\in\mathbb{Z}} e^{-tl^2} = \sqrt{\frac{\pi}{t}} - \sum_{l\in\mathbb{Z}} e^{-\frac{\pi^2l^2}{t}} = \\ + \sum_{l\in\mathbb{Z}} e^{-\frac{\pi^2l^2}{t}} = \nonumber \\ &\simeq \sqrt{\frac{\pi}{t}} + \mathcal{O}(e^{-1/t}). \end{align} The exponentially small terms have no effect on the heat kernel @@ -185,7 +186,7 @@ $M_1$. For $M_1 = S^1$ with $x\in (0, 2\pi)$ and $D_1=-\partial_{x_1}^2$ we can rewrite the heat kernel coefficients into \begin{align} a_k(f(x_2), D) &= \int_{S^1\times M_2}d^nx \sqrt{g} \sum_I - \text{Tr}_V(f(x_2) u_{(n)}^I \mathcal{A}^I_k(D_2))=\\ + \text{Tr}_V(f(x_2) u_{(n)}^I \mathcal{A}^I_k(D_2))= \nonumber\\ &= 2\pi \int_{M_2} d^nx\sqrt{g} \sum_I\text{Tr}_V(f(x_2) u_{(n)}^I \mathcal{A}^I_k(D_2)). \end{align} @@ -206,18 +207,18 @@ equations e^{-2\varepsilon f}D) = 0\label{eq:var3}. \end{align} -Let us explain the equations above. To get the first equation \ref{eq:var1} +Let us explain the equations above. To get the first equation \eqref{eq:var1} we differentiate \begin{align} \frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} \text{Tr}(\exp(-e^{-2\varepsilon f}tD) = \text{Tr}(2ftDe^{-tD}) = -2t\frac{d}{dt}\text{Tr}(fe^{-tD})) \end{align} -then we expand both sides in $t$ and get \ref{eq:var1}. Equation \ref{eq:var2} is derived similarly. +then we expand both sides in $t$ and get \eqref{eq:var1}. Equation \eqref{eq:var2} is derived similarly. -For equation \ref{eq:var3} we consider the following operator +For equation \eqref{eq:var3} we consider the following operator \begin{align} D(\varepsilon,\delta) = e^{-2\varepsilon f}(D-\delta F) \end{align} -for $k=n$ we use equation \ref{eq:var1} and we get +for $k=n$ we use equation \eqref{eq:var1} and we get \begin{align} \frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_n(1,D(\varepsilon,\delta)) =0, @@ -227,12 +228,12 @@ swap the differentiation, allowed by theorem of Schwarz \begin{align} 0 &= \frac{d}{d\delta}\bigg|_{\delta=0}\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_n(1, - D(\varepsilon,\delta)) =\\ + D(\varepsilon,\delta)) =\nonumber\\ &=\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}\frac{d}{d\delta}\bigg|_{\delta=0}a_n(1, - D(\varepsilon,\delta)) =\\ + D(\varepsilon,\delta)) =\nonumber\\ &=a_{n-2} ( e^{-2\varepsilon f}F, e^{-2\varepsilon f}D), \end{align} -which gives us equation \ref{eq:var3}. +which gives us equation \eqref{eq:var3}. Now that we have established the ground basis, we can calculate the constants $u^I$, and by that the first three heat kernel coefficients read @@ -242,7 +243,7 @@ $u^I$, and by that the first three heat kernel coefficients read x\sqrt{g}\text{Tr}_V)(f\alpha _1 E+\alpha _2 R),\\ a_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_Md^n x\sqrt{g}\text{Tr}_V(f(\alpha_3 E_{,kk} + \alpha_4\ R\ E + \alpha_5 E^2 - \alpha_6 R_{,kk} + \\ + \alpha_6 R_{,kk} + \nonumber\\ &+\alpha_7 R^2 + \alpha_8 R_{ij}R_{ij} + \alpha_9 R_{ijkl}R_{ijkl} +\alpha_{10} \Omega_{ij}\Omega{ij})), \end{align} @@ -252,7 +253,7 @@ our variational identities. The first coefficient $\alpha_0$ can be read from the heat kernel