ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 68188395cea0fea2c0342eddcf352029677dae97
parent 70f5cb89959791561a5c5c54816b6d23a719ee20
Author: miksa234 <milutin@popovic.xyz>
Date:   Wed, 24 Mar 2021 13:52:54 +0100

added box around exercises and solutions

Diffstat:
Mpdfs/week1.pdf | 0
Mpdfs/week2.pdf | 0
Mpdfs/week5.pdf | 0
Msrc/week1.tex | 95++++++++++++++++++++++++++++++++++++++++++++++++++++++++++---------------------
Msrc/week2.tex | 99+++++++++++++++++++++++++++++++++++++++++++++++++++++---------------------------
Msrc/week5.tex | 192+++++++++++++++++++++++++++++++++++++++++++++++++------------------------------
6 files changed, 256 insertions(+), 130 deletions(-)

diff --git a/pdfs/week1.pdf b/pdfs/week1.pdf Binary files differ. diff --git a/pdfs/week2.pdf b/pdfs/week2.pdf Binary files differ. diff --git a/pdfs/week5.pdf b/pdfs/week5.pdf Binary files differ. diff --git a/src/week1.tex b/src/week1.tex @@ -14,24 +14,67 @@ \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} \usepackage[parfill]{parskip} +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} + +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + +\newcounter{exercise} + +\renewcommand*\theexercise{Exercise~\arabic{exercise}} + +\makeatletter +\mdfdefinestyle{exercisestyle}{% + outerlinewidth=1em,% + outerlinecolor=white,% + leftmargin=-1em,% + rightmargin=-1em,% + middlelinewidth=1.2pt,% + roundcorner=5pt,% + linecolor=black,% + backgroundcolor=blue!5, + innertopmargin=1.2\baselineskip, + skipabove={\dimexpr0.5\baselineskip+\topskip\relax}, + skipbelow={-1em}, + needspace=3\baselineskip, + frametitlefont=\sffamily\bfseries, + settings={\global\stepcounter{exercise}}, + singleextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};},% + firstextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};}, +} +\makeatother + +\newenvironment{MyExercise}% +{\begin{mdframed}[style=exercisestyle]}{\end{mdframed}} + \theoremstyle{definition} \newtheorem{definition}{Definition} \theoremstyle{definition} \newtheorem{question}{Question} +\theoremstyle{definition} +\newtheorem{example}{Example} + \theoremstyle{theorem} \newtheorem{theorem}{Theorem} \theoremstyle{theorem} -\newtheorem{exercise}{Exercise} - -\theoremstyle{definition} -\newtheorem{solution}{Solution} +\newtheorem{lemma}{Lemma} \newtheorem*{idea}{Proof Idea} + \title{Notes on \\ Noncommutative Geometry and Particle Physics} \author{Popovic Milutin} \date{Week 1: 05.02 - 12.02} @@ -134,11 +177,12 @@ Under the pointwise product: Or I didn't understand this correctly? \end{question} -\begin{exercise} +\begin{MyExercise} + \textbf{ Show that $\phi :X_1\ \rightarrow \ X_2$ is injective (surjective) map of finite spaces iff $\phi ^* :C(X_2)\ \rightarrow \ C(X_1)$ is surjective (injective). -\end{exercise} -\begin{solution} +}\newline + Consider $X_1$ with $n$ points and $X_2$ with $m$ points. Then there are three cases: \begin{enumerate} \item $n=m$ \\ @@ -151,7 +195,7 @@ Under the pointwise product: \item $n \langle m $ \\ analogous \end{enumerate} -\end{solution} +\end{MyExercise} \subsubsection{Matrix Algebras} \begin{definition} @@ -237,7 +281,8 @@ Yes \end{question} More on that in later chapters. -\begin{exercise} +\begin{MyExercise} + \textbf{ Given $(H, \pi)$ of a $*$-algebra $A$, the \textbf{commutant} $\pi (A)'$ of $\pi (A)$ is defined as a set of operators in $L(H)$ that commute with all $\pi (a)$ \begin{align*} @@ -248,8 +293,8 @@ More