ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 50d2a7089b2150049fe2207a1ad762a89c8aeb03
parent 6410158b96d6b52ecbdc7285c54f986fd25af4fd
Author: miksa234 <milutin@popovic.xyz>
Date:   Thu, 18 Mar 2021 17:45:04 +0100

done with week5

Diffstat:
Mweek5.pdf | 0
Mweek5.tex | 166++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++---
2 files changed, 161 insertions(+), 5 deletions(-)

diff --git a/week5.pdf b/week5.pdf Binary files differ. diff --git a/week5.tex b/week5.tex @@ -266,7 +266,7 @@ Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$. &= \sum _{k} a'_{k} \end{align*} Which would than be the same as the sum of some elements - $\a'_{k} \in A$. Then we calculate the commutator: + $a'_{k} \in A$. Then we calculate the commutator: \begin{align*} [D, b_k] b = d(b_k)b = d(b_kb) - b_kd(b)\\ \end{align*} @@ -359,8 +359,8 @@ Some remarks &U^*U\pi_1(a)U^*U = \pi_1(a) = U^*\pi_2(a)U \\ \end{align*} The same with the symmetric operator $D$. - \newline + For transitivity we need \begin{align*} (A_1, H_1, D_1) &\sim (A_2, H_2, D_2) \;\;\; \text{and} \;\;\; @@ -436,6 +436,50 @@ With the information thus far we can prove the following theorem \end{align*} \end{proof} +\begin{exercise} + Let $\nabla$ and $\nabla'$ be two connections on a right $A$-module + $E$. Show that $\nabla - \nabla'$ is a right $A$-linear map + $E \rightarrow E\otimes _A \Omega _D^1(A)$ +\end{exercise} +\begin{solution} + Both $\nabla$ and $\nabla'$ need to satisfy the Leiblitz rule, so + let's see if $\nabla - \nabla'$ does. + + \begin{align*} + \nabla(ea)-\nabla'(ea)&=\nabla(e) + e\otimes[D, a]\\ + &-(\nabla'(e)a + e\otimes[D',a])\\ + &=\bar{\nabla}a + e\otimes(Da-aD-D'a+aD')\\ + &=\bar{\nabla}a + e\otimes((D-D')a-a(D-D'))\\ + &=\bar{\nabla}a + e\otimes[\prime{D}, a]\\ + &=\bar{\nabla}(ea) + \end{align*} + For some $\bar{\nabla}=\nabla-\nabla'$. +\end{solution} + +\begin{exercise} + Construct a finite spectral triple $(A, H', D')$ from $(A, H, D)$ + \begin{enumerate} + \item show that the derivation $d(\cdot):A \rightarrow A\otimes _A + \Omega_D^1(A)=\Omega_D^1(A)$ is a connection on $A$ + considered a right $A$-module + \item Upon identifying $A\otimes_A H\simeq H$, what is $D'$ + when the connection is $d(\cdot)$. + \item Use 1) and 2) to show that any connection $\nabla: + A\rightarrow A\otimes_A \Omega_D^1(A)$ is given by + \begin{align*} + \nabla = d + \omega + \end{align*} + where $\omega \in \Omega_D^1(A)$ + \item Upon identifying $A\otimes_A H \simeq H$, what is the + difference operator $D'$ with the connection on $A$ given by + $\nabla = d + \omega$ + \end{enumerate} +\end{exercise} +\begin{solution} + I did some notes on this one, but they are not really correct. I'll try + it again next session. +\end{solution} + \subsection{Graphing Finite Spectral Triples} \begin{definition} A \textit{graph} is a ordered pair $(\Gamma ^{(0)}, \Gamma ^{(1)})$. @@ -457,6 +501,19 @@ With the information thus far we can prove the following theorem \end{tikzpicture} \caption{A simple graph with three vertices and three edges} \end{figure} +\begin{exercise} + Show that any finite-dimensional faithful representation $H$ of a matrix + algebra $A$ is completely reducible. To do that show that the complement + $W^{\perp}$ of an $A$-submodule $W\subset H$ is also an $A$-submodule + of $H$. +\end{exercise} +\begin{solution} + $A\simeq \bigoplus_{i=1}^N M_{n_i}(\mathbb{C})$ is the matrix algebra + then $H$ is a Hilbert $A$-bimodule and $W$ a submodule of $A$. + Because we have $H = W \cup W^{\perp}$, then $W^{\perp}$ is naturally a + $A$-submodule, because elements in $W^{\perp}$ need to satisfy the + bimodularity. +\end{solution} \begin{definition} A $\Lambda$-decorated graph is given by an ordered pair $(\Gamma, \Lambda)$ of a finite graph $\Gamma$ and a set of positive integers @@ -506,8 +563,7 @@ $D_{ij}$ D = \sum _{e \in \Gamma ^{(1)}} D_e + D_e^* \end{equation} \end{theorem} -\begin{example} -\begin{figure}[h!] + \begin{figure}[h!] \centering \begin{tikzpicture}[ mass/.style = {draw,circle, minimum size=0.3cm, inner sep=0pt, thick}, @@ -519,5 +575,105 @@ $D_{ij}$ \caption{A $\Lambda$-decorated Graph of $(M_n(\mathbb{C}), \mathbb{C}^n, D = D_e + D_e^*)$} \end{figure} -\end{example} + +\begin{exercise} + Draw a $\Lambda$ decorated graph corresponding to the spectral triple + $(A=\mathbb{C}^3, H=\mathbb{C}^3, D=\begin{pmatrix}0 & \lambda & 0\\ + \bar{\lambda} &0 &0 \\ 0&0&0\end{pmatrix})$ +\end{exercise} +\begin{figure}[h!] + \centering +\begin{tikzpicture}[ + mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick}, + spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},] + \node[mass] (m1) at (-1,1.5) {\textbf{1}}; + \node[mass] (m2) at (1,1.5) {\textbf{2}}; + \node[mass] (m3) at (3,1.5) {\textbf{3}}; + + \draw[style=thick, -] (1.1,1.7) -- (-1.1,1.7); + \draw[style=thick, -] (1.1,1.3) -- (-1.1,1.3); + \end{tikzpicture} + \caption{Solution} +\end{figure} +\begin{exercise} + Use $\Lambda$-decorated graphs to classify all finite spectral triples + (modulo unitary equivalence) on the matrix algebra + $A=\mathbb{C}\oplus M_2(\mathbb{C})$ +\end{exercise} +\begin{figure}[h!] + \centering +\begin{tikzpicture}[ + mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick}, + spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},] + \node[mass] (m1) at (-1,1) {\textbf{1}}; + \node[mass] (m2) at (1,1) {\textbf{2}}; + \node[mass] (m3) at (3,1) {\textbf{3}}; + + \node[mass] (m4) at (-1,0) {\textbf{1}}; + \node[mass] (m5) at (1,0) {\textbf{2}}; + \node[mass] (m6) at (3,0) {\textbf{3}}; + + \node[mass] (m7) at (-1,-1) {\textbf{1}}; + \node[mass] (m8) at (1,-1) {\textbf{2}}; + \node[mass] (m9) at (3,-1) {\textbf{3}}; + + \node[mass] (m10) at (-1,-2) {\textbf{1}}; + \node[mass] (m11) at (1,-2) {\textbf{2}}; + \node[mass] (m12) at (3,-2) {\textbf{3}}; + + \draw[style=thick, -] (1.1,0.2) -- (-1.1,0.2); + \draw[style=thick, -] (1.1,-0.2) -- (-1.1,-0.2); + \draw[style=thick, -] (m7) to [out=330, in=210, looseness=10] node[above] {} (m7); + \draw[style=thick, -] (m10) -- (m11) ; + \end{tikzpicture} + \caption{Solution $A=M_3(\mathbb{C})$} +\end{figure} +\subsubsection{Graph Construction of Finite Spectral Triples} +\textbf{Algebra:}We know if a acts on a finite dimensional Hilbert space then +this C* algebra is isomorphic to a matrix algebra so $A \simeq +\bigoplus_{i=1}^{N}M_{n_i}(\mathbb{C})$. Where $i\in +\hat{A}$ represents an equivalence class and runs from $1$ to $N$, +thus $\hat{A}\simeq\{1,\dots, N\}$. We label equivalence classes by +$\textbf{n}_i$, then $\hat{A}\simeq\{\textbf{n}_1,\dots,\textbf{n}_N\}$. +\newline + +\textbf{Hilbert Space:} Since every Hilbert space that acts faithfully on a +C* algebra is completely reducible, it is isomorphic to the composition +of irreducible representations. $H \simeq \bigoplus_{i=1}^N\mathbb{C}^{n_i} +\otimes V_i$. Where all $V_i$'s are Vector spaces, their dimension is the +multiplicity of the representation landed by $\textbf{n}_i$ to $V_i$ itself +by the multiplicity space. +\newline + +\textbf{Finite Dirac Operator:} $D_{ij}$ is connecting nodes $\textbf{n}_i$ +and $\textbf{n}_j$, with a symmetric map $D_{ij}:\mathbb{C}^{n_i}\otimes V_i +\rightarrow \mathbb{C}^{n_j}\otimes V_j$ +\newline + +To draw a graph, draw nodes in position $\textbf{n}_i\in \hat{A}$. +Multiple nodes at the same position represent multiplicities in $H$. +Draw lines between nodes to represent $D_{ij}$. + +\begin{figure}[h!] + \centering +\begin{tikzpicture} + \node[draw, label=above:{$\textbf{n}_1$},circle, thick] at (-3,0) {}; + \node[label=above:{$\dots$}] at (-2,0) {}; + \node[draw, label=above:{$\textbf{n}_i$},circle, thick] at (-1,0) {}; + \node[label=above:{$\dots$}] at (0,0) {}; + \node[draw, label=above:{$\textbf{n}_j$},circle, thick] at (1,0) {}; + \node[draw, label=above:{},circle, thick, inner sep=0cm, minimum + size=0.2cm] at (1,0) {}; + \node[label=above:{$\dots$}] at (2,0) {}; + \node[draw, label=above:{$\textbf{n}_N$},circle, thick] at (3,0) {}; + + \draw[style=thick, -] (-1,-0.2) -- (1,-0.2); + \draw[style=thick, -] (-1,0.2) -- (1,0.2); + \path[style=thick, -] (-1,-0.2) edge[bend right=15] + node[pos=0.5,below] {} (3,-0.2); + \end{tikzpicture} + \caption{Example} +\end{figure} + + \end{document}