ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 8c28aa4d3a8944a30bedf77ac70e16615c906f7b
parent 65e52f6fc1a77ff1d5e345fbc7ef8ac2e56a3f39
Author: miksa234 <milutin@popovic.xyz>
Date:   Fri, 19 Feb 2021 19:25:45 +0100

anwsering questions

Diffstat:
Mweek2.pdf | 0
Mweek2.tex | 21++++++++++++++-------
2 files changed, 14 insertions(+), 7 deletions(-)

diff --git a/week2.pdf b/week2.pdf Binary files differ. diff --git a/week2.tex b/week2.tex @@ -63,7 +63,7 @@ Does $/$ denote the complement, because one usually writes $\setminus$. \url{https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)} \end{question} -In other words the balanced tensor product forms only elements of +READ THE WIKI In other words the balanced tensor product forms only elements of \begin{itemize} \item $E$ that preserver the \textit{left} representation of $A$ and \item $F$ that preserver the \textit{right} representation of $A$. @@ -94,6 +94,7 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \begin{exercise} Check that a representation $\pi:\ A \ \rightarrow L(H)$ of a matrix algebra $A$ turns $H$ into a Hilbert bimodule for $(A, \mathbb{C})$. + \label{ex: bimodule} \end{exercise} \begin{solution} @@ -153,7 +154,8 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \begin{question} How do we go from $\langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F}$ to $ - \langle f_1,\langle e_1, e_2\rangle _E f_2\rangle _F$ \label{q: tensorproduct} + \langle f_1,\langle e_1, e_2\rangle _E f_2\rangle _F$ \label{q: tensorproduct}\\ + This statement is still in the definition. \end{question} \begin{question} @@ -224,10 +226,10 @@ What is the meaning of `associative up to isomorphism'? Isomorphism of $F \circ \end{definition} \begin{question} - Why are $E$ and $F$ each others inverse in the Kasparov Product? - They are inverse because we land in the same space as we started - $E \in KK_f(A, B)$ we start from A and $E \otimes _B F$ lands in $A$ - and vice versa. + Why are $E$ and $F$ each others inverse in the Kasparov Product? \\ + They are each others inverse with respect to the Kasparov Product because we land in the same space as we started. + In the definition we have $E \in KK_f(A, B)$ we start from $A$ and $E \otimes _B F$ lands in $A$.\\ + On the other hand we have $F \in KK_f(B, D)$ we start from $B$ and $F \otimes _A E$ lands in $B$. \end{question} \begin{example} @@ -269,7 +271,12 @@ What is the meaning of `associative up to isomorphism'? Isomorphism of $F \circ \pi _A \rightarrow L(E \otimes _B H)\;\;\; \text{with} \;\;\; \pi _A(a) (e \otimes v) = a e \otimes w \end{align*} \begin{question} - Is $E \simeq H$ and $F \simeq W$? + Is $E \simeq H$ and $F \simeq W$? \\ + Not in particular, there is a theorem that all infinite dimensional Hilbert spaces are isomorphic. + Here we are looking at finite dimensional Hilbert spaces.\\ + Another thing to is that $[\pi _B, H] \in \hat{B}$ and looking at Exercise \ref{ex: bimodule} + we know that $H$ is a bimodule of $B$, hence $E \otimes _B H\simeq A$, and for $[\pi _A, W]$ + the same. \end{question} \textit{vice versa}, consider $[(\pi _A, W)] \in \hat{A}$ we can construct $\pi _B$ \begin{align*}