on that in later chapters. \item Show that a representation $(H, \pi)$ of $A$ is irreducible iff the commutant $\pi (A)'$ consists of multiples of the identity \end{enumerate} -\end{exercise} -\begin{solution} +} + 1. To show that $\pi (A)'$ is a $*$-algebra we have to show that it is unital, associative and involute. And note that $\pi (a) \in L(H)\ \forall a \in A$. Unitarity is given by the unital operator of the $*$-algebra of operators $L(H)$, which exists by definition @@ -258,9 +303,10 @@ More on that in later chapters. with a map $*: L(H) \mapsto L(H)$ only for $T$ that commute with $\pi (a)$. \\ 2.? -\end{solution} +\end{MyExercise} -\begin{exercise} +\begin{MyExercise} + \textbf{ \begin{enumerate} \item If $A$ is a unital $*$-algebra, show that the $n \times n$ matrices $M_n(A)$ with entries in $A$ form a unital $*$-algebra. @@ -271,9 +317,7 @@ More on that in later chapters. \item Let $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ be a $*$ algebra representation of $M_n(A)$. Show that $\pi: A \rightarrow L(H^n)$ is a representation of $A$. \end{enumerate} -\end{exercise} - -\begin{solution} +} 1. We know $A$ is a $*$ algebra. Unitary operaton in $M_n(A)$ is given by the identity Matrix, which has to exists because every entry in $M_n(A)$ has to behave like in $A$. Associativity is given by matrix multiplication. Involutnes is given by the conjugate transpose.\\ @@ -282,7 +326,7 @@ More on that in later chapters. $U=\mathbbm{1}_n$:\\ $\pi (a) = \mathbbm{1}_n^*\ \tilde{\pi}((a_{ij}))\ \mathbbm{1}_n = \tilde{\pi}((a_{ij})) = \pi (a_{ij}) \Rightarrow a_{ij} = a\mathbbm{1}_n$. -\end{solution} +\end{MyExercise} \subsection{Commutative Matrix Algebras} \begin{itemize} @@ -337,11 +381,12 @@ Remark on the notation \item ${}_A E_B$ $A$-$B$-bimodule $E$; \end{itemize} -\begin{exercise} +\begin{MyExercise} + \textbf{ Check that a representation of $\pi : A \rightarrow L(H)$ of a $*$-algebra A turns H into a left module ${}_A H$. -\end{exercise} -\begin{solution} +}\newline + Not quite sure but \\ $a \in A$, $h_1, h_2 \in H$, we know $\pi (a) = T \in L(H)$ than \begin{align*} @@ -354,14 +399,14 @@ Remark on the notation (\pi(a_1)\pi(a_2))h = \pi(a_1)(\pi(a_2) h) = (T_1T_2) h = T_1 (T_2 h) \end{align*} For $T_1, T_2 \in L(H)$, which operate naturally from the left on $h$. -\end{solution} +\end{MyExercise} -\begin{exercise} +\begin{MyExercise} + \textbf{ Show that $A$ is a bimodule ${}_A A_A$ with itself. -\end{exercise} +}\newline -\begin{solution} $\gamma: A\times A\times A \rightarrow A$ which is given by the inner product of the $*$-algebra. -\end{solution} +\end{MyExercise} \end{document} diff --git a/src/week2.tex b/src/week2.tex @@ -14,6 +14,48 @@ \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} \usepackage[parfill]{parskip} +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} + +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + +\newcounter{exercise} + +\renewcommand*\theexercise{Exercise~\arabic{exercise}} + +\makeatletter +\mdfdefinestyle{exercisestyle}{% + outerlinewidth=1em,% + outerlinecolor=white,% + leftmargin=-1em,% + rightmargin=-1em,% + middlelinewidth=1.2pt,% + roundcorner=5pt,% + linecolor=black,% + backgroundcolor=blue!5, + innertopmargin=1.2\baselineskip, + skipabove={\dimexpr0.5\baselineskip+\topskip\relax}, + skipbelow={-1em}, + needspace=3\baselineskip, + frametitlefont=\sffamily\bfseries, + settings={\global\stepcounter{exercise}}, + singleextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};},% + firstextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};}, +} +\makeatother + +\newenvironment{MyExercise}% +{\begin{mdframed}[style=exercisestyle]}{\end{mdframed}} + \theoremstyle{definition} \newtheorem{definition}{Definition} @@ -27,17 +69,10 @@ \newtheorem{theorem}{Theorem} \theoremstyle{theorem} -\newtheorem{exercise}{Exercise} - -\theoremstyle{theorem} \newtheorem{lemma}{Lemma} -\theoremstyle{definition} -\newtheorem{solution}{Solution} - \newtheorem*{idea}{Proof Idea} - \title{Notes on \\ Noncommutative Geometry and Particle Physics} \author{Popovic Milutin} \date{Week 2: 12.02 - 19.02} @@ -81,13 +116,14 @@ $\langle \cdot,\cdot\rangle_E$ needs to satisfy the following for $e, e_1, e_2 \ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. -\begin{exercise} +\begin{MyExercise} + \textbf{ Check that a representation $\pi:\ A \ \rightarrow L(H)$ of a matrix algebra $A$ turns $H$ into a Hilbert bimodule for $(A, \mathbb{C})$. \label{ex: bimodule} -\end{exercise} +}\newline + -\begin{solution} We check if the representation of $a \in A$, $\pi(a)=T \in L(H)$ fulfills the conditions on the $\mathbb{C}$-valued inner product for $h_1, h_2 \in H$: \begin{itemize} @@ -98,24 +134,26 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. $\mathbb{C}$-valued inner product \item $\langle h_1, h_2\rangle \ge 0$, $\mathbb{C}$-valued inner product. \end{itemize} -\end{solution} +\end{MyExercise} -\begin{exercise} +\begin{MyExercise} + \textbf{ Show that the $A-A$ bimodule given by $A$ is in $KK_f(A,A)$ by taking the following inner product $\langle \cdot,\cdot\rangle_A:A \times A \rightarrow A$: \begin{align*} \langle a, a\rangle_A = a^*a' \;\;\;\; a,a'\in A \end{align*} \label{exercise: inner-product} -\end{exercise} -\begin{solution} +}\newline + + We check again the conditions on $\langle \cdot, \cdot\rangle _A$, let $a, a_1, a_2 \in A$: \begin{itemize} \item $\langle a_1, a\cdot a_2\rangle _A = a^*\ a\cdot a_2 = (a^*a_1)^* a_2 = \langle a^*a_1, a_2\rangle $ \item $\langle a_1, a_2 \cdot a\rangle _A = a^*_1 (a_2\cdot a) = (a^*a_2)\cdot a = \langle a_1, a_2\rangle _A a$ \item $\langle a_1, a_2\rangle _A^* = (a_1^* a_2)^* = a_2^*(a_1^*)^* = a_2^* a_1 = \langle a_2, a_1\rangle $ \end{itemize} -\end{solution} +\end{MyExercise} \begin{example} Consider a $*$ homomorphism between two matrix algebras $\phi:A\rightarrow B$. @@ -152,7 +190,8 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. %What is the meaning of `associative up to isomorphism'? Isomorphism of $F \circ E$ or of $A, B$ or $D$? %\end{question} -\begin{exercise} + \begin{MyExercise} + \textbf{ Show that the association $\phi \leadsto E_\phi$ (from the previous Example) is natural in the sense \begin{enumerate} @@ -164,32 +203,27 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. E_{\psi \circ \phi} \in KK_f(A,C) \end{align*} \end{enumerate} -\end{exercise} - -\begin{solution} +} \begin{enumerate} - \ \item $\text{id}_A: A \rightarrow A$.\\ To construct $E_{\phi}\in KK_f(A,A)$, we let $E_{\phi}$ be $A$ with a natural right representation, so $\Rightarrow E_{\phi}\simeq A$.