ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 27787c7460f0d200134fc99bc5a953c70521b2d0
parent 446272af324ed22f48abbb532b4db4209aa60552
Author: miksa <milutin@popovic.xyz>
Date:   Thu, 18 Feb 2021 12:22:39 +0100

finished week2.tex added a solution to week1.tex last exercise

Diffstat:
Mweek1.pdf | 0
Mweek1.tex | 19+++++++++++++------
Mweek2.pdf | 0
Mweek2.tex | 92++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++---------------
4 files changed, 88 insertions(+), 23 deletions(-)

diff --git a/week1.pdf b/week1.pdf Binary files differ. diff --git a/week1.tex b/week1.tex @@ -89,7 +89,7 @@ $\lambda \in \mathbb{C}$ and $x \in X$ they provide the following structures: The author indicates that $\mathbb{C}$-valued functions on $X$ are automatically continuous. \begin{idea} - CAN WE USE THE METRIC? >> NO! + CAN WE USE THE METRIC? NO! We know that $X$ is a \textit{finite discrete space}, meaning in an $\epsilon$-$\delta$ approach for each $x \in X$ the only $y \in X$, that is small enough is $x$ by itself, which implies $\epsilon$ is always bigger than zero, thus every function $f:X\ \rightarrow\ \mathbb{C}$ is continuous. @@ -143,12 +143,12 @@ Under the pointwise product: \begin{enumerate} \item $n=m$ \\ Obviously $\phi$ is bijective and $\phi ^*$ too. - \item $n > m$ \\ - $\phi$ assigns $n$ points to $m$ points when $n > m$, + \item $n \rangle m$ \\ + $\phi$ assigns $n$ points to $m$ points when $n \rangle m$, which is by definition surjective. \\ - $\phi ^*$ assigns $m$ points to $n$ points when $n > m$, + $\phi ^*$ assigns $m$ points to $n$ points when $n \rangle m$, which is by definition injective. \\ - \item $n < m $ \\ + \item $n \langle m $ \\ analogous \end{enumerate} \end{solution} @@ -345,8 +345,15 @@ Remark on the notation Not quite sure but \\ $a \in A$, $h_1, h_2 \in H$, we know $\pi (a) = T \in L(H)$ than \begin{align*} - <\pi (a) h_1, \pi (a) h_2> = <T h_1, T h_2> = <T^*T h_1, h_2> = <h_1, h_2> + \langle \pi (a) h_1, \pi (a) h_2\rangle = \langle T h_1, T h_2\rangle = \langle T^*T h_1, h_2\rangle = \langle h_1, h_2\rangle \end{align*} + Or maybe this \\ + If $_A H$ than $(a_1a_2) h = a_1 (a_2 h)$ for $a_1, a_2 \in A$ and $h \in H$.\\ + Then we take the representation of an $a \in A$, $\pi (a)$: + \begin{align*} + (\pi(a_1)\pi(a_2))h = \pi(a_1)(\pi(a_2) h) = (T_1T_2) h = T_1 (T_2 h) + \end{align*} + For $T_1, T_2 \in L(H)$, which operate naturally from the left on $h$. \end{solution} \begin{exercise} diff --git a/week2.pdf b/week2.pdf Binary files differ. diff --git a/week2.tex b/week2.tex @@ -55,10 +55,13 @@ Let $A$ be an algebra, $E$ be a \textit{right} $A$-module and $F$ be a \textit{left} $A$-module. The \textit{balanced tensor product} of $E$ and $F$ forms a $A$-bimodule. \begin{align*} - E \otimes _A F := E \otimes F /\left\{\sum _i e_i a_i \otimes f_i - e_i \otimes a_i f_i : \;\;\; + E \otimes _A F := E \otimes F / \left\{\sum _i e_i a_i \otimes f_i - e_i \otimes a_i f_i : \;\;\; a_i \in A,\ e_i \in E,\ f_i \in F \right\} \end{align*} \end{definition} +\begin{question} + Does $/$ denote the complement, because one usually writes $\setminus$. +\end{question} In other words the balanced tensor product forms only elements of \begin{itemize} \item $E$ that preserver the \textit{left} representation of $A$ and @@ -93,6 +96,16 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \end{exercise} \begin{solution} + We check if the representation of $a \in A$, $\pi(a)=T \in L(H)$ fulfills + the conditions on the $\mathbb{C}$-valued inner product for $h_1, h_2 \in H$: + \begin{itemize} + \item $\langle h_1, \pi(a) h)2\rangle _\mathbb{C} = \langle h_1, T h_2\rangle _\mathbb{C} = + \langle T^* h_1, h_2\rangle _\mathbb{C}$, $T^*$ given by the adjoint + \item $\langle h_1, h_2 \pi(a)\rangle _\mathbb{C} = \langle h_1, h_2 T\rangle _\mathbb{C} = \langle h_1, h_2\rangle _\mathbb{C}$, $T$ acts from the left + \item $\langle h_1, h_2\rangle _\mathbb{C}^* = \langle h_2,h_1\rangle _\mathbb{C}$, hermitian because of the + $\mathbb{C}$-valued inner product + \item $\langle h_1, h_2\rangle \ge 0$, $\mathbb{C}$-valued inner product. + \end{itemize} \end{solution} \begin{exercise} @@ -104,6 +117,12 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \label{exercise: inner-product} \end{exercise} \begin{solution} + We check again the conditions on $\langle \cdot, \cdot\rangle _A$, let $a, a_1, a_2 \in A$: + \begin{itemize} + \item $\langle a_1, a\cdot a_2\rangle _A = a^*\ a\cdot a_2 = (a^*a_1)^* a_2 = \langle a^*a_1, a_2\rangle $ + \item $\langle a_1, a_2 \cdot a\rangle _A = a^*_1 (a_2\cdot a) = (a^*a_2)\cdot a = \langle a_1, a_2\rangle _A a$ + \item $\langle a_1, a_2\rangle _A^* = (a_1^* a_2)^* = a_2^*(a_1^*)^* = a_2^* a_1 = \langle a_2, a_1\rangle $ + \end{itemize} \end{solution} \begin{example} @@ -127,18 +146,23 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \end{align*} Such that $F\circ E \in KK_f(A,D)$ with a $D$-valued inner product. \begin{align*} - <e_1 \otimes f_1, e_2 \otimes f_2>_{E\otimes _B F} = <f_1,<e_1, e_2>_E f_2>_F + \langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle f_1,\langle e_1, e_2\rangle _E f_2\rangle _F \end{align*} \end{definition} \begin{question} -What is the meaning of 'associative up to isomorphism? Isomorphism of $F \circ E$ or of $A, B$ or $D$? + How do we go from $\langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F}$ to $ + \langle f_1,\langle e_1, e_2\rangle _E f_2\rangle _F$ \label{q: tensorproduct} +\end{question} + +\begin{question} +What is the meaning of `associative up to isomorphism'? Isomorphism of $F \circ E$ or of $A, B$ or $D$? \end{question} \begin{exercise} - Show that the association $\phi \leadsto E_\phi$ (from the previous Example) is natrual + Show that the association $\phi \leadsto E_\phi$ (from the previous Example) is natural in the sense - \begin{itemize} + \begin{enumerate} \item $E_{\text{id}_A} \simeq A \in KK_f(A,A)$ \item for $*$-algebra homomorphism $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$ we have an isomorphism @@ -146,26 +170,50 @@ What is the meaning of 'associative up to isomorphism? Isomorphism of $F \circ E E_{\psi} \circ E_{\phi}\ \equiv\ E_{\phi} \otimes _B E_{\psi}\ \simeq\ E_{\psi \circ \phi} \in KK_f(A,C) \end{align*} - \end{itemize} + \end{enumerate} \end{exercise} \begin{solution} + \begin{enumerate} + \ + \item $\text{id}_A: A \rightarrow A$.\\ + To construct $E_{\phi}\in KK_f(A,A)$, we let $E_{\phi}$ be $A$ with a natural right + representation, so $\Rightarrow E_{\phi}\simeq A$.\\ + With an inner product, acting on $A$ from the left with $\phi$, $a', a\in A$\\ + $a'a = (\phi(a') a) \in A $, which is satisfied by $\text{id}_A$, so $\phi = \text{id}_A$. + \item Not sure but: $a \cdot b \cdot c = \psi(\phi(a) \cdot b) \cdot c$ which is in a sense + $\psi \circ \phi$ + \end{enumerate} \end{solution} \begin{exercise} In the definition of Morita equivalence: - \begin{itemize} + \begin{enumerate} \item Check that $E \otimes _B F$ is a $A-D$ bimodule - \item Check that $<\cdot,\cdot>_{E\oplus _B F}$ defines a $D$ valued inner product - \item Check that $<a^*(e_1 \otimes f_1), e_2 \otimes f_2>_{E \otimes _B F} = <e_1 \otimes f_1, a(e_2 \otimes f_2)>_{E \otimes _B F}$. - \end{itemize} + \item Check that $\langle \cdot,\cdot\rangle _{E\oplus _B F}$ defines a $D$ valued inner product + \item Check that $\langle a^*(e_1 \otimes f_1), e_2 \otimes f_2\rangle _{E \otimes _B F} = \langle e_1 \otimes f_1, a(e_2 \otimes f_2)\rangle _{E \otimes _B F}$. + \end{enumerate} \end{exercise} \begin{solution} + \ + \begin{enumerate} + \item $E \otimes _B F = E \otimes F / \{\sum_i e_i b_i \otimes f_i - e_i \otimes b_i f_i; + e_i \in E_i, b_i \in B, f_i \in F\}$ the last part takes out all tensor product elements of + $E$ and $F$ that don't preserver the left/right representation. + \item $\langle e_1, e_2\rangle _E \in B$ and $\langle f_1, f_2\rangle _F \in C$ by definition. So let $\langle e_1, e_2\rangle _E =b$. \\ + Then $\langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle f_1, \langle e_1, e_2\rangle _E f_2\rangle _F = + \langle f_1, b f_2\rangle _F \in C$ + \item Check Question \ref{q: tensorproduct}.\\ + But let $G := E\otimes _B F \in KK_f(A,C)$ then $\forall g_1, g_2 \in G$ and $a \in A$ we need + by definition $\langle g_1, ag_2\rangle _G = \langle a^*g_1, g_2\rangle _G$ and we set $g_1 = e_1 \otimes f_1$ and + $g_2 = e_2 \otimes f_2$ for some $e_1, e_2 \in E$ and $f_1, f_2 \in F$, or else + $G \notin KK_f(A,C)$ which would violate the Kasparov product + \end{enumerate} \end{solution} \begin{definition} - Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita eqivalent} if there + Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita equivalent} if there exists an $E \in KK_f(A, B)$ and an $F \in KK_f(B, A)$ such that: \begin{align*} E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq B @@ -193,10 +241,10 @@ What is the meaning of 'associative up to isomorphism? Isomorphism of $F \circ E On the other hand let $F = \mathbb{C}^n$, which is a $(\mathbb{C}, M_n(\mathbb{C}))$ Hilbert bimodule by right matrix multiplication with $M_n(\mathbb{C})$ valued inner product: \begin{align*} - <v_1, v_2>=\bar{v_1}v_2^t \;\; \in M_n(\mathbb{C}) + \langle v_1, v_2\rangle =\bar{v_1}v_2^t \;\; \in M_n(\mathbb{C}) \end{align*} Now we take the Kasparov product of $E$ and $F$: - \begin{itemize} + \begin{itemize} \item $F\circ E\ =\ E\otimes _{\mathbb{C}}F\ \;\;\;\;\;\; \simeq \ M_n(\mathbb{C})$ \item $E\circ F\ =\ F\otimes _{M_n(\mathbb{C})}E\ \simeq\ \mathbb{C}$ \end{itemize} @@ -228,18 +276,28 @@ What is the meaning of 'associative up to isomorphism? Isomorphism of $F \circ E \begin{exercise} Fill in the gaps in the above proof: - \begin{itemize} + \begin{enumerate} \item show that the representation of $\pi _A$ defined is irreducible iff $\pi _B$ is. \item Show that the association of the class $[\pi _A]$ to $[\pi _B]$ is independent of the choice of representatives $\pi _A$ and $\pi _B$ - \end{itemize} + \end{enumerate} \end{exercise} \begin{solution} + \ + \begin{enumerate} + \item $(\pi _B, H)$ is irreducible means $H \neq \emptyset$ and only $\emptyset$ or $H$ + is invariant under the Action of $B$ on $H$. + Than $E\otimes _B H$ cannot be empty, because also $E$ preserves left representation of $A$ + and also $E\otimes _B H \simeq A$. + \item The important thing is that $[\pi _A] \in \hat{A}$ respectively $[\pi _B] \in \hat{B}$, + hence any choice of representation is irreducible, because the structure space denotes all unitary + equivalence classes of irreducible representations. + \end{enumerate} \end{solution} -\begin{lemma} - The matrix algebra $M_n(\mathbb{C})$ has a unique inrreducible representation (up to isomorphism) + \begin{lemma} + The matrix algebra $M_n(\mathbb{C})$ has a unique irreducible representation (up to isomorphism) given by the defining representation on $\mathbb{C}^n$. \end{lemma} \begin{proof}