ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit c5db8ffc0f78e8b8bcfe856cb4a52e8948438890
parent fa5da59e293c99f96eca6f66dd1933a8919c99e5
Author: miksa234 <milutin@popovic.xyz>
Date:   Sun, 16 May 2021 16:14:34 +0200

week8 done

Diffstat:
Apdfs/week8.pdf | 0
Asrc/week8.tex | 573+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 573 insertions(+), 0 deletions(-)

diff --git a/pdfs/week8.pdf b/pdfs/week8.pdf Binary files differ. diff --git a/src/week8.tex b/src/week8.tex @@ -0,0 +1,573 @@ +\documentclass[a4paper]{article} + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} + +\usepackage{mathptmx} + +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{amssymb} +\usepackage{amsthm} +\usepackage{mathtools} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} + +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} + +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + +\newcounter{exercise} + +\renewcommand*\theexercise{Exercise~\arabic{exercise}} + +\makeatletter +\mdfdefinestyle{exercisestyle}{% + outerlinewidth=1em,% + outerlinecolor=white,% + leftmargin=-1em,% + rightmargin=-1em,% + middlelinewidth=1.2pt,% + roundcorner=5pt,% + linecolor=black,% + backgroundcolor=blue!5, + innertopmargin=1.2\baselineskip, + skipabove={\dimexpr0.5\baselineskip+\topskip\relax}, + skipbelow={-1em}, + needspace=3\baselineskip, + frametitlefont=\sffamily\bfseries, + settings={\global\stepcounter{exercise}}, + singleextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};},% + firstextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};}, +} +\makeatother + +\newenvironment{MyExercise}% +{\begin{mdframed}[style=exercisestyle]}{\end{mdframed}} + +\theoremstyle{definition} +\newtheorem{definition}{Definition} + +\theoremstyle{definition} +\newtheorem{question}{Question} + +\theoremstyle{definition} +\newtheorem{example}{Example} + +\theoremstyle{theorem} +\newtheorem{theorem}{Theorem} + +\theoremstyle{theorem} +\newtheorem{lemma}{Lemma} + + +\theoremstyle{theorem} +\newtheorem{proposition}{Proposition} + +\newtheorem*{idea}{Proof Idea} + + +\title{Notes on \\ Noncommutative Geometry and Particle Physics} +\author{Popovic Milutin} +\date{Week 6: 19.03 - 26.03} + +\begin{document} + + \maketitle + \tableofcontents + \section{Excurse} + \textbf{Manifold:} A topological space that is locally Euclidean. + \newline + \textbf{Riemannian Manifold:}A Manifold equipped with a riemannian + Metric, a + symmetric bilinear form on Vector Fields $\Gamma(TM)$ + \begin{align} + &g: \Gamma(TM) \times \Gamma(TM) \rightarrow C(M) \\ + \text{with}& \nonumber\\ + &g(X, Y) \in \mathbb{R} \;\;\; \text{if $X, Y \in \mathbb{R}$}\\ + &\text{$g$ is $C(M)$-bilinear } \forall f\in C(M):\;\; g(fX, Y) = + g(X, + fY) = fg(X,Y)\\ + &g(X,X) \begin{cases}\geq 0 \;\;\; \forall X \\ = 0 \;\;\; \forall X + =0 + \end{cases} + \end{align} + $g$ on $M$ gives rise to a distance function on $M$ + \begin{align} + d_g(x, y) = \inf_\gamma \left\{\int_0^1(\dot{\gamma}(t), + \dot{\gamma}(t))dt;\;\; \gamma(0) = x, \gamma(1) = y \right\} + \end{align} + Riemannian Manifold is called spin$^c$ if there exists a vector bundle $S + \rightarrow M$ with an algebra bundle isomorphism + \begin{align} + \mathbb{C}\text{I}(TM) &\simeq \text{End}(S)\;\;\; &\text{($dim(M)$ + even)}\\ + \mathbb{C}\text{I}(TM)^\circ &\simeq \text{End}(S)\;\;\; + &\text{($dim(M)$ odd)}\\ + \end{align} + $(M,S)$ is called the \textbf{spin$^c$ structure on $M$}. + \newline + $S$ is called the \textbf{spinor Bundle}. + \newline + $\Gamma(S)$ are the \textbf{spinors}. + + Riemannian spin$^c$ Manifold is called spin if there exists an + anti-unitary + operator $J_M:\Gamma(S) \rightarrow \Gamma(S)$ such that: + \begin{enumerate} + \item $J_M$ commutes with the action of real-valued continuous + functions + on $\Gamma(S)$. + \item $J_M$ commutes with $\text{Cliff}^-(M)$ (even case)\\ + $J_M$ commutes with $\text{Cliff}^-(M)^\circ$ (odd case) + \end{enumerate} + $(S, J_M)$ is called the \textbf{spin Structure on $M$} + \newline + $J_M$ is called the \textbf{charge conjugation}. + \section{Noncommutative Geomtery of Electrodynamics} + \subsection{The Two-Point Space} + Consider a two point space $X := \{x, y\}$. This space=an be described + with + the following spectral triple + \begin{align} + F_x := (C(X) = \mathbb{C}^2, H_F, D_F; J_F, \gamma _f). + \end{align} + + Notes on the spectral triple: + \begin{itemize} + \item Action of $C(X)$ on $H_F$ is faithful ($\dim (H_F) \geq 2$)\\ + we choose $H_F = \mathbb{C}^2$ + \item $\gamma_F$ is the $\mathbb{Z}_2$ grading, which allows us to + decompose $H_F = H_F^+ \oplus H_F^- = \mathbb{C} \oplus \mathbb{C}$\\ + where $H_F^{\pm} = \{ \psi \in H_F |\;\; \gamma _F \psi = \pm \psi\}$ + are the two eigenspaces + \item $D_F$ interchanges between $H_F^\pm$, $D_F = + \begin{pmatrix}0 & t \\ \bar{t} & 0\end{pmatrix}$ where $t \in + \mathbb{C}$ + \end{itemize} + + \begin{proposition} + $F_x$ can only have a real structure if $D_F = 0$ in that case we + have + $KO-dim = 0, 2, 6$ + \end{proposition} + \begin{proof} + There are two diagram representations of $F_x$ at + $\underbrace{\mathbb{C} \oplus \mathbb{C}}_{C(X)}$ + on $\underbrace{\mathbb{C} \oplus\mathbb{C}}_{H_F}$ + + \begin{figure}[h!] \centering + \begin{tikzpicture}[ + dot/.style = {draw, circle, inner sep=0.06cm}, + no/.style = {}, + ] + \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d) at (2, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (2,0) [] {}; + \node[dot](d0) at (1,-1) [] {}; + + \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b2) at (6, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d2) at (8, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (7,0) [] {}; + \node[dot](d0) at (8,-1) [] {}; + \end{tikzpicture} + \end{figure} + If $F_x$ a real spectral triple then $D_F$ can only go vertically or + horizontally $\Rightarrow D_F = 0$. Furthermore the diagram on the + left has KO-dimension 2 and 6, diagram on the right has KO-dimension + 0 and 4. Yet KO-dimension 4 is not allowed because + $dim(H_F^\pm) = 1$ (see Lemma 3.8 Book), so $J_F^2 = -1$ is not + allowed. + \end{proof} + \subsection{The product Space} + Let $M$ be a 4-dim Riemannian spin Manifold, then we have the almost + commutative manifold $M\times F_x$ + \begin{align} + M\times F_x = (C^\infty(M, \mathbb{C}^2, L^2(S)\otimes \mathbb{C}^2, + D_M\otimes 1 ; J_M\otimes J_F, \gamma_M \otimes \gamma_F) + \end{align} + ($J_M$ is missing need to choose)\newline + $C^\infty(M, \mathbb{C}^2) \simeq C^\infty(M) \oplus C^\infty(M)$ + (decomposition) and from Gelfand duality we we have + \begin{align} + N:= M\otimes X \simeq M\sqcup X + \end{align} + $H = L^2(S) \oplus L^2(S)$ (decomposition), such that for + $\underbrace{a,b + \in C^\infty(M)}_{(a, b) \in C^\infty(N)}$ + and $\underbrace{\psi, \phi \in L^2(S)}_{(\psi, \phi) \in H}$ we have + \begin{align} + (a, b)(\psi, \phi) = (a\psi, b\phi) + \end{align} + We can consider a distance formula on $M\times F_x$ by + \begin{align} + d_{D_F}(x,y) = \sup\left\{ |a(x) - a(y)|:a\in A_F, ||[D_F, a]|| \leq + 1 \right\} + \end{align} + Now lets calculate the distance between two points on the two point space + $X= + \{x, y\}$, between $x$ and $y$. Let $a \in \mathbb{C}^2 = C(X)$, $a$ is + specified with two complex numbers $a(x)$ and $a(y)$ + \begin{align} + &||[D_F , a]|| = ||(a(y) - a(x))\begin{pmatrix}0 &t\\\bar{t} &0 + \end{pmatrix}|| \leq 1\\ + &\Rightarrow |a(y) - a(x)|\leq \frac{1}{|t|} + \end{align} + Therefore the distance between two points $x$ and $y$ is + \begin{align} + d_{D_F} (x,y) = \frac{1}{|t|} + \end{align} + Note that if there exists $J_M$ (real structure) $\Rightarrow t=0$ then + $d_{D_F}(x,y) \rightarrow \infty$! + \newline + + Now let $p \in M$, then take two points on $N=M\times X$, $(p, x)$ and + $(p,y)$ and $a \in C^\infty(N)$ is determined by $a_x(p):=a(p, x)$ and + $a_y(p):=a(p, y)$. The distance between these two points is then + \begin{align} + d_{D_F\otimes 1}(n_1, n_2) = \sup \left\{ |a(n_1) - a(n_2)|: a\in + A, ||[D\otimes 1, a]||\right\} + \end{align} + \textbf{Remark}: If $n_1 = (p,x)$ and $n_2 = (q, x)$ for $p,q \in M$ then + \begin{align} + d_{D_M \otimes 1} (n_1, n_2) = |a_x(p) - a_x(q)| \;\;\; a_x\in + C^\infty(M) \;\; \text{with} \;\; ||[D\otimes 1, a_x]|| \leq 1 + \end{align} + The distance turns to the geodestic distance formula + \begin{align} + d_{D_M\otimes1}(n_1, n_2) = d_g(p, q) + \end{align} + + However if $n_1 = (p, x)$ and $n_2 = (q, y)$ then the two conditions are + $||[D_M, a_x]|| \leq 1$ and $||[D_M, a_y|| \leq 1$. They have no + restriction which results in the distance being infinite! And $N = + M\times X$ is given by two disjoint copies of M which are separated by + infinite distance + + \textbf{Note}: distance is only finite if $[D_F, a] \neq 1$. The + commutator + generates a scalar field say $\phi$ and the finiteness of the distance is + related to the existence of scalar fields. + \subsection{$U(1)$ Gauge Group} + Here we determine the Gauge theory corresponding to the almost + commutative + Manifold $M\times F_x$. + + \textbf{Gauge Group of a Spectral Triple}: + \begin{align} + \mathfrak{B}(A, H; J) := \{ U = uJuJ^{-1} | u\in U(A)\} + \end{align} + \begin{definition} + A *-automorphism of a *-algebra $A$ is a linear invertible + map + \begin{align} + &\alpha:A \rightarrow A\;\;\; \text{with}\\ + \nonumber\\ + &\alpha(ab) = \alpha(a)\alpha(b)\\ + &\alpha(a)^* = \alpha(a^*) + \end{align} + The \textbf{Group of automorphisms of the *-Algebra $A$} is + $(A)$.