\\ With an inner product, acting on $A$ from the left with $\phi$, $a', a\in A$\\ $a'a = (\phi(a') a) \in A $, which is satisfied by $\text{id}_A$, so $\phi = \text{id}_A$. - \item $a \cdot b \cdot c = \psi(\phi(a) \cdot b) \cdot c$ for $a \in A$, $b\in B$, and $c\in C$ + \item $a \cdot b \cdot c = \psi(\phi (a) \cdot b) \cdot c$ for $a \in A$, $b\in B$, and $c\in C$ which is $\psi \circ \phi$ \end{enumerate} -\end{solution} +\end{MyExercise} -\begin{exercise} +\begin{MyExercise} + \textbf{ In the definition of Morita equivalence: \begin{enumerate} \item Check that $E \otimes _B F$ is a $A-D$ bimodule \item Check that $\langle \cdot,\cdot\rangle _{E\oplus _B F}$ defines a $D$ valued inner product \item Check that $\langle a^*(e_1 \otimes f_1), e_2 \otimes f_2\rangle _{E \otimes _B F} = \langle e_1 \otimes f_1, a(e_2 \otimes f_2)\rangle _{E \otimes _B F}$. \end{enumerate} -\end{exercise} - -\begin{solution} - \ +} \begin{enumerate} \item $E \otimes _B F = E \otimes F / \{\sum_i e_i b_i \otimes f_i - e_i \otimes b_i f_i; e_i \in E_i, b_i \in B, f_i \in F\}$ the last part takes out all tensor product elements of @@ -203,7 +237,7 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. $g_2 = e_2 \otimes f_2$ for some $e_1, e_2 \in E$ and $f_1, f_2 \in F$, or else $G \notin KK_f(A,C)$ which would violate the Kasparov product \end{enumerate} -\end{solution} + \end{MyExercise} \begin{definition} Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita equivalent} if there @@ -275,17 +309,16 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. These maps are each others inverses, thus $\hat{A} \simeq \hat{B}$ \end{proof} -\begin{exercise} +\begin{MyExercise} + \textbf{ Fill in the gaps in the above proof: \begin{enumerate} \item show that the representation of $\pi _A$ defined is irreducible iff $\pi _B$ is. \item Show that the association of the class $[\pi _A]$ to $[\pi _B]$ is independent of the choice of representatives $\pi _A$ and $\pi _B$ \end{enumerate} -\end{exercise} +} -\begin{solution} - \ \begin{enumerate} \item $(\pi _B, H)$ is irreducible means $H \neq \emptyset$ and only $\emptyset$ or $H$ is invariant under the Action of $B$ on $H$. @@ -295,7 +328,7 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. hence any choice of representation is irreducible, because the structure space denotes all unitary equivalence classes of irreducible representations. \end{enumerate} -\end{solution} +\end{MyExercise} \begin{lemma} The matrix algebra $M_n(\mathbb{C})$ has a unique irreducible representation (up to isomorphism) diff --git a/src/week5.tex b/src/week5.tex @@ -17,6 +17,45 @@ \usepackage{tikz} \usetikzlibrary{patterns,decorations.pathmorphing,positioning} +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + +\newcounter{exercise} + +\renewcommand*\theexercise{Exercise~\arabic{exercise}} + +\makeatletter +\mdfdefinestyle{exercisestyle}{% + outerlinewidth=1em,% + outerlinecolor=white,% + leftmargin=-1em,% + rightmargin=-1em,% + middlelinewidth=1.2pt,% + roundcorner=5pt,% + linecolor=black,% + backgroundcolor=blue!5, + innertopmargin=1.2\baselineskip, + skipabove={\dimexpr0.5\baselineskip+\topskip\relax}, + skipbelow={-1em}, + needspace=3\baselineskip, + frametitlefont=\sffamily\bfseries, + settings={\global\stepcounter{exercise}}, + singleextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};},% + firstextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};}, +} +\makeatother + +\newenvironment{MyExercise}% +{\begin{mdframed}[style=exercisestyle]}{\end{mdframed}} + \theoremstyle{definition} \newtheorem{definition}{Definition} @@ -32,12 +71,6 @@ \theoremstyle{theorem} \newtheorem{lemma}{Lemma} -\theoremstyle{theorem} -\newtheorem{exercise}{Exercise} - -\theoremstyle{definition} -\newtheorem{solution}{Solution} - \newtheorem*{idea}{Proof