ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit c6e56fff3821a9a1048b668390053ce3a4441c7f
parent cbd76e40cfc4d8fba79ff1772d7e621accc2fc7e
Author: miksa <milutin@popovic.xyz>
Date:   Wed, 17 Feb 2021 18:53:26 +0100

week 2 not done yet

Diffstat:
Aweek2.pdf | 0
Aweek2.tex | 181+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 181 insertions(+), 0 deletions(-)

diff --git a/week2.pdf b/week2.pdf Binary files differ. diff --git a/week2.tex b/week2.tex @@ -0,0 +1,181 @@ +\documentclass[a4paper]{article} + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} + +\usepackage{mathptmx} + +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{amsmath,amssymb} +\usepackage{amsthm} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} + +\theoremstyle{definition} +\newtheorem{definition}{Definition} + +\theoremstyle{definition} +\newtheorem{question}{Question} + +\theoremstyle{theorem} +\newtheorem{theorem}{Theorem} + +\theoremstyle{theorem} +\newtheorem{exercise}{Exercise} + +\theoremstyle{definition} +\newtheorem{solution}{Solution} + +\newtheorem*{idea}{Proof Idea} + + +\title{Notes on \\ Noncommutative Geometry and Particle Physics} +\author{Popovic Milutin} +\date{Week 2: 12.02 - 19.02} + +\begin{document} + +\maketitle +\tableofcontents + +\section{Noncommutative Geometric Spaces} +\subsection{Noncommutative Matrix Algebras} +\subsubsection{Balanced Tensor Product and Hilbert Bimodules} + +\begin{definition} + Let $A$ be an algebra, $E$ be a \textit{right} $A$-module and $F$ be a \textit{left} $A$-module. + The \textit{balanced tensor product} of $E$ and $F$ forms a $A$-bimodule. + \begin{align*} + E \otimes _A F := E \otimes F /\left\{\sum _i e_i a_i \otimes f_i - e_i \otimes a_i f_i : \;\;\; + a_i \in A,\ e_i \in E,\ f_i \in F \right\} + \end{align*} +\end{definition} +In other words the balanced tensor product forms only elements of +\begin{itemize} + \item $E$ that preserver the \textit{left} representation of $A$ and + \item $F$ that preserver the \textit{right} representation of $A$. +\end{itemize} +Which is the same saying: +\begin{align*} + E \otimes _A F = \left\{e a\otimes _A f = e \otimes _A a f: \;\;\; a \in A,\ e \in E,\ f \in F \right\} +\end{align*} + +\begin{definition} + Let $A$, $B$ be \textit{matrix algebras}. The \textit{Hilbert bimodule} for $(A, B)$ is given by + \begin{itemize} + \item $E$, an $A$-$B$-bimodue $E$ and by + \item an $B$-valued \textit{inner product} $\langle \cdot,\cdot\rangle_E: E\times E \rightarrow B$ + \end{itemize} +$\langle \cdot,\cdot\rangle_E$ needs to satisfy the following for $e, e_1, e_2 \in E,\ a \in A$ and $b \in B$. +\begin{align*} + \langle e_1, a\cdot e_2\rangle_E &= \langle a^*\cdot e_1, e_2\rangle_E \;\;\;\; & \text{sesquilinear in $A$}\\ + \langle e_1, e_2 \cdot b\rangle_E &= \langle e_1, e_2\rangle_E b \;\;\;\; & \text{scalar in $B$} \\ + \langle e_1, e_2\rangle_E &= \langle e_2,e_1\rangle^*_E \;\;\;\; & \text{hermitian} \\ + \langle e, e\rangle_E &\ge 0 \;\;\;\; & \text{equality holds iff $e=0$} +\end{align*} + +\end{definition} + +We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. + +\begin{exercise} + Check that a representation $\pi:\ A \ \rightarrow L(H)$ of a matrix algebra $A$ turns $H$ into + a Hilbert bimodule for $(A, \mathbb{C})$. +\end{exercise} + +\begin{solution} +\end{solution} + +\begin{exercise} + Show that the $A-A$ bimodule given by $A$ is in $KK_f(A,A)$ by taking the following inner product + $\langle \cdot,\cdot\rangle_A:A \times A \rightarrow A$: + \begin{align*} + \langle a, a\rangle_A = a^*a' \;\;\;\; a,a'\in A + \end{align*} +\end{exercise} +\begin{solution} +\end{solution} + +\subsubsection{Kasparov Product and Morita Equivalence} +\begin{definition} + Let $E \in KK_f(A, B)$ and $F \in KK_F(B, D)$ the \textit{Kasparov product} is defined as + with the balanced tensor product + \begin{align*} + F \circ E := E \otimes _B F + \end{align*} + Such that $F\circ E \in KK_f(A,D)$ with a $D$-valued inner product. + \begin{align*} + <e_1 \otimes f_1, e_2 \otimes f_2>_{E\otimes _B F} = <f_1,<e_1, e_2>_E f_2>_F + \end{align*} +\end{definition} + +\begin{question} +What is the meaning of 'associative up to isomorphism? Isomorphism of $F \circ E$ or of $A, B$ or $D$? +\end{question} + +\begin{exercise} + Show that the association $\phi \leadsto E_\phi$ (from the previous Example) is natrual + in the sense + \begin{itemize} + \item $E_{\text{id}_A} \simeq A \in KK_f(A,A)$ + \item for $*$-algebra homomorphism $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$ we have + an isomorphism + \begin{align*} + E_{\psi} \circ E_{\phi}\ \equiv\ E_{\phi} \otimes _B E_{\psi}\ \simeq\ + E_{\psi \circ \phi} \in KK_f(A,C) + \end{align*} + \end{itemize} +\end{exercise} + +\begin{solution} +\end{solution} + +\begin{exercise} + In the definition of Morita equivalence: + \begin{itemize} + \item Check that $E \otimes _B F$ is a $A-D$ bimodule + \item Check that $<\cdot,\cdot>_{E\oplus _B F}$ defines a $D$ valued inner product + \item Check that $<a^*(e_1 \otimes f_1), e_2 \otimes f_2>_{E \otimes _B F} = <e_1 \otimes f_1, a(e_2 \otimes f_2)>_{E \otimes _B F}$. + \end{itemize} +\end{exercise} + +\begin{solution} +\end{solution} + +\begin{definition} + Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita eqivalent} if there + exists an $E \in KK_f(A, B)$ and an $F \in KK_f(B, A)$ such that: + \begin{align*} + E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq B + \end{align*} + Where $\simeq$ denotes the isomorphism between Hilbert bimodules, note that $A$ or $B$ is a bimodule by + itself. +\end{definition} + +\begin{question} + Why are $E$ and $F$ each others inverse in the Kasparov Product? +\end{question} + +\begin{theorem} + Two matrix algebras are Morita Equivalent iff their their Structure spaces + are isomorphic as discreet spaces (have the same cardinality / same number of elements) +\end{theorem} +\begin{proof} + Let $A$, $B$ be \textit{Morita equivalent}. So there exists $_A E_B$ and $_B F_A$ with + \begin{align*} + E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq B + \end{align*} + Consider $[(\pi _B, H)] \in \hat{B}$ than we construct a representation of $A$, + $\pi _A \rightarrow L(E \otimes _B H)$ with $\pi _A(a) (e \otimes v) = a e \otimes w$ + \begin{question} + Is $E \simeq H$ and $F \simeq W$? + \end{question} + \textit{vice versa}, consider $[(\pi _A, W)] \in \hat{A} \Rightarrow + \pi _B: B \rightarrow L(F \otimes _A W)$ and $\pi _B(b) (f\otimes w) = bf\otimes w$ + These maps are each others inverses, thus $\hat{A} \simeq \hat{B}$ +\end{proof} + +\end{document}