\newline + The automorphism $\alpha$ is called \textbf{inner} if + \begin{align} + \alpha(a) = u a u^* \;\;\; \text{for} \;\; U(A) + \end{align} + where $U(\mathfrak{A})$ is + \begin{align} + U(A) = \{ u\in A|\;\; uu^* = u^*u=1\} \;\;\; + \text{(unitary)} + \end{align} + \end{definition} + The Gauge group is given by the quotient $U(A)/U(A_J)$. + We want a nontrivial Gauge group so we need to choose $U(A_J) \neq + U(A)$ which is the same as $U((A_F)_{J_F}) \neq + U(A_F)$. + We consider $F_x$ to be + \begin{align} + F_x := \left(\mathbb{C}^2,\mathbb{C}^2, D_F =\begin{pmatrix} + 0&0\\0&0\end{pmatrix}; J_f =\begin{pmatrix} + 0&C\\C&0\end{pmatrix}, + \gamma_F = \begin{pmatrix}1&0\\0&-1\end{pmatrix}\right). + \end{align} + Here $C$ is the complex conjugation, and $F_X$ is a real even finite + spectral triple (space) with $KO-dim=6$ + + \begin{proposition} + The Gauge group $\mathfrak{B}(F)$ of the two point space is given by + $U(1)$. + \end{proposition} + \begin{proof} + Note that $U(A_F) = U(1) \times U(1)$. We need to show that + $U(\mathcal{A}_F) + \cap U(A_F)_{J_F}) \simeq U(1)$, such that $\mathfrak{B}(F) + \simeq U(1)$.\newline + + So for $a \in \mathbb{C}^2$ to be in $(A_F)_{J_F}$ it has + to satisfy $J_F a^* J_F = a$. + \begin{align} + J_F a^* J^{-1} = + \begin{pmatrix}0&C\\C&0\end{pmatrix} + \begin{pmatrix}\bar{a}_1&0\\0&\bar{a}_2\end{pmatrix} + \begin{pmatrix}0&C\\C&0\end{pmatrix} + = + \begin{pmatrix}a_2&0\\0&a_1\end{pmatrix} + \end{align} + Which is only the case if $a_1 = a_2$. So we have + $(A_F)_{J_F} \simeq \mathbb{C}$, whose unitary elements + from $U(1)$ are contained in the diagonal subgroup of + $U(\mathcal{A}_F)$. + \end{proof} + + Now we need to find the exact from of the field $B_\mu$ to calculate the + spectral action of a spectral triple. Since $(A_F)_{J_F} \simeq + \mathbb{C}$ we find that $\mathfrak{h}(F) = \mathfrak{u}((A_F)_{J_F}) + \simeq i\mathbb{R}$.\newline + + An arbitrary hermitian field $A_\mu = -ia\partial _\mu b$ is given by + two + $U(1)$ Gauge fields $X_\mu^1, X_\mu^2 \in C^\infty(M, \mathbb{R})$. + However $A_\mu$ appears in combination $A_\mu - J_F A_\mu J_F^{-1}$: + \begin{align} + B_\mu = A_\mu - J_F A_\mu J_F^{-1} = + \begin{pmatrix}X_\mu^1&0\\0&X_\mu^2 \end{pmatrix} + - + \begin{pmatrix}X_\mu^2&0\\0&X_\mu^1 \end{pmatrix} + =: + \begin{pmatrix}Y_\mu&0\\0&-Y_\mu \end{pmatrix}= + Y_\mu \otimes \gamma _F + \end{align} + where $Y_\mu$ the $U(1)$ Gauge field is defined as + \begin{align} + Y_\mu := X_\mu^1 - X_\mu^2 \in C^\infty(M, \mathbb{R}) = C^\infty(M, + i\ u(1)). + \end{align} + + \begin{proposition} + The inner fluctuations of the almost-commutative manifold $M\times + F_x$ described above are parametrized by a $U(1)$-gauge field $Y_\mu$ + as + \begin{align} + D \mapsto D' = D + \gamma ^\mu Y_\mu \otimes \gamma_F + \end{align} + The action of the gauge group $\mathfrak{B}(M\times F_X) \simeq + C^\infty (M, U(1))$ on $D'$ is implemented by + \begin{align} + Y_\mu \mapsto Y_\mu - i\ u\partial_\mu u^*; \;\;\;\;\; (u\in + \mathfrak{B}(M\times F_X)). + \end{align} + \end{proposition} + +\section{Electrodynamics} +Now we use the almost commutative Manifold and the abelian gauge group +$U(1)$ to describe Electrodynamics. We arrive at a unified description of +gravity and electrodynamics although in the classical level. +\newline + +The almost commutative Manifold $M\times F_X$ describes a local gauge group +$U(1)$. The inner fluctuations of the Dirac operator describe $Y_\mu$ the +gauge field of $U(1)$. There arrise two Problems: +\newline +(1): With $F_X$, $D_F$ must vanish, however this implies that the electrons +are massless (this we do not want) +\newline + +(2): The Euclidean action for a free Dirac field is +\begin{align} + S = - \int i \bar{\psi}(\gamma ^\mu\partial _\mu - m) \psi d^4x, +\end{align} +$\psi,\ \bar{\psi}$ must be considered as independent variables, which means +$S_F$ need two independent Dirac Spinors. We write $\{e, \bar{e}\}$ for the +ONB of $H_F$, where $\{e\}$ is the ONB of $H_F^+$ and $\{\bar{e}\}$ the ONB +of $H_F^-$ with the real structure this gives us the following relations +\begin{align} + J_F e &= \bar{e} \;\;\;\;\;\; J_F \bar{e} = e \\ + \gamma_F e &= e \;\;\;\;\;\; \gamma_F \bar{e} = \bar{e}. +\end{align} +The total Hilbertspace is $H = L^2(S) \otimes H_F$, with $\gamma _F$ we can +decompose $L^2(S) = L^2(S)^+ \oplus L^2(S)^-$, so with $\gamma = \gamma _M +\otimes \gamma _F$ we can obtain the positive eigenspace $H^+$ +\begin{align} + H^+ = L^2(S)^+ \otimes H_F^+ \oplus L^(S)^- \otimes H_F^-. +\end{align} +For a $\xi \i H^+$ we can write +\begin{align} + \xi = \psi _L \otimes e + \psi _R \otimes \bar{e} +\end{align} +where $\psi _L \in L^2(S)^+$ and $\psi _R \in L^2(S)^-$ are the two Wheyl +spinors. We denote that $\xi$ is only determined by one Dirac spinor $\psi := +\psi_L + \psi _R$, \textbf{but we require two independent spinors}. This is +too much restriction for $F_X$. +\subsection{The Finite Space} +Here we solve the two problems by enlarging(doubling) the Hilbertspace. This +is done by introducing multiplicities in Krajewski Diagrams which will also +allow us to choose a nonzero Dirac operator which will connect the two +vertices (next chapter). +\newline + +We start of with the same algebra $C^\infty(M, \mathbb{C}^2)$, corresponding +to space $N= M\times X \simeq M\sqcup M$. +\newline + +The Hilbertspace will describe four particles, +\begin{itemize} + \item left handed electrons + \item right handed positrons +\end{itemize} +Thus we have $\{ \underbrace{e_R, e_L}_{\text{left-handed}}, +\underbrace{\bar{e}_R, \bar{e}_L}_{\text{right-handed}}\}$ the ONB for $H_F +\mathbb{C}^4$. +\newline +Then with $J_F$ we interchange particles with antiparticles we have the +following properties +\begin{align} + &J_F e_R = \bar{e}_R \;\;\;\;\; &J_F e_L = \bar{e_L} \\ + &\gamma _F e_R = -e_R \;\;\;\;\; &\gamma_F e_L = e_L \\ + \text{and}& \nonumber \\ + &J_F^2 = 1 \;\;\;\;\; & J_F \gamma_F = - \gamma_F J_F +\end{align} +This corresponds to KO-dim$= 6$. Then $\gamma_F$ allows us to can decompose +$H$ +\begin{align} + H_F = \underbrace{H_F^+}_{\text{ONB } \{e_L, \bar{e}_L\}} + \oplus \underbrace{H_F^-}_{\text{ONB } \{e_R, \bar{e}_R\}}. +\end{align} +Alternatively we can decompose $H$ into the eigenspace of particles and their +antiparticles (electrons and positrons) which we will use going further. +\begin{align} + H_F = \underbrace{H_{e}}_{\text{ONB } \{e_L, e_R\}} \oplus + \underbrace{H_{\bar{e}}}_{\text{ONB } \{\bar{e}_L, \bar{e}_R\}} +\end{align} +Now the action of $a \in A = \mathbb{C}^2$ on $H$ with respect to the ONB +$\{e_L, e_R, \bar{e}_L, \bar{e}_R\}$ is represented by +\begin{align} + a = + \begin{pmatrix}a_1 & a_2 \end{pmatrix} \mapsto + \begin{pmatrix} + a_1 &0 &0 &0\\ + 0&a_1 &0 &0\\ + 0 &0 &a_2 &0\\ + 0 &0 &0 &a_2\\ + \end{pmatrix} +\end{align} +Do note that this action commutes wit the grading and that +$[a, b^\circ] = 0$ with $b:= J_F b^*J_F$ because both the left and the right +action is given by diagonal matrices. +\begin{proposition} + The