notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

commit 7f3b062985aac38169bd84f36708fd963404c20b
parent 36f583c6f407515c537159a82464b9507a292382
Author: miksa <milutin@popovic.xyz>
Date:   Sat,  7 May 2022 15:02:30 +0200

sheet 7

Diffstat:
Mnum_ana/build/prb1.pdf | 0
Mnum_ana/build/prb2.pdf | 0
Mnum_ana/build/prb3.pdf | 0
Mnum_ana/build/prb4.pdf | 0
Mnum_ana/build/prb5.pdf | 0
Anum_ana/build/prb6.pdf | 0
Anum_ana/build/prb7.pdf | 0
Mnum_ana/prb4.tex | 1+
Mnum_ana/prb5.tex | 1+
Anum_ana/prb6.tex | 10++++++++++
Anum_ana/prb7.tex | 175+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Mnum_ana/preamble.tex | 4++--
12 files changed, 189 insertions(+), 2 deletions(-)

diff --git a/num_ana/build/prb1.pdf b/num_ana/build/prb1.pdf Binary files differ. diff --git a/num_ana/build/prb2.pdf b/num_ana/build/prb2.pdf Binary files differ. diff --git a/num_ana/build/prb3.pdf b/num_ana/build/prb3.pdf Binary files differ. diff --git a/num_ana/build/prb4.pdf b/num_ana/build/prb4.pdf Binary files differ. diff --git a/num_ana/build/prb5.pdf b/num_ana/build/prb5.pdf Binary files differ. diff --git a/num_ana/build/prb6.pdf b/num_ana/build/prb6.pdf Binary files differ. diff --git a/num_ana/build/prb7.pdf b/num_ana/build/prb7.pdf Binary files differ. diff --git a/num_ana/prb4.tex b/num_ana/prb4.tex @@ -2,6 +2,7 @@ \begin{document} \maketitle +\tableofcontents \section{Sheet 4} \subsection{Problem 1} Consider a linear system of equations $Ax = b$, where diff --git a/num_ana/prb5.tex b/num_ana/prb5.tex @@ -2,6 +2,7 @@ \begin{document} \maketitle +\tableofcontents \section{Sheet 5} \subsection{Problem 1} Let $A \in \mathbb{R}^{n \times n}$ be an SPD matrix with an additive diff --git a/num_ana/prb6.tex b/num_ana/prb6.tex @@ -0,0 +1,10 @@ +\include{./preamble.tex} + +\begin{document} +\maketitle +\section{Sheet 6} + See jupyter notebook for shee 6 + +\end{document} + + diff --git a/num_ana/prb7.tex b/num_ana/prb7.tex @@ -0,0 +1,175 @@ +\include{./preamble.tex} + +\begin{document} +\maketitle +\tableofcontents +\section{Sheet 7} +\subsection{Problem 1} +For a matrix $A \in \mathbb{C}^{n\times n}$, define $B, C \in +\mathbb{C}^{n\times n}$ in the following way +\begin{align} + B = \frac{1}{2}(A + A^*), \quad C = \frac{1}{2i} (A - A^*). +\end{align} +The matrices $B$ and $C$ are Hermitian, which can be seen by directly +calculating the adjoint. +\begin{align} + B^* &= \frac{1}{2}(A+A^*)^* = \frac{1}{2}\left( A^* + (A^*)^*\right)\\ + &= \frac{1}{2}(A^* + A) = \frac{1}{2}(A+A^*) = B,\\ + \nonumber\\ + C^* &= -\frac{1}{2i}(A-A^*)^* = -\frac{1}{2i}\left( A^* - (A^*)^*\right)\\ + &= -\frac{1}{2i}(A^* - A) = \frac{1}{2}(A -A^*) = C. +\end{align} +Additionally we can bound the eigenvalues of $A$ by the minimum and maximum +eigenvalues of $B$ and $C$ by rewriting $A$ as +\begin{align} + A = (B + iC). +\end{align} +Now consider an arbitrary eigenpair of $A$, $(\lambda, v)$, such that $\|v\| += 1$, the eigenvalue equation