expansion of the Laplacian on $S^1$ (above), $\alpha_0 = 1$. For $\alpha_1$ we use -\ref{eq:var2}, the coefficient $k = 2$ is +\eqref{eq:var2}, the coefficient $k = 2$ is \begin{align} \frac{1}{6} \int_M d^n x\sqrt{g} \text{Tr}_V(\alpha_1F) = \int_M d^n x\sqrt{g} \text{Tr}_V(F), @@ -264,7 +265,7 @@ which means $\alpha_1 = 6$. Looking at the coefficient $k=4$ we have \end{align} thus $\alpha_4 = 60\alpha_2$ and $\alpha_5 = 180$. -By applying \ref{eq:var3} to $n=4$ we get +By applying \eqref{eq:var3} to $n=4$ we get \begin{align} \frac{d}{d\varepsilon}|_{\varepsilon=0} a_2(e^{-2\varepsilon f}F, e^{-2\varepsilon f}D) = 0. @@ -276,9 +277,10 @@ Now we let $M=M_1\times M_2$ and split $D = -\Delta_1 -\Delta_2$, where $\Delta_{1/2}$ are Laplacians for $M_1, M_2$. This allows us to decompose the heat kernel coefficient for $k=4$ into \begin{align} - a_4(1,-\Delta_1-\Delta_2) =& a_4(1, -\Delta_1) a_0(1, -\Delta_2) - +a_2(1,-\Delta_1) a_2(1,-\Delta_2) \\&+ a_0(1,-\Delta_1) - a_4(1,-\Delta_2), + a_4(1,-\Delta_1-\Delta_2) =& a_4(1, -\Delta_1) a_0(1, + -\Delta_2)\nonumber+ \\ + &+a_2(1,-\Delta_1) a_2(1,-\Delta_2)\nonumber \\ + &+ a_0(1,-\Delta_1)a_4(1,-\Delta_2), \end{align} with $E=0$ and $\Omega =0$ and by calculating the terms with $R_1R_2$ (scalar curvature of $M_{1/2}$) we obtain $\frac{2}{360}\alpha_7 = @@ -287,9 +289,9 @@ curvature of $M_{1/2}$) we obtain $\frac{2}{360}\alpha_7 = For $n=6$ we get \begin{align} 0 &= \text{Tr}_V(\int_Md^nx\sqrt{g} - (F(-2\alpha_3-10\alpha_4+4\alpha_5)f_{,kk}E +\\ - &+(2\alpha_3 + 10\alpha_6)f_{,iijj}+\\ - &+(2\alpha_4 -2\alpha_6 - 20\alpha_7 -2\alpha_8)f_{,ii}R\\ + (F(-2\alpha_3-10\alpha_4+4\alpha_5)f_{,kk}E +\nonumber\\ + &+(2\alpha_3 + 10\alpha_6)f_{,iijj}+\nonumber\\ + &+(2\alpha_4 -2\alpha_6 - 20\alpha_7 -2\alpha_8)f_{,ii}R\nonumber\\ &+(-8\alpha_8 -8\alpha_6)f_{,ij}R_{ij})) \end{align} we obtain $\alpha_3 = 60$, $\alpha_6=12$, $\alpha_8 = -2$ and $\alpha_9 = 2$ @@ -307,6 +309,6 @@ coefficients \alpha_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_M d^n x \sqrt{g} \text{Tr}_V(f(60E_{,kk}+60RE+ 180E^2 +\\ &+12R_{,kk} + 5R^2 - 2 R_{ij}R_{ij} - 2R_{ijkl}R_{ijkl} +30\Omega_{ij}\Omega_{ij})).\\ + 2R_{ijkl}R_{ijkl} +30\Omega_{ij}\Omega_{ij})). \end{align} diff --git a/src/thesis/chapters/twopointspace.tex b/src/thesis/chapters/twopointspace.tex @@ -87,7 +87,7 @@ distance formula on $M\times F_X$ with To calculate the distance between two points on the Two-Point space $X= \{x, y\}$, between $x$ and $y$, we consider an $a \in \mathbb{C}^2 = C(X)$, which is specified by two complex numbers $a(x)$ and $a(y)$. Then we simplify the -commutator inequality in \ref{eq:commutator inequality} +commutator inequality in \eqref{eq:commutator inequality} \begin{align} &||[D_F , a]|| = ||(a(y) - a(x))\begin{pmatrix}0 &t\\\bar{t} &0 \end{pmatrix}|| \leq 1,\\ diff --git a/src/thesis/main.pdf b/src/thesis/main.pdf Binary files differ. diff --git a/src/thesis/main.tex b/src/thesis/main.tex @@ -10,6 +10,10 @@ \newpage +\tableofcontents + +\newpage + \input{back/abstract} %------------------- INTRO -------------------------