ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 8a865911b1bb0ce40ff8628e4d4401d888f7edd1
parent 5dc97ef338dff58db6d6d5bcce873c05e329e8f5
Author: miksa <milutin@popovic.xyz>
Date:   Tue, 11 May 2021 13:27:47 +0200

fixed week5

Diffstat:
Msrc/week5.tex | 17+++++++++++------
1 file changed, 11 insertions(+), 6 deletions(-)

diff --git a/src/week5.tex b/src/week5.tex @@ -281,7 +281,7 @@ exercises. \begin{definition} Given an finite spectral triple $(A, H, D)$, the $A$-bimodule of - Connes' differential one form is: + Connes' differential one-forms is: \begin{equation} \Omega _D ^1 (A) := \left\{ \sum _k a_k[D, b_k]: a_k, b_k \in A \right\} \end{equation} @@ -453,8 +453,14 @@ a finite spectral triple on $B$, $(B, H', D')$ \begin{equation} H' = E \otimes _A H \end{equation} -This extends the left action on $B$ with the right action and inherits the -$\mathbb{C}$ valued inner product space. +We might define $D'$ with $D'(e \otimes \xi) = e\otimes D\xi$, thought this +would not satisfy the ideal defining the balanced tensor product over $A$, +which is generated by elements of the form +\begin{align} + e a \otimes \xi - e\otimes a \xi ;\;\;\;\; e\in E, a\in A, \xi \in H +\end{align} +This inherits the left action on $B$ from $E$ and has a $\mathbb{C}$ +valued inner product space. $B$ also satisfies the ideal. \begin{equation} D'(e\otimes \xi) = e \otimes D \xi + \nabla (e) \xi \;\;\;\; e\in E, a\in A @@ -465,14 +471,13 @@ associated with the derivation $d=[D, \cdot]$ and satisfying the \begin{equation} \nabla(ae) = \nabla(e)a + e \otimes [D, a] \;\;\;\;\; e\in E,\; a\in A \end{equation} -Then the linearity of the balanced tensor product $E \otimes _A H$ is -satisfied +Then $D'$ is well defined on $E \otimes _A H$: \begin{align*} D'(ea \otimes \xi - e \otimes a \xi) &= D'(ea \otimes \xi) - D'(e \otimes \xi) \\ &= ea\otimes D\xi + \nabla(ae) \xi - e \otimes D(a\xi ) - \nabla (e)a \xi \\ - &= 0 + &= 0. \end{align*} With the information thus far we can prove the following theorem \begin{theorem}