ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 74dd4465987dfdadea227e83522f04e12fa404e2
parent d67465d0c2bad1ea4b8b7bf477583e6106c48da5
Author: miksa <milutin@popovic.xyz>
Date:   Thu, 27 May 2021 17:45:37 +0200

done exercises

Diffstat:
Mpdfs/week6.pdf | 0
Mpdfs/week7.pdf | 0
Msrc/week6.tex | 27+++++++++++++--------------
Msrc/week7.tex | 67+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
4 files changed, 80 insertions(+), 14 deletions(-)

diff --git a/pdfs/week6.pdf b/pdfs/week6.pdf Binary files differ. diff --git a/pdfs/week7.pdf b/pdfs/week7.pdf Binary files differ. diff --git a/src/week6.tex b/src/week6.tex @@ -196,7 +196,7 @@ vector space with the opposite product \item Show that the commutant $A'$ of $A$ is $A'\simeq \bigoplus_i M_{m_i} (\mathbb{C})$. As a consequence show $A'' \simeq A$. \item Show that if $\xi$ is a separating vector for $A$ than it is cyclic for $A'$. \end{enumerate} - }\newline + } \begin{enumerate} @@ -222,23 +222,23 @@ vector space with the opposite product $S: H \rightarrow H$. \item Show that $S$ is invertible \item Let $J: H \rightarrow H$ be the operator in $S = J \Delta ^{1/2}$ with - $\Delta = S*S$. Show that $J$ is anti-unitary + $\Delta = S^*S$. Show that $J$ is anti-unitary \end{enumerate} - }\newline + } \begin{enumerate} \item By composition $S(a\xi) = a*\xi$ this is literally anti-linearity. Does this mean $S\xi = \xi$? - \item Let $\xi \in H$ be cyclic then: $S(A\xi) = A*\xi = A\xi = H$. The same has to work - for $S^{-1}$ if not then $\xi$ wouldn't exist. $S^{-1}(A*\xi) = S^{-1}(H) = H$. - \item Since $S$ is bijective then $\Delta ^{1/2}$ and $J$ need to be bijective.\\ - Now let $\xi _1 , \xi _2 \in H$.\\ - \begin{align} + \item Let $\xi \in H$ be cyclic then: $S(A\xi) = A^*\xi = A\xi = H$. The same has to work + for $S^{-1}$ if not then $\xi$ wouldn't exist. $S^{-1}(A^*\xi) = S^{-1}(H) = H$. + \item Since $S$ is bijective then $\Delta ^{1/2}$ and $J$ need to be bijective. + We also have $J = S \Delta^{-1/2}$ and $\Delta^* = \Delta$\\ + Now let $\xi _1 , \xi _2 \in H$ \begin{align} <J \xi _1 , J \xi _2 > &= < J^*J\xi_1 , \xi_2>^* =\\ - &= <(\Delta ^{1/2})^* S^* S \Delta ^{1/2} \xi_1, \xi_2>^* = \\ - &= <(SS^*)^{1/2}S^*S(SS^*) \xi_1, \xi_2>^* =\\ - &= <(SS^*SS^*)^{1/2} \xi_1, \xi_2>^* = \\ + &= <(\Delta ^{-1/2})^* S^* S \Delta ^{-1/2} \xi_1, \xi_2>^* = \\ + &= <(\Delta^{-1/2})^* \Delta \Delta^{-1/2} \xi_1, \xi_2>^* =\\ + &= <\Delta^{-1/2} \Delta^{1/2}\Delta^{1/2} \Delta^{-1/2} \xi_1, \xi_2>^* =\\ &= <\xi _1, \xi_2>^* = <\xi_2 , \xi_1>. \end{align} \end{enumerate} @@ -350,14 +350,13 @@ with $b^\circ = J' b^* (J')^{-1}$, $b^* \in B$ action on $H'$. \tau : E \otimes_A \Omega _D^1 (A) &\rightarrow \Omega _D^1 (A) \otimes_A E^\circ\\ e \otimes \omega &\mapsto -\omega ^* \otimes \bar{e} \end{align} - Show that the map $\bar{\nabla} : E^\circ \righarrow \Omega _D^1(A) \otimes E^\circ$ + Show that the map $\bar{\nabla} : E^\circ \rightarrow \Omega _D^1(A) \otimes E^\circ$ with $\bar{\nabla}(\bar{e}) = \tau \circ \nabla(e)$ is a left connection, that means show that it satisfied the left Leibniz rule: \begin{equation} \bar{\nabla}(a\bar{e}) = [D, a] \otimes \bar{e} + a \bar{\nabla}(\bar{e}) \end{equation} - }\newline - + } Hagime: \begin{align} diff --git a/src/week7.tex b/src/week7.tex @@ -468,6 +468,73 @@ such that $(ab)^* = b^*a^*$ and $(a^*)^* \;\;\; \forall a,b\in A$ \simeq M_{2k}(\mathbb{C})$ as complex *algebras. \end{enumerate} } + 1). Let us take some $a, b \in \mathbb{H}$ with + \begin{align} + a = \begin{pmatrix} + \alpha & \beta \\ + -\bar{\beta} & \bar{\alpha} + \end{pmatrix} \;\;\;\; + b = \begin{pmatrix} + \gamma & \delta \\ + -\bar{\delta} & \bar{\gamma} + \end{pmatrix} + \end{align} + where $\alpha, \beta, \gamma, \delta \in \mathbb{C}$. Since + $\mathbb{H}$ is represented in standard $2x2$ matrices, the involution + is just subsequent from there, the only thing left to show is the + closure $ab \in \mathbb{H}$. + \begin{align} + ab &= + \begin{pmatrix} + \alpha & \beta \\ + -\bar{\beta} & \bar{\alpha} + \end{pmatrix} + \begin{pmatrix} + \gamma & \delta \\ + -\bar{\delta} & \bar{\gamma} + \end{pmatrix} =\\ + &= + \begin{pmatrix} + \alpha\beta - \beta\bar{\delta}& \alpha\delta + \beta \bar{\gamma}\\ + -(\bar{\alpha}\bar{\delta} + \bar{\beta}\gamma) & + \bar{\alpha}\gamma-\bar{\beta}\delta + \end{pmatrix} = + \begin{pmatrix} + \xi& \psi\\ + -\bar{\psi} & \bar{\xi} + \end{pmatrix} \in \mathbb{H} + \end{align} + where $\xi, \psi \in \mathbb{C}$ because of closure of complex numbers + in regards to multiplication and addition, which is $\mathbb{R} + \otimes_{\mathbb{R}}\mathbb{C} \simeq \mathbb{C}$, e.g. $\beta \cdot c + \in \mathbb{C}$ with $c \in \mathbb{C}$. + \newline + 2)For $\mathbb{H}\otimes_\mathbb{R} \mathbb{C}$ we have for some $h \in + \mathbb{H}$ and $c \in mathbb{C}$ + \begin{align} + h\otimes c &= + \begin{pmatrix} + \alpha & \beta \\ + -\bar{\beta} & \bar{\alpha} + \end{pmatrix}\otimes c = \\ + &= + \begin{pmatrix} + \alpha c & \beta c \\ + -\bar{\beta} c & \bar{\alpha} c + \end{pmatrix} \simeq M_2(\mathbb{C}) + \end{align} + because again of $\mathbb{R} \otimes_\mathbb{R} \mathbb{C} \simeq + \mathbb{C}$. + \newline + 3)We know that $\mathbb{H}$ is a real subalgebra of $M_2(\mathbb{C})$, + so $M_k(\mathbb{H})$ is just an extension and an real subalgebra of + $M_{2k}(\mathbb{C})$. + \newline + 4) Here we use what we have learned + \begin{align} + M_k(\mathbb{H})\otimes_\mathbb{R} \mathbb{C} \simeq + M_k(M_2(\mathbb{C})) = M_{2k}(\mathbb{C}) + \end{align} \end{MyExercise} \begin{definition} A representation of a finite-dimensional real * algebra $A$ is a pair $(\pi