ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 3dd4ca66c4dc14dda970a937a9db053f3cf5bb70
parent 77ea854fcc4709ce5310c3d2200975dd69a7a602
Author: miksa <milutin@popovic.xyz>
Date:   Wed, 10 Mar 2021 18:10:58 +0100

finished week 4 ;)

Diffstat:
Aweek4.pdf | 0
Mweek4.tex | 506++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-
2 files changed, 505 insertions(+), 1 deletion(-)

diff --git a/week4.pdf b/week4.pdf Binary files differ. diff --git a/week4.tex b/week4.tex @@ -14,12 +14,18 @@ \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} \usepackage[parfill]{parskip} +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} + \theoremstyle{definition} \newtheorem{definition}{Definition} \theoremstyle{definition} \newtheorem{question}{Question} +\theoremstyle{definition} +\newtheorem{example}{Example} + \theoremstyle{theorem} \newtheorem{theorem}{Theorem} @@ -41,10 +47,508 @@ \maketitle \tableofcontents +\section{Characters} +\begin{definition} + The characters $\chi _D$ of a group representation $D$, are the \textit{traces} of the linear operators + of of the representation or their matrix elements. + \begin{equation} + \chi _D (g) \equiv \text{Tr}(D(g)) = \sum _i (D(g))_{ii} + \end{equation} +\end{definition} +Advantages of the characters are: +\begin{itemize} + \item $\text{Tr}(AB) = \text{Tr}(BA)$ so $\text{Tr}(D(g^{-1}g_1g)) = \text{Tr}(D(g_1))$ + \item equivalent representations have the \textit{same} characters + \item characters are different for inequivalent irreducible representation, + say $D_a$ and $D_b$ then there is a orthogonality relation up to $N$ + (number of elements in the group): + \begin{align*} + \frac{1}{N} \sum _{g\in G} \chi _{D_a}(g)^*\chi_{D_b}(g) = \delta _{ab} + \end{align*} +\end{itemize} +Furthermore characters are a \textit{complete} basis for functions that are constant on the conjugacy + class. Suppose $F(g_1)$ is such a function. We can expand this function in terms of matrix elements + of irreducible representations. + \begin{align*} + F(g_1) &= \sum_{a,j,l}\frac{1}{n_a} c_{jk}^{a} (D_a(g_1))_{jk} \\ + &= \sum_{a,j,l}\frac{1}{n_a} c_{jk}^{a} (D_a(g^{-1}g_1g))_{jk} \\ + &= \sum_{a,j,k,g,l,m}\frac{1}{n_a} c_{jk}^{a} (D_a(g^{-1}))_{jl}(D_a(g_1))_{lm}(D_a(g))_{mk} \\ + &= \sum_{a,j,l}\frac{1}{n_a} c_{jk}^{a} (D_a(g_1))_{lm} \delta _{jk} \delta _{lm} \\ + &= \sum_{a,j,l}\frac{1}{n_a} c_{jj}^{a} (D_a(g_1))_{ll} \\ + &= \sum_{a,j,l}\frac{1}{n_a} c_{jj}^{a} \chi _a (g_1) + \end{align*} +where $n_a$ denotes the dimension of the representation $D_a$. +\newline + + +We can use characters to find out how many irreducible representations appear in a reducible one and +decompose it to it's irreducible components. We define the projection operator onto the subspace that +transforms under the representation of $a$, where $D$ is a arbitrary representation. +\begin{equation} + P_a = \frac{n_a}{N} \sum _{g\in G} \chi _{D_a}(g)^* D(g) +\end{equation} +This gives us the projection to the original basis. + \section{Spring System in a Equilateral Triangle} +Consider three masses on the edges of a equilateral triangle connected by springs. +The system has 6 degrees of freedom, the $x, y$ coordinates of the three masses. + +\begin{figure}[h!] + \centering + \begin{tikzpicture}[ + mass/.style = {draw,circle, minimum size=0.6cm, inner