Idea} @@ -52,10 +85,11 @@ \section{Noncommutative Geometric Spaces } \subsection{Exercises} -\begin{exercise} - Make the proof of the last theorem (see week4.pdf) explicit for $N=3$ -\end{exercise} -\begin{solution} +\begin{MyExercise} +\textbf{ + Make the proof of the last theorem (see week4.pdf) explicit for $N=3$. +}\newline + For the C* algebra we have $A=\mathbb{C}^3$ For $H$ we have $H = (\mathbb{C}^2)^{\oplus 3} = H_2 \oplus H_2^1 \oplus H_2^2$. The symmetric operator $D$ acting on $H$ and the representation $\pi (a)$: @@ -101,19 +135,19 @@ \end{align} Then the norm of the commutator would be the largest eigenvalue \begin{align} - &||[D, \pi(a)]|| = ||D\pi(a) - \pi(a)D||\nonumber \\ - &= - \left|\left| - \setlength{\arraycolsep}{0.1cm} - \renewcommand{\arraystretch}{0.1} - \begin{pmatrix} - 0 & x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 \\ - -x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 & 0 \\ - 0 & 0 & 0 & x_2(a(3)-a(1)) & 0 & 0 \\ - 0 & 0 & -x_2(a(3)-a(1)) & 0 & 0 & 0 \\ - 0 & 0 & 0 & 0 & 0 & x_3(a(3)-a(2)) \\ - 0 & 0 & 0 & 0 & -x_3(a(2)-a(3)) & 0 \\ - \end{pmatrix}\right|\right| \label{skew matrix} + &||[D, \pi(a)]|| = ||D\pi(a) - \pi(a)D||\nonumber + % &= + % \left|\left| + % \setlength{\arraycolsep}{0.1cm} + % \renewcommand{\arraystretch}{0.1} + % \begin{pmatrix} + % 0 & x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 \\ + % -x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 & 0 \\ + % 0 & 0 & 0 & x_2(a(3)-a(1)) & 0 & 0 \\ + % 0 & 0 & -x_2(a(3)-a(1)) & 0 & 0 & 0 \\ + % 0 & 0 & 0 & 0 & 0 & x_3(a(3)-a(2)) \\ + % 0 & 0 & 0 & 0 & -x_3(a(2)-a(3)) & 0 \\ + % \end{pmatrix}\right|\right| \label{skew matrix} \end{align} The matrix in Equation \ref{shew matrix} is a skew symmetric matrix its eigenvalues are $i\lambda_1, i\lambda_2, i\lambda_3, i\lambda_4$, where the $\lambda$'s are on the @@ -123,9 +157,10 @@ the larges eigenvalues: \begin{align} ||[D, \pi(a)]|| = \max_{a\in A}\{x_i|a(j)-a(k)|\} \end{align} -\end{solution} +\end{MyExercise} -\begin{exercise} +\begin{MyExercise} + \textbf{ Compute the metric on the space of three points given by $d_{ij} = \sup_{a\in A}\{|a(i) - a(j)|: ||[D, \pi(a)]|| \leq 1\}$ for the set of data $A = \mathbb{C}^3$ acting in the defining representation $H = \mathbb{C}^3$, and @@ -138,8 +173,8 @@ the larges eigenvalues: \end{pmatrix} \end{align*} for some $d \in \mathbb{R}$ -\end{exercise} -\begin{solution} +}\newline + We have $A=\mathbb{C}^3$, $H=\mathbb{C}^3$ and $D$ from above, then \begin{align} @@ -151,8 +186,10 @@ the larges eigenvalues: \end{pmatrix} \right|\right| \\ &= d^{-1} |a(2) - a(1)| \end{align} -\end{solution} -\begin{exercise} +\end{MyExercise} + +\begin{MyExercise} + \textbf{ Show that $d_{ij}$ from Equation \ref{ext metric} is a metric on $\hat{A}$ by establishing that: \begin{align} @@ -163,8 +200,8 @@ the larges eigenvalues: \begin{equation} \label{ext metric} d_{ij} = \sup_{a\in A}\big\{|\text{Tr}(a(i)) - \text{Tr}((a(j))|: ||[D, a]|| \leq 1\big\} \end{equation} -\end{exercise} -\begin{solution} +}\newline + For Equation \ref{metric 1} set $i=j$ in \ref{ext metric}. \begin{align*} d_{ii} &= \sup_{a \in A}\{|\text{Tr}(a(i)) - \text{Tr}((a(i))|: ||[D, a]|| \leq @@ -177,7 +214,7 @@ addition. For Equation \ref{metric 3}, for $k=j$ then $d_{kj} = 0$ and the equality holds. For $i = k$ then $d_{ik} = 