ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 446272af324ed22f48abbb532b4db4209aa60552
parent c6e56fff3821a9a1048b668390053ce3a4441c7f
Author: miksa <milutin@popovic.xyz>
Date:   Thu, 18 Feb 2021 09:46:40 +0100

to do: write up the solutions

Diffstat:
Mweek2.pdf | 0
Mweek2.tex | 118+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++--
2 files changed, 115 insertions(+), 3 deletions(-)

diff --git a/week2.pdf b/week2.pdf Binary files differ. diff --git a/week2.tex b/week2.tex @@ -20,12 +20,18 @@ \theoremstyle{definition} \newtheorem{question}{Question} +\theoremstyle{definition} +\newtheorem{example}{Example} + \theoremstyle{theorem} \newtheorem{theorem}{Theorem} \theoremstyle{theorem} \newtheorem{exercise}{Exercise} +\theoremstyle{theorem} +\newtheorem{lemma}{Lemma} + \theoremstyle{definition} \newtheorem{solution}{Solution} @@ -95,10 +101,23 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \begin{align*} \langle a, a\rangle_A = a^*a' \;\;\;\; a,a'\in A \end{align*} + \label{exercise: inner-product} \end{exercise} \begin{solution} \end{solution} +\begin{example} + Consider a $*$ homomorphism between two matrix algebras $\phi:A\rightarrow B$. + From it we can construct a Hilbert bimodule $E_{\phi} \in KK_f(A, B)$ in the following way. + We let $E_{\phi}$ be $B$ in the vector space sense and an inner product from the above + Exercise \ref{exercise: inner-product}, with $A$ acting on the left with $\phi$. + \begin{align*} + a\cdot b = \phi(a)b \;\;\;\; a\in A, b\in E_{\phi} + \end{align*} +\end{example} + + + \subsubsection{Kasparov Product and Morita Equivalence} \begin{definition} Let $E \in KK_f(A, B)$ and $F \in KK_F(B, D)$ the \textit{Kasparov product} is defined as @@ -159,6 +178,31 @@ What is the meaning of 'associative up to isomorphism? Isomorphism of $F \circ E Why are $E$ and $F$ each others inverse in the Kasparov Product? \end{question} +\begin{example} + \ + \begin{itemize} + \item Hilber bimodule of $(A,A)$ is $A$ + \item Let $E \in KK_f(A,B)$, we take $E \circ A = A\oplus _A E \simeq E$ + \item we conclude, that $_A A_A$ is the identity in the Kasparov product (up to isomorphism) + \end{itemize} +\end{example} + +\begin{example} + Let $E = \mathbb{C}^n$, which is a $(M_n(\mathbb{C}), \mathbb{C})$ Hilbert bimodule with the + standard $\mathbb{C}$ inner product.\\ + On the other hand let $F = \mathbb{C}^n$, which is a $(\mathbb{C}, M_n(\mathbb{C}))$ Hilbert + bimodule by right matrix multiplication with $M_n(\mathbb{C})$ valued inner product: + \begin{align*} + <v_1, v_2>=\bar{v_1}v_2^t \;\; \in M_n(\mathbb{C}) + \end{align*} + Now we take the Kasparov product of $E$ and $F$: + \begin{itemize} + \item $F\circ E\ =\ E\otimes _{\mathbb{C}}F\ \;\;\;\;\;\; \simeq \ M_n(\mathbb{C})$ + \item $E\circ F\ =\ F\otimes _{M_n(\mathbb{C})}E\ \simeq\ \mathbb{C}$ + \end{itemize} + $M_n(\mathbb{C})$ and $\mathbb{C}$ are Morita equivalent +\end{example} + \begin{theorem} Two matrix algebras are Morita Equivalent iff their their Structure spaces are isomorphic as discreet spaces (have the same cardinality / same number of elements) @@ -169,13 +213,81 @@ What is the meaning of 'associative up to isomorphism? Isomorphism of $F \circ E E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq B \end{align*} Consider $[(\pi _B, H)] \in \hat{B}$ than we construct a representation of $A$, - $\pi _A \rightarrow L(E \otimes _B H)$ with $\pi _A(a) (e \otimes v) = a e \otimes w$ + \begin{align*} + \pi _A \rightarrow L(E \otimes _B H)\;\;\; \text{with} \;\;\; \pi _A(a) (e \otimes v) = a e \otimes w + \end{align*} \begin{question} Is $E \simeq H$ and $F \simeq W$? \end{question} - \textit{vice versa}, consider $[(\pi _A, W)] \in \hat{A} \Rightarrow - \pi _B: B \rightarrow L(F \otimes _A W)$ and $\pi _B(b) (f\otimes w) = bf\otimes w$ + \textit{vice versa}, consider $[(\pi _A, W)] \in \hat{A}$ we can construct $\pi _B$ + \begin{align*} + \pi _B: B \rightarrow L(F \otimes _A W) \;\;\; \text{and}\;\;\; \pi _B(b) (f\otimes w) = bf\otimes w + \end{align*} These maps are each others inverses, thus $\hat{A} \simeq \hat{B}$ \end{proof} +\begin{exercise} + Fill in the gaps in the above proof: + \begin{itemize} + \item show that the representation of $\pi _A$ defined is irreducible iff $\pi _B$ is. + \item Show that the association of the class $[\pi _A]$ to $[\pi _B]$ is independent + of the choice of representatives $\pi _A$ and $\pi _B$ + \end{itemize} +\end{exercise} + +\begin{solution} +\end{solution} + +\begin{lemma} + The matrix algebra $M_n(\mathbb{C})$ has a unique inrreducible representation (up to isomorphism) + given by the defining representation on $\mathbb{C}^n$. +\end{lemma} +\begin{proof} + We know $\mathbb{C}^n$ is a irreducible representation of $A= M_n(\mathbb{C})$. Let $H$ be irreducible + and of dimension $k$, then we define a map + \begin{align*} + \phi : A\oplus...\oplus A &\rightarrow H^* \\ + (a_1,...,a_k) &\mapsto e^1\circ a_1^t+...+e^k\circ a_k^t + \end{align*} + With $\{e^1,...,e^k\}$ being the basis of the dual space $H^*$ and $(\circ)$ being the pre-composition + of elements in $H^*$ and $A$ acting on $H$. This forms a morphism of $M_n(\mathbb{C})$ modules, + provided a matrix $a \in A$ acts on $H^*$ with $v\mapsto v\circ a^t$ ($v\in H^*$). + Furthermore this morphism is surjective, thus making the pullback $\phi ^*:H\mapsto (A^k)^*$ injective. + Now identify $(A^k)^*$ with $A^k$ as a $A$-module and note that + $A=M_n(\mathbb{C}) \simeq \oplus ^n \mathbb{C}^n$ as a n A module. + It follows that $H$ is a submodule of $A^k \simeq \oplus ^{nk}\mathbb{C}$. By irreducibility + $H \simeq \mathbb{C}$. +\end{proof} + +\begin{example} + Consider two matrix algebras $A$, and $B$. + \begin{align*} + A = \bigoplus ^N_{i=1} M_{n_i}(\mathbb{C}) \;\;\; B = \bigoplus ^M_{j=1} M_{m_j}(\mathbb{C}) + \end{align*} + Let $\hat{A} \simeq \hat{B}$ that implies $N=M$ and define $E$ with $A$ acting by block-diagonal + matrices on the first tensor and B acting in the same way on the second tensor. Define $F$ vice versa. + \begin{align*} + E:= \bigoplus _{i=1}^N \mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i} \;\;\; + F:= \bigoplus _{i=1}^N \mathbb{C}^{m_i} \otimes \mathbb{C}^{n_i} + \end{align*} + Then we calculate the Kasparov product. + \begin{align*} + E \otimes _B F &\simeq \bigoplus _{i=1}^N (\mathbb{C}^{n_i}\otimes\mathbb{C}^{m_i}) + \otimes _{M_{m_i}(\mathbb{C})} (\mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i}) \\ + &\simeq \bigoplus _{i=1}^N \mathbb{C}^{n_i}\otimes + \left(\mathbb{C}^{m_i}\otimes _{M_{m_i}(\mathbb{C})}\mathbb{C}^{m_i}\right) + \oplus \mathbb{C}^{n_i} \\ + &\simeq \bigoplus _{i=1}^N \mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i} \simeq A + \end{align*} + and from $F \otimes _A E \simeq B$. +\end{example} + +We conclude that. +\begin{itemize} + \item There is a duality between finite spaces and Morita equivalence classes of matrix algebras. + \item By replacing $*$-homomorphism $A\rightarrow B$ with Hilbert bimodules $(A,B)$ we introduce + a richer structure of morphism between matrix algebras. +\end{itemize} + + \end{document}