ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 30fec419bdd434928e5155667b35d4f5a9080a6b
parent 21cbcb14e5bf29833fcc40bb4bd3ca3b610dd7e5
Author: miksa <milutin@popovic.xyz>
Date:   Tue,  1 Jun 2021 17:22:35 +0200

done week9, mb some minor mistakes typos etc.

Diffstat:
Apdfs/week9.pdf | 0
Asrc/week9.tex | 474+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 474 insertions(+), 0 deletions(-)

diff --git a/pdfs/week9.pdf b/pdfs/week9.pdf Binary files differ. diff --git a/src/week9.tex b/src/week9.tex @@ -0,0 +1,474 @@ +\documentclass[a4paper]{article} + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} + +\usepackage{mathptmx} + +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{amssymb} +\usepackage{amsthm} +\usepackage{mathtools} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} + +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} + +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + +\newcounter{exercise} + +\renewcommand*\theexercise{Exercise~\arabic{exercise}} + +\makeatletter +\mdfdefinestyle{exercisestyle}{% + outerlinewidth=1em,% + outerlinecolor=white,% + leftmargin=-1em,% + rightmargin=-1em,% + middlelinewidth=1.2pt,% + roundcorner=5pt,% + linecolor=black,% + backgroundcolor=blue!5, + innertopmargin=1.2\baselineskip, + skipabove={\dimexpr0.5\baselineskip+\topskip\relax}, + skipbelow={-1em}, + needspace=3\baselineskip, + frametitlefont=\sffamily\bfseries, + settings={\global\stepcounter{exercise}}, + singleextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};},% + firstextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};}, +} +\makeatother + +\newenvironment{MyExercise}% +{\begin{mdframed}[style=exercisestyle]}{\end{mdframed}} + +\theoremstyle{definition} +\newtheorem{definition}{Definition} + +\theoremstyle{definition} +\newtheorem{question}{Question} + +\theoremstyle{definition} +\newtheorem{example}{Example} + +\theoremstyle{theorem} +\newtheorem{theorem}{Theorem} + +\theoremstyle{theorem} +\newtheorem{lemma}{Lemma} + + +\theoremstyle{theorem} +\newtheorem{proposition}{Proposition} + +\newtheorem*{idea}{Proof Idea} + + +\title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm} +Notes on\\ Noncommutative Geometry and Particle Phyiscs} +\author{Milutin Popovic \\ Supervisor: Dr. Lisa +Glaser} +\date{Week 9: 28.05 - 4.06} + +\begin{document} + + \maketitle + \tableofcontents + \newpage + +\section{Heat Kernel Expansion} +\subsection{The Heat Kernel} +The heat kernel $K(t; x, y; D)$ is the fundamental solution of the heat +equation. It depends on the operator $D$ of Laplacian type. +\begin{align} + (\partial _t + D_x)K(t;x, y;D) =0 +\end{align} +For a flat manifold $M = \mathbb{R}^n$ and $D = D_0 := -\Delta_\mu\Delta^\mu +m^2$ the +Laplacian with a mass term and the initial condition +\begin{align} + K(0;x,y;D) = \delta(x,y) +\end{align} +we have the standard fundamental solution +\begin{align}\label{eq:standard} + K(t;x,y;D_0) = (4\pi t)^{-n/2}\exp\left(-\frac{(x-y)^2}{4t}-tm^2\right) +\end{align} +Let us consider now a more general