ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit cd1bb3dff4c8467640610d2da5c80cc4a4ec0d07
parent 17b740de8cd546270e9291c8d82f8188791f655a
Author: miksa234 <milutin@popovic.xyz>
Date:   Sat,  7 Aug 2021 23:21:31 +0200

checkpoint 5/6

Diffstat:
Msrc/thesis/chapters/twopointspace.tex | 99+++++++++++++++++++++++++++++++++++++++++--------------------------------------
Msrc/thesis/main.tex | 4++--
Msrc/thesis/todo.md | 1+
3 files changed, 54 insertions(+), 50 deletions(-)

diff --git a/src/thesis/chapters/twopointspace.tex b/src/thesis/chapters/twopointspace.tex @@ -5,10 +5,11 @@ One of the basics forms of noncommutative space is the Two-Point space $X \begin{align} F_X := (C(X) = \mathbb{C}^2, H_F, D_F; J_F, \gamma _f). \end{align} -Three properties of $F_X$ stand out. First of all the action of -$C(X)$ on $H_F$ is faithful for $dim(H_F) \geq 2$, thus we can make a simple -choice for the Hilbertspace, $H_F = \mathbb{C}^2$. Furthermore $\gamma_F$ is -the $\mathbb{Z}_2$ grading, which allows us to decompose $H_F$ into +Three properties of $F_X$ stand out. First of all the action of $C(X)$ on +$H_F$ is faithful for $dim(H_F) \geq 2$, thus a simple choice for the +Hilbertspace can be made, for instance $H_F = \mathbb{C}^2$. Furthermore +$\gamma_F$ is the $\mathbb{Z}_2$ grading, which allows for a decomposition of +$H_F$ into \begin{align} H_F = H_F^+ \otimes H_F^- = \mathbb{C} \otimes \mathbb{C}, \end{align} @@ -17,43 +18,44 @@ where H_F^\pm = \{\psi \in H_F |\; \gamma_F\psi = \pm \psi\}, \end{align} are two eigenspaces. And lastly the Dirac operator $D_F$ lets us -interchange between $H_F^\pm$, +interchange between the two eigenspaces $H_F^\pm$, \begin{align} D_F = \begin{pmatrix}0 & t \\ \bar{t} & 0\end{pmatrix}, \;\;\;\;\; \text{with} \;\; t\in\mathbb{C}. \end{align} - The Two-Point space $F_X$ can only have a real structure if the Dirac - operator vanishes, i.e. $D_F = 0$. In that case we have KO-dimension of 0, - 2 or 6. To elaborate on this, we know that there are two diagram representations of - $F_X$ at $\underbrace{\mathbb{C} \oplus \mathbb{C}}_{C(X)}$ on - $\underbrace{\mathbb{C} \oplus\mathbb{C}}_{H_F}$, which are: - \begin{figure}[h!] \centering - \begin{tikzpicture}[ - dot/.style = {draw, circle, inner sep=0.06cm}, - no/.style = {}, - ] - \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; - \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; - \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {}; - \node[no](d) at (2, 0.5) [label=above:$\textbf{1}$] {}; - \node[dot](d0) at (2,0) [] {}; - \node[dot](d0) at (1,-1) [] {}; +The Two-Point space $F_X$ can only have a real structure if the Dirac +operator vanishes, i.e. $D_F = 0$. In that case the KO-dimension is 0, +2 or 6. To elaborate further, we draw the only two diagram representations of +$F_X$ at $\underbrace{\mathbb{C} \oplus \mathbb{C}}_{C(X)}$ on +$\underbrace{\mathbb{C} \oplus\mathbb{C}}_{H_F}$, which are +\begin{figure}[h!] \centering +\begin{tikzpicture}[ + dot/.style = {draw, circle, inner sep=0.06cm}, + no/.style = {}, + ] + \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d) at (2, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (2,0) [] {}; + \node[dot](d0) at (1,-1) [] {}; - \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {}; - \node[no](b2) at (6, -1) [label=left:$\textbf{1}^\circ$] {}; - \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {}; - \node[no](d2) at (8, 0.5) [label=above:$\textbf{1}$] {}; - \node[dot](d0) at (7,0) [] {}; - \node[dot](d0) at (8,-1) [] {}; - \end{tikzpicture} - \end{figure}\newline + \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b2) at (6, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d2) at (8, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (7,0) [] {}; + \node[dot](d0) at (8,-1) [] {}; + \end{tikzpicture} + \caption{Two diagram representations of $F_X$} +\end{figure}\newline If the Two-Point space $F_X$ would be a real spectral triple then $D_F$ can only go vertically or horizontally. This would mean that $D_F$ vanishes. As for the KO-dimension The diagram on the left has KO-dimension 2 and 6, the diagram on the right 0 and 4. Yet KO-dimension 4 is ruled out because -$dim(H_F^\pm) = 1$ (see Lemma 3.8 Book), which ultimately means $J_F^2 = -1$ is +$dim(H_F^\pm) = 1$ (Lemma 3.8 in \cite{ncgwalter}) , which ultimately means $J_F^2 = -1$ is not allowed. \subsubsection{Product Space} By Extending the Two-Point space with a four dimensional Riemannian spin @@ -69,17 +71,18 @@ where According to Gelfand duality the algebra $C^\infty(M, \mathbb{C}^2)$ of the spectral triple corresponds to the space \begin{align} - N:= M\otimes X \simeq M\sqcup X. + N:= M\otimes X. \end{align} Keep in mind that we still need to find an appropriate real structure on the -Riemannian spin manifold, $J_M$. Furthermore total Hilbertspace can be decomposed into $H = L^2(S) \oplus L^2(S)$, such that for -$\underbrace{a,b\in C^\infty(M)}_{(a, b) \in C^\infty(N)}$ -and $\underbrace{\psi, \phi \in L^2(S)}_{(\psi, \phi) \in H}$ we have +Riemannian spin manifold, $J_M$. Furthermore the total Hilbertspace can be +decomposed into $H = L^2(S) \oplus L^2(S)$, such that for $\underbrace{a,b\in +C^\infty(M)}_{(a, b) \in C^\infty(N)}$ and $\underbrace{\psi, \phi \in +L^2(S)}_{(\psi, \phi) \in H}$ we have \begin{align} - (a, b)(\psi, \phi) = (a\psi, b\phi) + (a, b)(\psi, \phi) = (a\psi, b\phi). \end{align} -Along with the decomposition of the total Hilbertspace we can consider a -distance formula on $M\times F_X$ with +Along with the decomposition of the total Hilbertspace a +distance formula on $M\times F_X$ can be considered with \begin{align}\label{eq:commutator inequality} d_{D_F}(x,y) = \sup\left\{ |a(x) - a(y)|:a\in A_F, ||[D_F, a]|| \leq 1 \right\}. @@ -91,15 +94,15 @@ commutator inequality in \eqref{eq:commutator inequality} \begin{align} &||[D_F , a]|| = ||(a(y) - a(x))\begin{pmatrix}0 &t\\\bar{t} &0 \end{pmatrix}|| \leq 1,\\ - &\Leftrightarrow |a(y) - a(x)|\leq \frac{1}{|t|}, + &\Leftrightarrow |a(y) - a(x)|\leq \frac{1}{|t|}. \end{align} -and the supremum gives us the distance +The supremum then gives us the distance \begin{align} d_{D_F} (x,y) = \frac{1}{|t|}. \end{align} An interesting observation here is that, if the Riemannian spin manifold can be represented by a real spectral triple then a real structure $J_M$ exists, -then it follows that $t=0$ and the distance becomes infinite. This is a +along the lines it follows that $t=0$ and the distance becomes infinite. This is a purely mathematical observation and has no physical meaning. We can also construct a distance formula on $N$ (in reference to a point $p @@ -138,7 +141,7 @@ related to the existence of scalar fields. \subsubsection{$U(1)$ Gauge Group} To get a insight into the physical properties of the almost commutative manifold $M\times F_X$, that is to calculate the spectral action, we need to -determine the corresponding Gauge theory. +determine the corresponding Gauge group. For this we set of with simple definitions and important propositions to help us break down and search for the gauge group of the Two-Point $F_X$ space which we then extend to $M\times F_X$. We will only be diving @@ -147,32 +150,32 @@ superficially into this chapter, for further reading we refer to \begin{mydefinition} Gauge Group of a real spectral triple is given by \begin{align} - \mathfrak{B}(A, H; J) := \{ U = uJuJ^{-1} | u\in U(A)\} + \mathfrak{B}(A, H; J) := \{ U = uJuJ^{-1} | u\in U(A)\}. \end{align} \end{mydefinition} \begin{mydefinition} A *-automorphism of a *-algebra $A$ is a linear invertible map \begin{align} - &\alpha:A \rightarrow A\;\;\; \text{with}\\ + &\alpha:A \rightarrow A,\;\;\; \text{with}\\ \nonumber\\ - &\alpha(ab) = \alpha(a)\alpha(b)\\ - &\alpha(a)^* = \alpha(a^*) + &\alpha(ab) = \alpha(a)\alpha(b),\\ + &\alpha(a)^* = \alpha(a^*). \end{align} The \textbf{Group of automorphisms of the *-Algebra $A$} is denoted by $(A)$.\newline The automorphism $\alpha$ is called \textbf{inner} if \begin{align} - \alpha(a) = u a u^* \;\;\; \text{for} \;\; U(A) + \alpha(a) = u a u^* \;\;\; \text{for} \;\; U(A), \end{align} where $U(A)$ is \begin{align} - U(A) = \{ u\in A|\;\; uu^* = u^*u=1\} \;\;\; + U(A) = \{ u\in A|\;\; uu^* = u^*u=1\}. \;\;\; \text{(unitary)} \end{align} \end{mydefinition} The Gauge group of $F_X$ is given by the quotient $U(A)/U(A_J)$. -We want a nontrivial Gauge group so we need to choose a $U(A_J) \neq +To get a nontrivial Gauge group so we need to choose a $U(A_J) \neq U(A)$ and $U((A_F)_{J_F}) \neq U(A_F)$. We consider our Two-Point space $F_X$ to be equipped with a real structure, which means the operator vanishes, and the spectral triple representation is diff --git a/src/thesis/main.tex b/src/thesis/main.tex @@ -32,9 +32,9 @@ %\input{chapters/heatkernel} % ausgearbeitet ohne exercises, ohne examples -\input{chapters/twopointspace} +%\input{chapters/twopointspace} % ausgearbeitet ohne exercises, ohne examples -%\input{chapters/electroncg} +\input{chapters/electroncg} %------------------ OUTRO ------------------------- diff --git a/src/thesis/todo.md b/src/thesis/todo.md @@ -2,3 +2,4 @@ * rewrite geometrical invariants $E$ in heatkernel.tex into the right one from electroncg.tex ! + * figures need caption and numbering