commit a779a72fccd584afa1080bdde3908cfca5e6ac8b
parent 0b68daaaa9085b2891779d93ddd821abc1a78ce6
Author: miksa234 <milutin@popovic.xyz>
Date: Thu, 14 Sep 2023 10:59:37 +0100
add dyn sys
Diffstat:
6 files changed, 92 insertions(+), 29 deletions(-)
diff --git a/dyn_sys b/dyn_sys
@@ -0,0 +1 @@
+Subproject commit 87d6d491b92271fc56703f51752b7feaa4f1fa9e
diff --git a/nlin_opt/build/Popovic_sheet7.pdf b/nlin_opt/build/Popovic_sheet7.pdf
Binary files differ.
diff --git a/nlin_opt/build/sesh7.pdf b/nlin_opt/build/sesh7.pdf
Binary files differ.
diff --git a/nlin_opt/sesh7.tex b/nlin_opt/sesh7.tex
@@ -256,7 +256,7 @@ Let $\Phi: \mathbb{R}^{n+m+p}\to \mathbb{R}^{n+m+p}$ be defined as
\begin{align}
\Phi :=
\begin{pmatrix}
- \nabla_x L(x,\lambda ,\mu)\\
+ \nabla_{x x} L(x,\lambda ,\mu)\\
h(x)\\
\phi(-g(x), \lambda)
\end{pmatrix}
@@ -277,23 +277,54 @@ The matrix is well defined because first of all, the functions $f, g_i, h_j$
are $C^{2}$ and $\min \{-g_i(x), \lambda_i\}$ is differentiable because of
the strict complementarity condition, meaning that
\begin{align}
- \nabla \varphi(-g_i(x^{*}, \lambda^{*}_i) =
+ \nabla \varphi(a, b) =
\begin{cases}
- -\nabla g_i(x^{*}) \quad & i \in \mathcal{A}(x^{*})\\
- 0 \quad & i \not\in \mathcal{A}(x^{*})
+ (1, 0)^{T}\quad a<b\\
+ (0, 1)^{T}\quad a>b
\end{cases}
\end{align}
+and not differentiable for $a=b$ which is never the case since, per condition
+$g_i(x^{*}) + \lambda_i^{*} \neq 0$ for all $i$.
+
Then we need to show that he matrix $\nabla \Phi(x^{*}, \lambda^{*},
\mu^{*})$ is regular, first of all the matrix has the following form
\begin{align}
\nabla \Phi =
\begin{pmatrix}
- \nabla_x^{2}L(x,\lambda, \mu) & \nabla h(x)^{T} & \nabla
- \phi(x)^{T}\\
- \nabla h(x) & 0 & 0\\
- \nabla \phi(x) & 0 & 0\\
+ \nabla_{x x}^{2}L(x^{*},\lambda^{*}, \mu^{*}) & \nabla g(x^{*})^{T} & \nabla
+ h(x^{*})^{T}\\
+ \nabla h(x^{*}) & 0 & 0\\
+ \nabla \phi_1(-g(x^{*}), \lambda^{*}) &\nabla \phi_2(-g(x^{*}), \lambda^{*}) & 0\\
\end{pmatrix} \in \mathbb{R}^{(n+m+p) \times (n+m+p)}.