reads +\begin{align} + Av &= (B + iC)v = \lambda v\\ + &= Bv + iCv\\ + \Leftrightarrow & v^* B v + v^*(iC)v = \lambda. +\end{align} +The real and the imaginary part of $\lambda$ can be calculated by a simple +identity +\begin{align} + \text{Re}(\lambda) + &= \frac{1}{2}(\lambda + \bar{\lambda}) \\ + &= \frac{1}{2}(v^* B v + v^*(iC)v + v^*B^*v - v^* (i C)v)\\ + &= \frac{1}{2} ( v^*Bv + v^*B^*v + v^* (iC)v - v^*(iC)v)\\ + &= \frac{1}{2}(2v^* B v) = v^*Bv\\ + \nonumber\\ + \text{Im}(\lambda) + &= \frac{1}{2i}(\lambda - \bar{\lambda}) \\ + &= v^*Cv +\end{align} +Putting the results from above with the Reighley-Ritz Theorem, which states +that for all $D \in \mathbb{C}^{n\times n}$ Hermitian $\forall x \in +\mathbb{C}^{n}$, where $x\neq 0 $ we have a boundary from below and above by +the minimum and maximum eigenvalue of $D$ +\begin{align} + \lambda_{\text{min}}(D) \le \frac{x^*Dx}{\|x\|^2} \le + \lambda_{\text{max}}(D) +\end{align} +Then we have +\begin{align} + \Rightarrow \begin{cases} + \text{Re}(\lambda) \in [ \lambda_{\text{min}}(B), + \lambda_{\text{max}}(B)]\\ + \text{Im}(\lambda) \in [ \lambda_{\text{min}}(C), + \lambda_{\text{max}}(C)]\\ + \end{cases} +\end{align} +\subsection{Problem 2} +Given two Hermitian matrices $A, B \in \mathbb{C}^{n\times n}$, denote +$\left\{ \lambda_j(A) \right\}_{j=1}^n $ and $\left\{ \lambda_j(A + B) +\right\}_{j=1}^n$ the eigenvalues of $A$ and $A+B$ in increasing order. If +$B$ is positive semi-definite then we have a bound +\begin{align} + \lambda_k(A) \le \lambda_k(A+B) \qquad \forall k \in \left\{ 1, \ldots,n + \right\}. +\end{align} +By the Courant Fischer Theorem, let $\mathcal{V}_k$ be the set of all $k$ +dimensional subsets of $\mathbb{C}^{n\times n}$ we have +\begin{align} + \lambda_k(A) + &= \min_{v \in \mathcal{V}_k} \max_{v\in \mathbb{C}^{n \times + n},\; \|v\|=1} \langle v, Av\rangle . +\end{align} +And if $B$ is positive semi-definite we have +\begin{align} + x^* B x \ge 0 \qquad \forall x \in \mathbb{C}^{n}. +\end{align} +Since $A$ and $B$ are hermitian, then $A+B$ are hermitian too and we can +write +\begin{align} + \lambda_k(A) + &= \min_{v \in \mathcal{V}_k} \max_{v\in \mathbb{C}^{n \times + n},\; \|v\|=1} \langle v, Av\rangle \\ + &\ge \min_{v \in \mathcal{V}_k} \max_{v\in \mathbb{C}^{n \times + n},\; \|v\|=1} \langle v, Av\rangle = \lambda_k(A) +\end{align} +\subsection{Problem 3} +Let $A \in \mathbb{C}^{n\times n}$ be diagonalizable by $X = (x_1,\ldots,x_n) +\in \mathbb{C}^{n \times n}$ the matrix of right-eigenvectors $x_j \in +\mathbb{C}^{n}$ of A. For all $\varepsilon> 0 $, let $\nu$ be the eigenvalues +of $A+\varepsilon A$, then there exists and eigenvalue $\lambda$ of $A$ with +\begin{align} + \frac{|\lambda - \nu|}{|\lambda|} \le K_p(X)\varepsilon +\end{align} +Let us rewrite +\begin{align} + A + \varepsilon A = (1+\varepsilon) A, +\end{align} +then the eigenvalue $\nu \in \lambda(A+\varepsilon A)$ can be written as an +eigenvalue of $A$ with +\begin{align} + \frac{\nu}{1+\varepsilon} \in \lambda (A). +\end{align} +Then the bound reads +\begin{align} + \frac{|\lambda - \nu|}{|\lambda|} + &= \frac{|\frac{\nu}{1+\varepsilon} - \nu|}{|\frac{\nu}{1+\varepsilon}|}\\ + &= \frac{|\nu - (1+\varepsilon)\nu|}{|\nu|}\\ + &= \varepsilon \le \varepsilon K_p(X), +\end{align} +since $K_p(X) \ge 1$ for all $X$ that diagonalize $A$, if $A$ is invertible +!. +\subsection{Exercise 4} +Given some $\mu \in \mathbb{R}$ the shifted QR-algorithm is defined as: Let +$Q_0$ be orthogonal, such that $T_0 = Q_0^T A Q_0$ is upper Hessenberg form. +For $k \in \mathbb{N}$ determine a sequence of the matrices $T_k$ by +\begin{itemize} + \item Determine $Q_k$ and $R_k$, s.t. $Q_k R_k = T_{k-1} - \mu I$, as a + QR-decomposition of $T_{k-1} - \mu I$ + \item Let $T_k = R_k Q_k + \mu I$ +\end{itemize} +The sequence of these matrices $T_k$ is infact similar to $A$, in the +following way +\begin{align} + T_{k+1} + &= R_k Q_k + \mu I \\ + &= Q_k^T ( T_k - \mu I) Q_k + \mu I\\ + &= Q_k^T T_k Q_k - \mu I + \mu I\\ + &= Q_k^T T_k Q_k\\ + &= Q_k^T \cdots Q_1^T T_0 Q_1 \cdots Q_k\\ + &= \underbrace{Q_k^T \cdots Q_0^T}_{=Q^T} A \underbrace{Q_0 \cdots Q_k}_{= Q} +\end{align} +Furthermore if $A$ is an unreduced Hessenberg matrix and $\mu$ an eigenvalue +of $A$. Then let $QR = A-\mu I$ be the QR-decomposition of $A-\mu I $, define +\begin{align} + \overline{A} = RQ + \mu I, +\end{align} +then +\begin{align} + \overline{A}_{n,n} = \mu \quad \& \quad \overline{A}_{n-1, n} = 0 +\end{align} +To start, if $A$ is an irreducible Hessenber then +\begin{align} + A_{i+1, i} \neq 0 \qquad \forall i \in \left\{ 1, \ldots , n-1 \right\}. +\end{align} +Then $A-\mu I$ is singular since $\mu$ is Eigenvalue of $A$, $\det(A-\mu I) +=0 $ is an eigenvalue equation. And additionally $0$ is an eigenvalue of $A - +\mu I$, then +\begin{align} + &\Rightarrow \overline{A} = RQ + \mu I. +\end{align} +Where $A-\mu I$ is singular and the first $n-1$ columns are linearly +independent, since $R = Q^T(A-\mu I)$. Then the first $n-1$ columns of $R$ +are linearly independent and because $R$ is also singular perserved by +rotation of $Q^T$ the last row needs to be $0$, i.e. $R_{n, \cdot} = 0^T$, +then +\begin{align} + &R_{n,n-1} = 0,\qquad (RQ)_{n, n-1} = 0,\\ + &R_{n,n} = 0,\qquad (RQ)_{n, n} = 0.\\ +\end{align} +By this we conlude +\begin{align} + \overline{A}_{n,n} &= (RQ)_{n,n}+\mu = \mu\\ + \overline{A}_{n, n-1} &= (RQ)_{n,n-1} = 0 +\end{align} + +\end{document} + + diff --git a/num_ana/preamble.tex b/num_ana/preamble.tex @@ -49,10 +49,10 @@ \DeclareSymbolFont{cyrletters}{OT2}{wncyr}{m}{n} \DeclareMathSymbol{\Sha}{\mathalpha}{cyrletters}{"58} -\markright{Popović\hfill Applied Analysis\hfill} +\markright{Popović\hfill Numerical Analysis\hfill} \title{University of Vienna\\ Faculty of Mathematics\\ -\vspace{1cm}Applied Analysis Problems +\vspace{1cm}Numerical Analysis Problems } \author{Milutin Popovic}