operator $D$ with a potential term or a +guage field, the heat kernel reads then +\begin{align} + K(t;x,y;D) = \langle x|e^{-tD}|y\rangle. +\end{align} +We can expand it it in terms of $D_0$ and we still have the +singularity from the equation \ref{eq:standard} as $t\rightarrow 0$ thus the +expansion gives +\begin{align} + K(t;x,y;D) = K(t;x,y;D_0)\left(1 + tb_2(x,y) + t^2b_4(x,y) + \dots \right) +\end{align} +where $b_k(x,y)$ are regular in $y \rightarrow x$. They are called the heat +kernel coefficients. + +\subsection{Example} +Now let us consider a propagator $D^{-1}(x,y)$ defined through the heat kernel +in an integral representation +\begin{align} + D^{-1} (x,y) = \int_0^\infty dt K(t;x,y;D). +\end{align} +We can integrate the expression formally if we assume the heat kernel vanishes +for $t\rightarrow \infty$ we get +\begin{align} + D^{-1}(x,y) \simeq + 2(4\pi)^{-n/2}\sum_{j=0}\left(\frac{|x-y|}{2m}\right)^{-\frac{n}{2}+j+1} + K_{-\frac{n}{2}+j+1}(|x-y|m)b_{2j}(x,y). +\end{align} +where $b_0 = 1$ and $K_\nu (z)$ is the Bessel function +\begin{align} + K_\nu(z) = \frac{1}{\pi} \int_0^\pi cos(\nu\tau-z\sin(\tau))d\tau +\end{align} +it solves the differential equation +\begin{align} + z^2 \frac{d^2K}{dz^2} + z \frac{dK}{dz} + (z^2 - \nu^2)=0. +\end{align} +By looking at integral approximation of the propagator we conclude +that the singularities of $D^{-1}$ coincide with the singularities of the heat +kernel coefficients. +We consider now a generating functional in terns of $\det(D)$ which is called +the one-loop effective action (quantum fields theory) +\begin{align} + W = \frac{1}{2}\ln(\det D) +\end{align} +we can relate $W$ with the heat kernel. For each eigenvalue $\lambda >0$ of $D$ +we can write the identity. +\begin{align} + \ln \lambda = -\int_0^\infty \frac{e^{-t\lambda}}{t}dt +\end{align} +This expression is correct up to an infinite constant which does not depent on +$\lambda$, because of this we can ignore it. Further more we use $\ln(\det D) = +\text{Tr}(\ln D)$ and therefor we can write for $W$ +\begin{align} + W = -\frac{1}{2} \int_0^\infty dt \frac{K(t, D)}{t} +\end{align} +where +\begin{align} + K(t, D) = \text{Tr}(e^{-tD}) = \int d^n x \sqrt{g}K(t;x,x;D). +\end{align} +The problem is now that the integral of $W$ is divergent at both limits. Yet +the divergences at $t\rightarrow \infty$ are caused by $\lambda \leq 0$ of $D$ +(infrared divergences) and are just ignored. The divergences at $t\rightarrow 0$ +are cutoff at $t=\Lambda^{-2}$, thus we write +\begin{align} + W_\Lambda = -\frac{1}{2} \int_{\Lambda^{-2}}^\infty dt \frac{K(t, D)}{t}. +\end{align} +We can calculate $W_\Lambda$ at up to an order of $\lambda ^0$ +\begin{align} + W_\Lambda &= -(4\pi)^{-n/2} \int d^n x\sqrt{g}\bigg( + \sum_{2(j+l)<n}\Lambda^{n-2j-2l}b_{2j}(x,x) \frac{(-m^2)^l l!