\end{align}
+For convinience the matrix $\phi(-g(x^{*}), \lambda^{*})$ was split into two
+parts because of the chain rule the that matrix has the following form
+\begin{align}
+ \phi_1(-g(x^{*}),\lambda^{*}) =
+ \begin{pmatrix}
+ \partial_{g_1}\varphi(-g_1(x^{*}),
+ \lambda_1)(\partial_{x_1}g_1(x^{*})) & \dots &
+ \partial_{g_1}\varphi(-g_1(x^{*}),
+ \lambda_1)(\partial_{x_n}g_1(x^{*}))\\
+ \vdots & \vdots & \vdots \\
+ \partial_{g_m}\varphi(-g_m(x^{*}),
+ \lambda_m)(\partial_{x_1}g_m(x^{*})) & \dots &
+ \partial_{g_m}\varphi(-g_m(x^{*}),
+ \lambda_m)(\partial_{x_n}g_1(x^{*}))
+ \end{pmatrix} \quad \in \mathbb{R}^{n \times m}
+\end{align}
+and
+\begin{align}
+ \phi_2(-g(x^{*}),-\lambda^{*}) =
+ \begin{pmatrix}
+ \partial_{\lambda_1}\varphi(-g_1(x^{*}),
+ \lambda_1^{*})&0&\ldots\\
+ & \ddots& \\
+ \ldots &0&
+ \partial_{\lambda_m}\varphi(-g_m(x^{*}),
+ \lambda_m^{*})
+ \end{pmatrix} \quad \in \mathbb{R}^{m \times m}
+\end{align}
To show that $\nabla \Phi(x^{*}, \lambda^{*},
\mu^{*})$ is regular we show that $\text{ker}\left(\nabla \Phi(x^{*}, \lambda^{*},
\mu^{*}) \right) = \emptyset$.
@@ -306,23 +337,50 @@ Let $ q = (q^{(1)}, q^{(2)}, q^{(3)})^{T} \in
\end{align}
These are three equations
\begin{align}
- &\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)} + \nabla h(x^{*})^{T} q^{(2)}
- + \nabla \phi(x^{*})^{T}q^{(3)} = 0 \label{eq: ex49.1}\\
+ &\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)} + \nabla g(x^{*})^{T} q^{(2)}
+ + \nabla h(x^{*})^{T}q^{(3)} = 0 \label{eq: ex49.1}\\
&\nabla h(x^{*}) q^{(1)} = 0 \label{eq: ex49.2}\\
- &\nabla \phi(x^{*}) q^{(1)} = 0 \label{eq: ex49.3}.
+ &\nabla \phi_1(-g(x^{*}), \lambda^{*}) q^{(1)} + \nabla
+ \phi_2(-g(^{*}),\lambda^{*}) q^{(2)} = 0 \label{eq: ex49.3}.
\end{align}
By multiplying \ref{eq: ex49.1} with $(q^{(1)})^{T}$ we get that
\begin{align}
- &(q^{(1)})^{T}\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)} +(q^{1})^{T} \nabla h(x^{*})^{T} q^{(2)}
- + (q^{1})^{T}\nabla \phi(x^{*})^{T}q^{(3)}=\\
- =&(q^{(1)})^{T}\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)}
- + \sum_{j=1}^{p} q_j^{(2)}\underbrace{(q^{(1)})^{T}\nabla h_j(x^{*})}_{=0
- \;\; (\ref{eq: ex49.2})}
- + \sum_{i=1}^{m} q_i^{(3)}\underbrace{(q^{(1)})^{T}\nabla \phi(-g_i(x^{*}),
-\lambda_i^{*})}_{=0 \;\; (\ref{eq: ex49.3})} \\
- &= 0,
+ &(q^{(1)})^{T}\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)}\\
+ &+ \sum_{i=1}^{m} q_i^{(3)}\underbrace{(q^{(1)})^{T}\nabla
+ g_i(x^{*})}_{=0 \;\; (\ref{eq: ex49.3})} \label{eq: ex49.4} \\
+ &+ \sum_{j=1}^{p} q_j^{(2)}\underbrace{(q^{(1)})^{T}\nabla h_j(x^{*})}_{=0
+ \;\; (\ref{eq: ex49.2})}\\
+ &= 0. \nonumber
\end{align}
-in summary
+It is not directly obvious why the term \ref{eq: ex49.4} in the above
+equation is directly zero. To see this we have to separate two cases, the first
+addresses what happens in \ref{eq: ex49.3} in the case $i \in
+\mathcal{A}(x^{*})$. In this case $\nabla_{g_i}\varphi(-g_i(x^{*}),
+\lambda_i^{*}) = 1$ since $g_i(x^{*}) =0$ with $\lambda_i^{*}>0$ and thereby
+$-g_i(^{*}) - \lambda_i^{*} < 0$, so we have that the this specific entry is
+\begin{align}
+ &\left(\nabla \phi_1(-g(x^{*}),\lambda^{*})\right)_i = -\nabla g_i(x^{*})\\
+ &\left( \nabla \phi_2(-g(x^{*}),\lambda^{*})\right)_i = 0,
+\end{align}
+evaluating the equation in \ref{eq: ex49.3} we get
+\begin{align}
+ -\nabla g_i(x^{*})^{T}q^{(1)} = 0 \qquad \forall i\in\mathcal{A}(x^{*}).
