notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

commit a779a72fccd584afa1080bdde3908cfca5e6ac8b
parent 0b68daaaa9085b2891779d93ddd821abc1a78ce6
Author: miksa234 <milutin@popovic.xyz>
Date:   Thu, 14 Sep 2023 10:59:37 +0100

add dyn sys

Diffstat:
Adyn_sys | 1+
Mnlin_opt/build/Popovic_sheet7.pdf | 0
Mnlin_opt/build/sesh7.pdf | 0
Mnlin_opt/sesh7.tex | 120++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-------------------
Anlin_opt/sheets/Nonlinear_optimization.pdf | 0
Anlin_opt/sheets/exercisesession7.pdf | 0
6 files changed, 92 insertions(+), 29 deletions(-)

diff --git a/dyn_sys b/dyn_sys @@ -0,0 +1 @@ +Subproject commit 87d6d491b92271fc56703f51752b7feaa4f1fa9e diff --git a/nlin_opt/build/Popovic_sheet7.pdf b/nlin_opt/build/Popovic_sheet7.pdf Binary files differ. diff --git a/nlin_opt/build/sesh7.pdf b/nlin_opt/build/sesh7.pdf Binary files differ. diff --git a/nlin_opt/sesh7.tex b/nlin_opt/sesh7.tex @@ -256,7 +256,7 @@ Let $\Phi: \mathbb{R}^{n+m+p}\to \mathbb{R}^{n+m+p}$ be defined as \begin{align} \Phi := \begin{pmatrix} - \nabla_x L(x,\lambda ,\mu)\\ + \nabla_{x x} L(x,\lambda ,\mu)\\ h(x)\\ \phi(-g(x), \lambda) \end{pmatrix} @@ -277,23 +277,54 @@ The matrix is well defined because first of all, the functions $f, g_i, h_j$ are $C^{2}$ and $\min \{-g_i(x), \lambda_i\}$ is differentiable because of the strict complementarity condition, meaning that \begin{align} - \nabla \varphi(-g_i(x^{*}, \lambda^{*}_i) = + \nabla \varphi(a, b) = \begin{cases} - -\nabla g_i(x^{*}) \quad & i \in \mathcal{A}(x^{*})\\ - 0 \quad & i \not\in \mathcal{A}(x^{*}) + (1, 0)^{T}\quad a<b\\ + (0, 1)^{T}\quad a>b \end{cases} \end{align} +and not differentiable for $a=b$ which is never the case since, per condition +$g_i(x^{*}) + \lambda_i^{*} \neq 0$ for all $i$. + Then we need to show that he matrix $\nabla \Phi(x^{*}, \lambda^{*}, \mu^{*})$ is regular, first of all the matrix has the following form \begin{align} \nabla \Phi = \begin{pmatrix} - \nabla_x^{2}L(x,\lambda, \mu) & \nabla h(x)^{T} & \nabla - \phi(x)^{T}\\ - \nabla h(x) & 0 & 0\\ - \nabla \phi(x) & 0 & 0\\ + \nabla_{x x}^{2}L(x^{*},\lambda^{*}, \mu^{*}) & \nabla g(x^{*})^{T} & \nabla + h(x^{*})^{T}\\ + \nabla h(x^{*}) & 0 & 0\\ + \nabla \phi_1(-g(x^{*}), \lambda^{*}) &\nabla \phi_2(-g(x^{*}), \lambda^{*}) & 0\\ \end{pmatrix} \in \mathbb{R}^{(n+m+p) \times (n+m+p)}. \end{align} +For convinience the matrix $\phi(-g(x^{*}), \lambda^{*})$ was split into two +parts because of the chain rule the that matrix has the following form +\begin{align} + \phi_1(-g(x^{*}),\lambda^{*}) = + \begin{pmatrix} + \partial_{g_1}\varphi(-g_1(x^{*}), + \lambda_1)(\partial_{x_1}g_1(x^{*})) & \dots & + \partial_{g_1}\varphi(-g_1(x^{*}), + \lambda_1)(\partial_{x_n}g_1(x^{*}))\\ + \vdots & \vdots & \vdots \\ + \partial_{g_m}\varphi(-g_m(x^{*}), + \lambda_m)(\partial_{x_1}g_m(x^{*})) & \dots & + \partial_{g_m}\varphi(-g_m(x^{*}), + \lambda_m)(\partial_{x_n}g_1(x^{*})) + \end{pmatrix} \quad \in \mathbb{R}^{n \times m} +\end{align} +and +\begin{align} + \phi_2(-g(x^{*}),-\lambda^{*}) = + \begin{pmatrix} + \partial_{\lambda_1}\varphi(-g_1(x^{*}), + \lambda_1^{*})&0&\ldots\\ + & \ddots& \\ + \ldots &0& + \partial_{\lambda_m}\varphi(-g_m(x^{*}), + \lambda_m^{*}) + \end{pmatrix} \quad \in \mathbb{R}^{m \times m} +\end{align} To show that $\nabla \Phi(x^{*}, \lambda^{*}, \mu^{*})$ is regular we show that $\text{ker}\left(\nabla \Phi(x^{*}, \lambda^{*}, \mu^{*}) \right) = \emptyset$. @@ -306,23 +337,50 @@ Let $ q = (q^{(1)}, q^{(2)}, q^{(3)})^{T} \in \end{align} These are three equations \begin{align} - &\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)} + \nabla h(x^{*})^{T} q^{(2)} - + \nabla \phi(x^{*})^{T}q^{(3)} = 0 \label{eq: ex49.1}\\ + &\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)} + \nabla g(x^{*})^{T} q^{(2)} + + \nabla h(x^{*})^{T}q^{(3)} = 0 \label{eq: ex49.1}\\ &\nabla h(x^{*}) q^{(1)} = 0 \label{eq: ex49.2}\\ - &\nabla \phi(x^{*}) q^{(1)} = 0 \label{eq: ex49.3}. + &\nabla \phi_1(-g(x^{*}), \lambda^{*}) q^{(1)} + \nabla + \phi_2(-g(^{*}),\lambda^{*}) q^{(2)} = 0 \label{eq: ex49.3}. \end{align} By multiplying \ref{eq: ex49.1} with $(q^{(1)})^{T}$ we get that \begin{align} - &(q^{(1)})^{T}\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)} +(q^{1})^{T} \nabla h(x^{*})^{T} q^{(2)} - + (q^{1})^{T}\nabla \phi(x^{*})^{T}q^{(3)}=\\ - =&(q^{(1)})^{T}\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)} - + \sum_{j=1}^{p} q_j^{(2)}\underbrace{(q^{(1)})^{T}\nabla h_j(x^{*})}_{=0 - \;\; (\ref{eq: ex49.2})} - + \sum_{i=1}^{m} q_i^{(3)}\underbrace{(q^{(1)})^{T}\nabla \phi(-g_i(x^{*}), -\lambda_i^{*})}_{=0 \;\; (\ref{eq: ex49.3})} \\ - &= 0, + &(q^{(1)})^{T}\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)}\\ + &+ \sum_{i=1}^{m} q_i^{(3)}\underbrace{(q^{(1)})^{T}\nabla + g_i(x^{*})}_{=0 \;\; (\ref{eq: ex49.3})} \label{eq: ex49.4} \\ + &+ \sum_{j=1}^{p} q_j^{(2)}\underbrace{(q^{(1)})^{T}\nabla h_j(x^{*})}_{=0 + \;\; (\ref{eq: ex49.2})}\\ + &= 0. \nonumber \end{align} -in summary +It is not directly obvious why the term \ref{eq: ex49.4} in the above +equation is directly zero. To see this we have to separate two cases, the first +addresses what happens in \ref{eq: ex49.3} in the case $i \in +\mathcal{A}(x^{*})$. In this case $\nabla_{g_i}\varphi(-g_i(x^{*}), +\lambda_i^{*}) = 1$ since $g_i(x^{*}) =0$ with $\lambda_i^{*}>0$ and thereby +$-g_i(^{*}) - \lambda_i^{*} < 0$, so we have that the this specific entry is +\begin{align} + &\left(\nabla \phi_1(-g(x^{*}),\lambda^{*})\right)_i = -\nabla g_i(x^{*})\\ + &\left( \nabla \phi_2(-g(x^{*}),\lambda^{*})\right)_i = 0, +\end{align} +evaluating the equation in \ref{eq: ex49.3} we get +\begin{align} + -\nabla g_i(x^{*})^{T}q^{(1)} = 0 \qquad \forall i\in\mathcal{A}(x^{*}). +\end{align} +In the other case $i \not\in \mathcal{A}(x^{*})$, $g_i(x^{*}) < 0$ with +$\lambda^{*} = 0$ and thereby $-g_i(^{*}) - \lambda_i^{*} >0$ so +$\varphi(-g_i(x^{*}),\lambda^{*}) = \lambda_i^{*}$. The entries of the matrix +are +\begin{align} + &\left(\nabla \phi_1(-g(x^{*}),\lambda^{*})\right)_i = 0\\ + &\left( \nabla \phi_2(-g(x^{*}),\lambda^{*})\right)_i = + (0,\ldots,0,\underbrace{1}_{i},0,\ldots,0)^{T}, +\end{align} +evaluating the equation in \ref{eq: ex49.3} we get +\begin{align} + q_i^{(2)} = 0 \qquad \forall i \not\in \mathcal{A}(x^{*}). +\end{align} +Both cases contribute to the fact that the sum evaluates to 0 in term +\ref{eq: ex49.4}. In summary we are left with \begin{align} (q^{(1)})^{T}\nabla_x^{2}L(x^{*},\lambda^{*},\mu^{*})q^{(1)} =0. \end{align} @@ -330,15 +388,19 @@ Since second order sufficient optimality condition is satisfied then $q^{(1)} \in T_2(x^{*})$, and the only solution is $q^{(1)} = 0$. Equation \ref{eq: ex49.1} is left with \begin{align} - &\nabla h(x^{*})^{T}q^{(2)}+\nabla \phi(x^{*})q^{(3)} =\\ - =& \sum_{j=1}^{p} q_j^{(2)}\nabla h_j(x^{*}) + \sum_{i \in - \mathcal{A}(x^{*})} q_i^{(3)}(-\nabla g_i(x^{*})) = 0 -\end{align} -since LICQ is fulfilled these vectors are linearly independent and by -definition of linear independence the only $q^{(2)}, q^{(3)}$ fulfilling the -above condition are $q^{(2)} = 0$ and $q^{(3)} = 0$. Thereby $q = 0$ and -$\text{ker}(\nabla\Phi(x^{*},\lambda^{*},\mu^{*})) = \emptyset$, so the matrix -is regular. + &\nabla g(x^{*})^{T}q^{(2)}+\nabla h(x^{*})q^{(3)} =\\ + =& \sum_{i=1}^{m} q_i^{(2)}\nabla g_i(x^{*}) + + \sum_{j=1}^{p} q_j^{(3)} \nabla h_j(x^{*}) =\\ +=& \sum_{i \in \mathcal{A}(x^{*})} q_i^{(2)}\nabla g_i(x^{*}) + + \sum_{j=1}^{p} q_j^{(3)} \nabla h_j(x^{*}) = 0 +\end{align} +in the last equation we remove all $q^{(2)}_i = 0$ which are exactly all $i +\not\in \mathcal{A}(x^{*})$. Since LICQ is fulfilled these vectors are +linearly independent and by definition of linear independence the only +$q^{(2)}, q^{(3)}$ fulfilling the above condition are $q^{(2)} = 0$ and +$q^{(3)} = 0$. Thereby $q = 0$ and +$\text{ker}(\nabla\Phi(x^{*},\lambda^{*},\mu^{*})) = \emptyset$, so the +matrix is regular. diff --git a/nlin_opt/sheets/Nonlinear_optimization.pdf b/nlin_opt/sheets/Nonlinear_optimization.pdf Binary files differ. diff --git a/nlin_opt/sheets/exercisesession7.pdf b/nlin_opt/sheets/exercisesession7.pdf Binary files differ.