}{n-2j-2l} +\\ + &+ \sum_{2(j+l) =n }\ln(\Lambda) (-m^2)^l l! b_{2j}(x,x) + \mathcal{O}(\lambda^0) \bigg) +\end{align} +There is an divergence at $b_2(x,x)$ with $k\leq n$. Now we compute the limit +$\Lambda \rightarrow \infty$ +\begin{align} + -\frac{1}{2}(4\pi)^{n/2}m^n\int d^n x\sqrt{g} \sum_{2j>n} + \frac{b_{2j}(x,x)}{m^{2j}}\Gamma(2j-n) +\end{align} +here $\Gamma$ is the gamma function. +\subsection{Differential Geometry and Operators of Laplace Type} +Let $M$ be a $n$ dimensional compact Riemannian manifold with $\partial M = 0$. +Then consider a vector bundle $V$ over $M$ (i.e. there is a vector space to +each point on $M$), so we can define smooth functions. We want to look at +arbitrary differential operators $D$ of Laplace type on $V$, they have the general +from +\begin{align} + D = -(g^{\mu\nu} \partial_\mu\partial_\nu + a^\sigma\partial_\sigma +b) +\end{align} +where $a^\sigma, b$ are matrix valued functions on $M$ and $g^{\mu\nu}$ is the +inverse metric on $M$. There is a unique connection on $V$ and a unique +endomorphism (matrix valued function) $E$ on $V$, then we can rewrite $D$ in +terms of $E$ and covariant derivatives +\begin{align} + D = -(g^{\mu\nu} \nabla_\mu \nabla_\nu +E) +\end{align} +Where the covariant derivative consists of $\nabla = \nabla^{[R]} +\omega$ the +standard Riemannian covariant derivative $\nabla^{[R]}$ and a "gauge" bundle +$\omega$ (fluctuations). WE can write $E$ and $\omega$ in terms of geometrical +identities +\begin{align} + \omega_\delta &= \frac{1}{2}g_{\nu\delta}(a^\nu + +g^{\mu\sigma}\Gamma^\nu_{\mu\sigma}I_V)\\ + E &= b - g^{\nu\mu}(\partial_\mu \omega_\nu + \omega_\nu \omega_\mu - + \omega_\sigma \Gamma^\sigma_{\nu\mu}) +\end{align} +where $I_V$ is the identity in $V$ and the Christoffel symbol +\begin{align} + \Gamma^\sigma_{\mu\nu} = g^{\sigma\varrho} \frac{1}{2} (\partial_\mu + g_{\nu\varrho} + \partial_\nu g_{\mu\varrho} - \partial_\varrho g_{\mu\nu}) +\end{align} +Furthermore we remind ourselves of the Riemmanian curvature tensor, Ricci +Tensor and the Scalar curavture. +\begin{align} + R^\mu_{\nu\varrho\sigma} &= \partial_\sigma \Gamma^{\mu}_{\nu\varrho} + -\partial_\varrho \Gamma^\mu_{\nu\sigma} + \Gamma^{\lambda}_{\nu\varrho}\Gamma^{\mu}_{\lambda\sigma} + \Gamma^{\lambda}_{\nu\sigma}\Gamma^{\mu}_{\lambda\varrho}\\ + R_{\mu\nu} &:= R^{\sigma}_{\mu\nu\sigma}\\ + R &:= R^\mu_{\ \mu} +\end{align} + +The we let $\{e_1, \dots, e_n\}$ be the local orthonormal frame of +$TM$(tangent bundle $M$), which will be noted with flat indices $i,j,k,l +\in\{1,\dots, n\}$, we use $e^k_\mu, e^\nu_j$ to transform between flat indices +and curved indices $\mu, \nu, \varrho$. +\begin{align} + e^\mu_j e^\nu_k g_{\mu\nu} &= \delta_{jk}\\ + e^\mu_j e^\nu_k \delta^{jk} &= g^{\mu\nu} \\ + e^j_\mu e^\mu_k &= \delta^j_k +\end{align} + +The Riemannian part of the covariant derivative contains the standard +Levi-Civita connection, so that for a $v_\nu$ we write +\begin{align} + \nabla_\mu^{[R]} v_\nu = \partial_\mu v_\nu - + \Gamma^{\varrho}_{\mu\nu}v_\varrho. +\end{align} +The extended covariant derivative reads then +\begin{align} + \nabla_\mu v^j = \partial_\mu v^j + \sigma^{jk}_\mu v_k. +\end{align} +the condition $\nabla_\mu e^k_\nu = 0$ gives us the general connection +\begin{align} + \sigma^{kl}_\mu = e^\nu_l\Gamma^{\varrho}_{\mu\nu}e^k_\varrho - e^\nu_l + \partial_\mu e^k_\nu +\end{align} +The we may define the field strength $\Omega_{\mu\nu}$ of the connection $\omega$ +\begin{align} + \Omega_{\mu\nu} = \partial_\mu \omega_\nu -\partial_\nu \omega_\mu + +\omega_\mu \omega_\nu -\omega_\nu\omega_\mu. +\end{align} +If we apply the covariant derivative on $\Omega$ we get +\begin{align} + \nabla_\varrho\Omega_{\mu\nu} = \partial_\varrho \Omega_{\mu\nu} - + \Gamma^{\sigma}_{\varrho \mu} \Omega_{\sigma\mu} + [\omega_\varrho, + \Omega_{\mu\nu}] +\end{align} + +\subsection{Spectral Functions} +Manifolds without $M$ boundary condition for the operator $e^{-tD}$ for $t>0$ is a +trace class operator on $L^2(V)$, this means that for any smooth function $f$ +on $M$ we can define +\begin{align} + K(t,f,D) = \text{Tr}_{L^2}(fe^{-tD}) +\end{align} +and we can rewrite +\begin{align} + K(t, f, D) = \int_M d^n x \sqrt{g} \text{Tr}_V(K(t;x,x;D)f(x)). +\end{align} +in terms of the Heat kernel $K(t;x,y;D)$ in the regular limit $y\rightarrow y$. +We can write the Heat Kernel in terms of the spectrum of $D$. Say +$\{\phi_\lambda\}$ is a ONB of eigenfunctions of $D$ corresponding to the +eigenvalue $\lambda$ +\begin{align} + K(t;x,y;D) = \sum_\lambda \phi^\dagger_\lambda(x) + \phi_\lambda(y)e^{-t\lambda}. +\end{align} +We have an asymtotic expansion at $t \rightarrow 0$ for the trace +\begin{align} + Tr_{L^2}(fe^{-tD}) \simeq \sum_{k\geq 0}t^{(k-n)/2}a_k(f,D). +\end{align} +where +\begin{align} + a_k(f,D) = (4\pi)^{-n/2} \int_M d^4x \sqrt{g} b_k(x,x) f(x) +\end{align} +\subsection{General Formulae} +We consider a compact Riemmanian Manifold $M$ without boundary condition, a +vector bundle $V$ over $M$ to define functions which carry discrete (spin or +gauge) indices. An Laplace style operator $D$ over $V$ and smooth function $f$ +on $M$. There is an asymtotic expansion where the heat kernel coefficients +\begin{enumerate} + \item with odd index $k=2j+1$ vanish + $a_{2j+1}(f,D) = 0$ + \item with even index are locally computable in terms of geometric + invariants +\end{enumerate} +\begin{align} + a_k(f,D) &= \text{Tr}_V\left(\int_M d^n x\sqrt{g}(f(x)a_k(x;D)\right) =\\ + &=\sum_I \text{Tr}_V\left(\int_M d^nx \sqrt{g}(fu^I \mathcal{A}^I_k(D))\right) +\end{align} +here $\mathcal{K}^I_k$ are all possible independent invariants of dimension +$k$, constructed from $E, \Omega, R_{\mu\nu\varrho\sigma}$ and their +derivatives, $u^I$ are some constants. + +If $E$ has dimension two, then the derivative has dimension one. So if $k=2$ +there are only two independent invariants, $E$ and $R$. This corresponds to the +statement $a_{2j+1}=0$. + +If we consider $M = M_1 \times M_2$ with coordinates $x_1$ and $x_2$ and a +decomposed Laplace style operator $D = D_1 \otimes 1 + 1 \otimes D_2$ we can +separate everything, i.e. +\begin{align} + e^{-tD} &= e^{-tD_1} \otimes e^{-tD_2}\\ + f(x_1, x_2) &= f_1(x_1)f_2(x_2)\\ + a_k(x;D) &= \sum_{p+q=k} a_p(x_1; D_1)a_q(x_2;D_2) +\end{align} +Say the spectrum of $D_1$ is known, $l^2, l\in \mathbb{Z}$. We obtain the heat +kernel asymmetries with the Poisson Summation formula +\begin{align} + K(t, D_1) &= \sum_{l\in\mathbb{Z}} e^{-tl^2} = \sqrt{\frac{\pi}{t}} + \sum_{l\in\mathbb{Z}} e^{-\frac{\pi^2l^2}{t}} = \\ + &\simeq \sqrt{\frac{\pi}{t}} + \mathcal{O}(e^{-1/t}). +\end{align} +Note that the exponentially small terms have no effect on the heat kernel +coefficients and that the only nonzero coefficient is $a_0(1, D_1) = +\sqrt{\pi}$. Therefore we can write +\begin{align} + a_k(f(x^2), D) = \sqrt{\pi}\int_{M_2} + d^{n-1}x\sqrt{g}\sum_I\text{Tr}_V\left(f(x^2)u^I_{(n-1)} + \mathcal{A}^I_n(D_2)\right). +\end{align} + +On the other had all geometric invariants associated with $D$ are in the $D_2$ +part. Thus all invariants are independent of $x_1$, so we can choose for $M_1$. +Say $M_1 = S^1$ with $x\in (0, 2\pi)$ and $D_1=-\partial_{x_1}^2$ we may +rewrite the heat kernel coefficients in +\begin{align} + a_k(f(x_2), D) &= \int_{S^1\times M_2}d^nx \sqrt{g} \sum_I + \text{Tr}_V(f(x_2) u_{(n)}^I \mathcal{A}^I_k(D_2))=\\ + &= 2\pi \int_{M_2} d^nx\sqrt{g} \sum_I\text{Tr}_V(f(x_2) u_{(n)}^I + \mathcal{A}^I_k(D_2)). +\end{align} +Computing the two equations above we see that +\begin{align} + u_{(n)}^I = \sqrt{4\pi} u^I_{(n+1)} +\end{align} + +\subsection{Heat Kernel Coefficients} +To calculate the heat kernel coefficients we need the following variational +equations +\begin{align} + &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(1, e^{-2\varepsilon f}D) = + (n-k) a_k(f, D),\label{eq:var1}\\ + &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(1, D-\varepsilon F) = + a_{k-2}(F,D),\label{eq:var2}\\ + &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(e^{-2\varepsilon f}F, + e^{-2\varepsilon f}D) = + 0\label{eq:var3}. +\end{align} +To prove the equation \ref{eq:var1} we differentiate +\begin{align} + \frac{d}{d\varepsilon}|_{\varepsilon=0} \text{Tr}(\exp(-e^{-2\varepsilon + f}tD) = \text{Tr}(2ftDe^{-tD}) = -2t\frac{d}{dt}\text{Tr}(fe^{-tD})) +\end{align} +then we expand both sides in $t$ and get \ref{eq:var1}. Equation \ref{eq:var2} +is derived similarly. For equation \ref{eq:var3} we consider the following +operator +\begin{align} + D(\varepsilon,\delta) = e^{-2\varepsilon f}(D-\delta F) +\end{align} +for $k=n$ we use equation \ref{eq:var1} and we get +\begin{align} + \frac{d}{d\varepsilon}|_{\varepsilon=0}a_n(1,D(\varepsilon,\delta)) =0 +\end{align} +then we take the variation in terms of $\delta$, evaluated at $\delta =0$ and +swap the differentiation, allowed by theorem of Schwarz +\begin{align} + 0 &= + \frac{d}{d\delta}|_{\delta=0}\frac{d}{d\varepsilon}|_{\varepsilon=0}a_n(1, + D(\varepsilon,\delta)) = + \frac{d}{d\varepsilon}|_{\varepsilon=0}\frac{d}{d\delta}|_{\delta=0}a_n(1, + D(\varepsilon,\delta)) =\\ + &=a_{n-2} ( e^{-2\varepsilon f}F, e^{-2\varepsilon f}D) +\end{align} +which proves equation \ref{eq:var3}. With this we calculate the constants $u^I$ +and we can write the first three heat kernel coefficients as +\begin{align} + a_0(f, D) &= (4\pi)^{-n/2}\int_Md^n