0$ and equality holds. Else set $d_{ik} = 1$ and $d_{kj} = 1$ then $d_{ij} = 1 \leq d_{ik} + d_{kj} = 2$ -\end{solution} +\end{MyExercise} \subsection{Properties of Matrix Algebras} \begin{lemma} @@ -227,14 +264,15 @@ exercises. differential operators` given $A$, that act on $H$? \end{question} Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$. -\begin{exercise} +\begin{MyExercise} + \textbf{ Verify that 'd` is a derivation of the C* algebra \begin{align*} d(ab) = d(a)b + ad(b) \\ d(a^*) = -d(a)^* \end{align*} -\end{exercise} -\begin{solution} +}\newline + For the record $d(\cdot) = [D, \cdot]$, then we have \begin{enumerate} \item @@ -249,14 +287,16 @@ Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$. &= -d(a)^* \end{align*} \end{enumerate} -\end{solution} -\begin{exercise} +\end{MyExercise} +\begin{MyExercise} + \textbf{ Verify that $\Omega _D^1 (A)$ is an $A$-bimodule by rewriting + } \begin{align*} a(a_k[D, b_k]b = \sum_k a'_k[D, b'_k] \;\;\;\; a'_k, b'_k \in A \end{align*} -\end{exercise} -\begin{solution} + \newline + First off we know the algebra is associative then we know that elements in $A$ can be represented faithfully on a Hilbert space $H$. Because of the Hilbert Basis $\{\textbf{n}_i\}_{i\in \mathbb{N}}$ of the Hilbert space we can decompose these elements @@ -271,7 +311,7 @@ Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$. [D, b_k] b = d(b_k)b = d(b_kb) - b_kd(b)\\ \end{align*} I don't think this is correct I'll try it again -\end{solution} +\end{MyExercise} \begin{lemma} Let $(A, H, D) = (M_n(\mathbb{C}, \mathbb{C}^n, D)$, with $D$ a hermitian @@ -293,19 +333,21 @@ I don't think this is correct I'll try it again (A) \subset L(\mathbb{C}^n) = H \simeq M_n(\mathbb{C}) = A$ \end{proof} -\begin{exercise} +\begin{MyExercise} + \textbf{ Consider $(A=\mathbb{C}^2, H=\mathbb{C}^2, D = \begin{pmatrix} 0 & \lambda \\ \bar{\lambda} & 0 \end{pmatrix})$ with $\lambda \neq 0$. Show that $\Omega _D^1(A) \simeq M_2(\mathbb{C})$ -\end{exercise} -\begin{solution} + } +\newline + Because of the Hilbert Basis $D$ can be extended in terms of the basis of $M_2(\mathbb{C})$, plugging this into Equation \ref{basis} will get us the same cyclic result, thus $\Omega _D^1(A) \simeq M_2(\mathbb{C})$ \ -\end{solution} +\end{MyExercise} \subsection{Morphisms Between Finite Spectral Triples} \begin{definition} @@ -331,12 +373,12 @@ Some remarks $\Omega _D^1 (A)$. \end{itemize} -\begin{exercise} +\begin{MyExercise} + \textbf{ Show that the unitary equivalence between finite spectral triples is a equivalence relation -\end{exercise} +}\newline -\begin{solution} An equivalence relation needs to satisfy reflexivity, symmetry transitivity. Let $(A_1, H_1, D_1)$, $(A_2, H_2, D_2)$ and $(A_3, H_3, D_3)$ @@ -377,7 +419,7 @@ Some remarks D_2 U_23^* \\ &= D_3 \end{align*} -\end{solution} +\end{MyExercise} Extending the this relation we look again at the notion of equivalence from Morita equivalence of Matrix Algebras. @@ -436,12 +478,13 @@ With the information thus far we can prove the following theorem \end{align*} \end{proof} -\begin{exercise} +\begin{MyExercise} + \textbf{ Let $\nabla$ and $\nabla'$ be two connections on a right $A$-module $E$. Show that $\nabla - \nabla'$ is a right $A$-linear map $E \rightarrow E\otimes _A \Omega _D^1(A)$ -\end{exercise} -\begin{solution} +}\newline + Both $\nabla$ and $\nabla'$ need to satisfy the Leiblitz rule, so let's see if $\nabla - \nabla'$ does. @@ -454,9 +497,10 @@ With the information thus far we can prove the following theorem &=\bar{\nabla}(ea) \end{align*} For some $\bar{\nabla}=\nabla-\nabla'$. -\end{solution} +\end{MyExercise} -\begin{exercise} +\begin{MyExercise} + \textbf{ Construct a finite spectral triple $(A, H', D')$ from $(A, H, D)$ \begin{enumerate} \item show that the derivation $d(\cdot):A \rightarrow A\otimes _A @@ -474,11 +518,11 @@ With the information thus far we can prove the following theorem difference operator $D'$ with the connection on $A$ given by $\nabla = d + \omega$ \end{enumerate} -\end{exercise} -\begin{solution} +} + I did some notes on this one, but they are not really correct. I'll try it again next session. -\end{solution} +\end{MyExercise} \subsection{Graphing Finite Spectral Triples} \begin{definition} @@ -501,19 +545,20 @@ With the information thus far we can prove the following theorem \end{tikzpicture} \caption{A simple graph with three vertices and three edges} \end{figure} -\begin{exercise} +\begin{MyExercise} + \textbf{ Show that any finite-dimensional faithful representation $H$ of a matrix algebra $A$ is completely reducible. To do that show that the complement $W^{\perp}$ of an $A$-submodule $W\subset H$ is also an $A$-submodule of $H$. -\end{exercise} -\begin{solution} +}\newline + $A\simeq \bigoplus_{i=1}^N M_{n_i}(\mathbb{C})$ is the matrix algebra then $H$ is a Hilbert $A$-bimodule and $W$ a submodule of $A$. Because we have $H = W \cup W^{\perp}$, then $W^{\perp}$ is naturally a $A$-submodule, because elements in $W^{\perp}$ need to satisfy the bimodularity. -\end{solution} +\end{MyExercise} \begin{definition} A $\Lambda$-decorated graph is given by an ordered pair $(\Gamma, \Lambda)$ of a finite graph $\Gamma$ and a set of positive integers @@ -576,13 +621,14 @@ $D_{ij}$ D = D_e + D_e^*)$} \end{figure} -\begin{exercise} +\begin{MyExercise} + \textbf{ Draw a $\Lambda$ decorated graph corresponding to the spectral triple $(A=\mathbb{C}^3, H=\mathbb{C}^3, D=\begin{pmatrix}0 & \lambda & 0\\ \bar{\lambda} &0 &0 \\ 0&0&0\end{pmatrix})$ -\end{exercise} -\begin{figure}[h!] - \centering +}\newline + +\centering \begin{tikzpicture}[ mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick}, spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},] @@ -593,14 +639,15 @@ $D_{ij}$ \draw[style=thick, -] (1.1,1.7) -- (-1.1,1.7); \draw[style=thick, -] (1.1,1.3) -- (-1.1,1.3); \end{tikzpicture} - \caption{Solution} -\end{figure} -\begin{exercise} + % \captionof{figure}{Solution} +\end{MyExercise} +\begin{MyExercise} + \textbf{ Use $\Lambda$-decorated graphs to classify all finite spectral triples (modulo unitary equivalence) on the matrix algebra $A=\mathbb{C}\oplus M_2(\mathbb{C})$ -\end{exercise} -\begin{figure}[h!] +}\newline + \centering \begin{tikzpicture}[ mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick}, @@ -625,9 +672,10 @@ $D_{ij}$ \draw[style=thick, -] (1.1,-0.2) -- (-1.1,-0.2); \draw[style=thick, -] (m7) to [out=330, in=210, looseness=10] node[above] {} (m7); \draw[style=thick, -] (m10) -- (m11) ; - \end{tikzpicture} - \caption{Solution $A=M_3(\mathbb{C})$} -\end{figure} + +\end{tikzpicture} +% \captionof{figure}{Solution $A=M_3(\mathbb{C})$} +\end{MyExercise} \subsubsection{Graph Construction of Finite Spectral Triples} \textbf{Algebra:}We know if a acts on a finite dimensional Hilbert space then this C* algebra is isomorphic to a matrix algebra so $A \simeq