+\end{align}
+In the other case $i \not\in \mathcal{A}(x^{*})$, $g_i(x^{*}) < 0$ with
+$\lambda^{*} = 0$ and thereby $-g_i(^{*}) - \lambda_i^{*} >0$ so
+$\varphi(-g_i(x^{*}),\lambda^{*}) = \lambda_i^{*}$. The entries of the matrix
+are
+\begin{align}
+ &\left(\nabla \phi_1(-g(x^{*}),\lambda^{*})\right)_i = 0\\
+ &\left( \nabla \phi_2(-g(x^{*}),\lambda^{*})\right)_i =
+ (0,\ldots,0,\underbrace{1}_{i},0,\ldots,0)^{T},
+\end{align}
+evaluating the equation in \ref{eq: ex49.3} we get
+\begin{align}
+ q_i^{(2)} = 0 \qquad \forall i \not\in \mathcal{A}(x^{*}).
+\end{align}
+Both cases contribute to the fact that the sum evaluates to 0 in term
+\ref{eq: ex49.4}. In summary we are left with
\begin{align}
(q^{(1)})^{T}\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)} =0.
\end{align}
@@ -330,15 +388,19 @@ Since second order sufficient optimality condition is satisfied then $q^{(1)}
\in T_2(x^{*})$, and the only solution is $q^{(1)} = 0$. Equation \ref{eq:
ex49.1} is left with
\begin{align}
- &\nabla h(x^{*})^{T}q^{(2)}+\nabla \phi(x^{*})q^{(3)} =\\
- =& \sum_{j=1}^{p} q_j^{(2)}\nabla h_j(x^{*}) + \sum_{i \in
- \mathcal{A}(x^{*})} q_i^{(3)}(-\nabla g_i(x^{*})) = 0
-\end{align}
-since LICQ is fulfilled these vectors are linearly independent and by
-definition of linear independence the only $q^{(2)}, q^{(3)}$ fulfilling the
-above condition are $q^{(2)} = 0$ and $q^{(3)} = 0$. Thereby $q = 0$ and
-$\text{ker}(\nabla\Phi(x^{*},\lambda^{*},\mu^{*})) = \emptyset$, so the matrix
-is regular.
+ &\nabla g(x^{*})^{T}q^{(2)}+\nabla h(x^{*})q^{(3)} =\\
+ =& \sum_{i=1}^{m} q_i^{(2)}\nabla g_i(x^{*})
+ + \sum_{j=1}^{p} q_j^{(3)} \nabla h_j(x^{*}) =\\
+=& \sum_{i \in \mathcal{A}(x^{*})} q_i^{(2)}\nabla g_i(x^{*})
+ + \sum_{j=1}^{p} q_j^{(3)} \nabla h_j(x^{*}) = 0
+\end{align}
+in the last equation we remove all $q^{(2)}_i = 0$ which are exactly all $i
+\not\in \mathcal{A}(x^{*})$. Since LICQ is fulfilled these vectors are
+linearly independent and by definition of linear independence the only
+$q^{(2)}, q^{(3)}$ fulfilling the above condition are $q^{(2)} = 0$ and
+$q^{(3)} = 0$. Thereby $q = 0$ and
+$\text{ker}(\nabla\Phi(x^{*},\lambda^{*},\mu^{*})) = \emptyset$, so the
+matrix is regular.
diff --git a/nlin_opt/sheets/Nonlinear_optimization.pdf b/nlin_opt/sheets/Nonlinear_optimization.pdf
Binary files differ.
diff --git a/nlin_opt/sheets/exercisesession7.pdf b/nlin_opt/sheets/exercisesession7.pdf
Binary files differ.