x\sqrt{g} \text{Tr}_V(a_0 f)\\ + a_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_Md^n + x\sqrt{g}\text{Tr}_V)(f\alpha _1 E+\alpha _2 R)\\ + a_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_Md^n + x\sqrt{g}\text{Tr}_V(f(\alpha_3 E_{,kk} + \alpha_4 RE + \alpha_5 E^2 + \alpha_6 R_{,kk} + \\ + &+\alpha_7 R^2 + \alpha_8 R_{ij}R_{ij} + \alpha_9 + R_{ijkl}R_{ijkl} +\alpha_{10} \Omega_{ij}\Omega{ij})). +\end{align} +The constants $\alpha_I$ do not depend on the dimension $n$ of the Manifold and +we can compute them with our variational identities. + +The first coefficient $\alpha_0$ can be seen from the heat kernel expanion of +the Laplacian on $S^1$ (above), $\alpha_0 = 1$. For $\alpha_1$ we use +\ref{eq:var2}, for $k = 2$ +\begin{align} + \frac{1}{6} \int_M d^n x\sqrt{g} \text{Tr}_V(\alpha_1F) = \int_M d^n + x\sqrt{g} \text{Tr}_V(F), +\end{align} +thus we conclude that $\alpha_1 = 6$. Now we take $k=4$ +\begin{align} + \frac{1}{360}\int_Md^n x \sqrt{g}\text{Tr}_V(\alpha_4 F R + 2\alpha_5 F E) + = \frac{1}{6} \int_Md^n x\sqrt{g}\text{Tr}_V(\alpha_1 FE + \alpha_2 FR), +\end{align} +thus $\alpha_4 = 60\alpha_2$ and $\alpha_5 = 180$. + +Furthermore we apply \ref{eq:var3} to $n=4$ +\begin{align} + \frac{d}{d\varepsilon}|_{\varepsilon=0} a_2(e^{-2\varepsilon f}F, + e^{-2\varepsilon f}D) = 0. +\end{align} +By collecting the terms with $\text{Tr}_V(\int_Md^nx\sqrt{g}(Ff_{,jj}))$ we +obtain $\alpha_1 = 6\alpha_2$, that is $\alpha_2 = 1$, so $\alpha_4 = 60$. + +Now we let $M=M_1\times M_2$ and split $D = -\Delta_1 -\Delta_2$, where +$\Delta_{1/2}$ are Laplacians for $M_1, M_2$, then we can decompose the heat +kernel coefficients for $k=4$ +\begin{align} + a_4(1,-\Delta_1-\Delta_2) =& a_4(1, -\Delta_1) a_0(1, -\Delta_2) + +a_2(1,-\Delta_1) a_2(1,-\Delta_2) \\&+ a_0(1,-\Delta_1) a_4(1,-\Delta_2) +\end{align} +with $E=0$ and $\Omega =0$ and by calculating the terms with $R_1R_2$ (scalar +curvature of $M_{1/2}$) we obtain $\frac{2}{360}\alpha_7 = +(\frac{\alpha_2}{6})^2$, thus $\alpha_7 = 5$. + +For $n=6$ we get +\begin{align} + 0 &= \text{Tr}_V(\int_Md^nx\sqrt{g} + (F(-2\alpha_3-10\alpha_4+4\alpha_5)f_{,kk}E +\\ + &+(2\alpha_3 + 10\alpha_6)f_{,iijj}+\\ + &+(2\alpha_4 -2\alpha_6 - 20\alpha_7 -2\alpha_8)f_{,ii}R\\ + &+(-8\alpha_8 -8\alpha_6)f_{,ij}R_{ij})) +\end{align} +we obtain $\alpha_3 = 60$, $\alpha_6=12$, $\alpha_8 = -2$ and $\alpha_9 = 2$ + +For $\alpha_{10}$ we use the Gauss-Bonnet theorem to get $\alpha_{10}=30$, +which is left out because it is a lengthy computation. + +Summarizing we get for the heat kernel coefficients +\begin{align} + \alpha_0(f, D) &= (4\pi)^{-n/2}\int_M d^n x \sqrt{g} \text{Tr}_V(f)\\ + \alpha_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_M d^n x \sqrt{g} + \text{Tr}_V(f(6E+R))\\ + \alpha_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_M d^n x \sqrt{g} + \text{Tr}_V(f(60E_{,kk}+60RE+ 180E^2 +\\ + &+12R_{,kk} + 5R^2 - 2 R_{ij}R_{ij} + 2R_{ijkl}R_{ijkl} +30\Omega_{ij}\Omega_{ij}))\\ +\end{align} + + + + + + + + + +\end{document}