data + \begin{align} + \left( \mathbb{C}^2, \mathbb{C}^2, D_F=0; J_F = + \begin{pmatrix} + 0 & C \\ C &0 + \end{pmatrix}, + \gamma _F = + \begin{pmatrix} + 1 & 0 \\ 0 &-1 + \end{pmatrix} + \right) + \end{align} + defines a real even spectral triple of KO-dimension 6. +\end{proposition} +This spectral triple can be represented in the following Krajewski diagram, +with two nodes of multiplicity two + \begin{figure}[h!] \centering + \begin{tikzpicture}[ + dot/.style = {draw, circle, inner sep=0.06cm}, + bigdot/.style = {draw, circle, inner sep=0.09cm}, + no/.style = {}, + ] + \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c) at (0.5, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d) at (1.5, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (1.5,0) [] {}; + \node[dot](d0) at (0.5,-1) [] {}; + \node[bigdot](d0) at (1.5,0) [] {}; + \node[bigdot](d0) at (0.5,-1) [] {}; + \end{tikzpicture} + \end{figure} +\subsection{A noncommutative Finite Dirac Operator} +Add a non-zero Dirac Operator to $F_{ED}$. From the Krajewski Diagram, we see +that edges only exist between the multiple vertices. So we construct a Dirac +operator mapping between the two vertices. +\begin{align} + D_F = + \begin{pmatrix} + 0 & d & 0 & 0 \\ + \bar{d} & 0 & 0 & 0 \\ + 0 & 0 & 0 & \bar{d} \\ + 0 & 0 & d & 0 + \end{pmatrix} +\end{align} +We can now consider the finite space $F_{ED}$. +\begin{align} + F_{ED} := (\mathbb{C}^2, \mathbb{C}^4, D_F; J_F, \gamma_F) +\end{align} +where $J_F$ and $\gamma_F$ like before, $D_F$ like above. +\subsection{The almost-commutative Manifold} +The almost commutative manifold $M\times F_{ED}$ has KO-dim$=2$, it is the +following spectral triple +\begin{align} + M\times F_{ED} := \left(C^\infty(M,\mathbb{C}^2, L^2(S)\otimes + \mathbb{C}^4, + D_M\otimes 1 +\gamma _M \otimes D_F; J_M\otimes J_F, \gamma_M\otimes + \gamma _F\right) +\end{align} + +The algebra decomposition is like before +\begin{align} + C^\infty(M, \mathbb{C}^2) = C^\infty (M) \oplus C^\infty (M) +\end{align} + +The Hilbertspace decomposition is +\begin{align} + H = (L^2(S) \otimes H_e ) \oplus (L^2(S) \otimes H_{\bar{e}}). +\end{align} +Here we have the one component of the algebra acting on $L^2(S) \otimes H_e$, +and the other one acting on $L^2(S) \otimes H_{\bar{e}}$ +\newline + +The derivation of the gauge theory is the same for $F_{ED}$ as for $F_X$, we +have $\mathfrak{B}(F) \simeq U(1)$ and for $B_\mu = A_\mu - J_F A_\mu +J_F^{-1}$ +\begin{align} + B_\mu = + \begin{pmatrix} + Y_\mu & 0 & 0 & 0 \\ + 0 & Y_\mu& 0 & 0 \\ + 0 & 0 & Y_\mu& 0 \\ + 0 & 0 & 0 & Y_\mu + \end{pmatrix} \;\;\;\;\;\ \text{for} \;\;\ Y_\mu (x) \in \mathbb{R}. +\end{align} +We have one single $U(1)$ gauge field $Y_\mu$, carrying the action of the +gauge group +\begin{align} + \text{$\mathfrak{B}$}(M\times F_{ED}) \simeq C^\infty(M, U(1)) +\end{align} + +Our space $N = M\times X \simeq M\sqcup M$ consists of two compies of $M$. +If $D_F = 0$ we have infinite distance of the two copies. Now we have $D_F$ +nonzero but the $[D_F, a] = 0$ $\forall a \in A$ which still yields infinite +distance. +\begin{question} + What does this imply (physically, mathematically)? Why can we continue + even thought we have infinite distance between the same manifold? What do + we get if we fix this? +\end{question} + +\end{document}