sep=0pt, thick}, + spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}}, + ] + \node[mass] (m1) at (2,3) {$1$}; + \node[mass] (m2) at (-2,3) {$2$}; + \node[mass] (m3) at (0,0) {$3$}; + \draw[spring] (m1) -- node[above] {} (m2); + \draw[spring] (m2) -- node[above] {} (m3); + \draw[spring] (m3) -- node[above] {} (m1); + \end{tikzpicture} + \caption{Spring System Equilateral Triangle (not equilateral in the picture)\label{drawing}} +\end{figure} + +First we will see what we can find just by looking at the symmetries of the system. \subsection{Group Theoretical Approach} +The 6 degrees of freedom means that the system can be described with a 6 dimensional space. +This is a tensor product of a 2 dimensional space of $x$ and $y$ coordinates and a 3 dimensional +space of the masses (blocks). +\begin{align*} + (x_1, y_1, x_2, y_2,x_3, y_3) +\end{align*} +The 3 dimensional space has $S_3$ symmetry (Group of all permutations of a three-element set), +it can be represented with $D_3$ the dihedral group. +\begin{align*} + D_3(e) = + \begin{pmatrix} + 1 & 0 & 0 \\ + 0 & 1 & 0 \\ + 0 & 0 & 1 \\ + \end{pmatrix} \;\;\;\; + D_3(a_1) = \begin{pmatrix} + 0 & 0 & 1 \\ + 1 & 0 & 0 \\ + 0 & 1 & 0 \\ + \end{pmatrix} \;\;\;\; + D_3(a_2) = + \begin{pmatrix} + 0 & 1 & 0 \\ + 0 & 0 & 1 \\ + 1 & 0 & 0 \\ + \end{pmatrix} \;\;\;\; \\ + D_3(a_3) = + \begin{pmatrix} + 0 & 1 & 0 \\ + 1 & 0 & 0 \\ + 0 & 0 & 1 \\ + \end{pmatrix} \;\;\;\; + D_3(a_4) = \begin{pmatrix} + 1 & 0 & 0 \\ + 0 & 0 & 1 \\ + 0 & 1 & 0 \\ + \end{pmatrix} \;\;\;\; + D_3(a_5) = + \begin{pmatrix} + 0 & 0 & 1 \\ + 0 & 1 & 0 \\ + 1 & 0 & 0 \\ + \end{pmatrix} \;\;\;\; +\end{align*} +The 2 dimensional space also transforms under $S_3$, under a representation $D_2$ +\begin{align*} + D_2(e) = + \begin{pmatrix} + 1 & 0 \\ + 0 & 1 \\ + \end{pmatrix} \;\;\;\; + D_2(a_1) = \begin{pmatrix} + -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ + \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ + \end{pmatrix} \;\;\;\; + D_2(a_2) = + \begin{pmatrix} + -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ + -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ + \end{pmatrix} \;\;\;\; \\ + D_2(a_3) = + \begin{pmatrix} + -1 & 0 \\ + 0 & 1 \\ + \end{pmatrix} \;\;\;\; + D_2(a_4) = \begin{pmatrix} + \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ + \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ + \end{pmatrix} \;\;\;\; + D_2(a_5) = + \begin{pmatrix} + \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ + -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ + \end{pmatrix} \;\;\;\; +\end{align*} +Then $D_6$ is the tensor product of $D_3$ and $D_2$: +\begin{equation} + (D_6(g))_{i\mu k\nu}=(D_3(g))_{ij}(D_2(g)_{\mu \nu} +\end{equation} +For $a_2$ we would than have block matrices instead of $1$ in $D_3$: +\begin{align*} + D_6(a_2) = + \begin{pmatrix} + 0 & D_2(a_2) & 0 \\ + 0 & 0 & D_2(a_2) \\ + D_2(a_2) & 0 & 0 \\ + \end{pmatrix} +\end{align*} +All other elements follow accordingly. + +Now $S_3$ has two 1 dimensional irreducible representations which are trivial because they map to the +identity and one, 2 dimensional irreducible representation $D_2$ bellow is a character table of these +representations +\begin{table}[h!] + \begin{center} + \caption{Character table of $S_3$} + \label{tab:table1} + \begin{tabular}{l|l|l|l} + $S_3$ & $e$ & $\{a_1, a_2\}$ & $\{a_3, a_4, a_5\}$ \\ + \hline + $\chi _0$ & 1 & 1 & 1 \\ + \hline + $\chi _1$ & 1 & 1 & -1 \\ + \hline + $\chi _2$ & 2 & -1 & 0 \\ + \hline + $\chi _3$ & 3 & 0 & 1 \\ + \hline + $\chi _6$ & 6 & 0 & 0 \\ + \end{tabular} + \end{center} +\end{table} + +To find the normal modes of the oscillation around equilibrium we project $D_6(g)$ to $D_0$, $D_1$ and $D_2$ +which are the irreducible representatives of $S_3$. +\newline +We start with $D_0$: +\begin{align} + P_0 &= \frac{1}{6} \sum _{g\in G} \chi _{0}(g)^* D_6(g) \nonumber \\ + &=\frac{1}{6} + \begin{pmatrix} + D_2(e)+D_2(a_4) & D_2(a_2)+D_2(a_3) & D_2(a_1)+D_2(a_5) \\ + D_2(a_1)+D_2(a_3) & D_2(e)+D_2(a_5) & D_2(a_2)+D_2(a_4)\\ + D_2(a_1)+D_2(a_5) & D_2(a_1)+D_2(a_4) & D_2(e)+D_2(a_3) \\ + \end{pmatrix} \nonumber\\ + &= + \begin{pmatrix} + \frac{1}{2} \\ + \frac{\sqrt{3}}{6} \\ + -\frac{1}{2} \\ + \frac{\sqrt{3}}{6} \\ + 0 \\ + \frac{1}{\sqrt{3}} \\ + \end{pmatrix} + \begin{pmatrix} + \frac{1}{2} & \frac{\sqrt{3}}{6} & -\frac{1}{2} &\frac{\sqrt{3}}{6} & 0 & \frac{1}{\sqrt{3}} + \end{pmatrix} + \label{eig: 1} +\end{align} +For $D_1$ we get: +\begin{align} + P_1 &= \frac{1}{6} \sum _{g\in G} \chi _{1}(g)^* D_6(g) \nonumber \\ + &=\frac{1}{6} + \begin{pmatrix} + D_2(e)-D_2(a_4) & D_2(a_2)-D_2(a_3) & D_2(a_1)-D_2(a_5) \\ + D_2(a_1)-D_2(a_3) & D_2(e)-D_2(a_5) & D_2(a_2)-D_2(a_4)\\ + D_2(a_1)-D_2(a_5) & D_2(a_1)-D_2(a_4) & D_2(e)-D_2(a_3) \\ + \end{pmatrix} \nonumber\\ + &= + \begin{pmatrix} + -\frac{\sqrt{3}}{6} \\ + \frac{1}{2} \\ + -\frac{\sqrt{3}}{6} \\ + -\frac{1}{2} \\ + \frac{1}{\sqrt{3}} \\ + 0 + \end{pmatrix} + \begin{pmatrix} + -\frac{\sqrt{3}}{6} & \frac{1}{2} & -\frac{\sqrt{3}}{6} &-\frac{1}{2} & \frac{1}{\sqrt{3}} & 0 + \end{pmatrix} + \label{eig: 2} +\end{align} +And for $D_2$ we get: +\begin{align} + P_2 &= \frac{2}{6} \sum _{g\in G} \chi _{2}(g)^* D_6(g) \nonumber \\ + &=\frac{2}{6} + \begin{pmatrix} + 2D_2(e) & -D_2(a_2) & -D_2(a_1) \\ + -D_2(a_1) & 2D_2(e) & -D_2(a_2)\\ + -D_2(a_1) & -D_2(a_1) & 2D_2(e) \\ + \end{pmatrix} \nonumber +\end{align} +And the nontrivial modes provided by $P_2$ can be calculated by including translation in $x$ and $y$ +direction $T_x$ and $T_y$: +\begin{align*} + T_x = \frac{1}{3} +\begin{pmatrix} + 1 & 0 & 1 & 0 & 1 & 0 \\ + 0 & 0 & 0 & 0 & 0 & 0 \\ + 1 & 0 & 1 & 0 & 1 & 0 \\ + 0 & 0 & 0 & 0 & 0 & 0 \\ + 1 & 0 & 1 & 0 & 1 & 0 \\ + 0 & 0 & 0 & 0 & 0 & 0 \\ +\end{pmatrix} + \;\;\;\; + T_y = \frac{1}{3} +\begin{pmatrix} + 0 & 0 & 0 & 0 & 0 & 0 \\ + 0 & 1 & 0 & 1 & 0 & 1 \\ + 0 & 0 & 0 & 0 & 0 & 0 \\ + 0 & 1 & 0 & 1 & 0 & 1 \\ + 0 & 0 & 0 & 0 & 0 & 0 \\ + 0 & 1 & 0 & 1 & 0 & 1 \\ +\end{pmatrix} +\end{align*} +To see the modes we move mass $3$ in the $y$ direction which is the vector $\begin{pmatrix}0&0&0&0&0&1\end{pmatrix}$ and its mode can be get by appying it to $P_2 -T_x -T_y$: +\begin{equation} + \begin{pmatrix} + \frac{\sqrt{3}}{6}&-\frac{1}{6}& -\frac{\sqrt{3}}{6} & -\frac{1}{6} & 0 & \frac{1}{3} + \end{pmatrix} + \label{eig: 3} +\end{equation} + +The three vectors in Equasions \ref{eig: 1}, \ref{eig: 2} and \ref{eig: 3} are one of the normal modes of +the system, at the same time they are the eigenvectors of the motion equation of the +system which will be introduced in the next chapter. +Further more the corresponding modes are equaual to the following motions. +Note there are three more nodes mabye I will get later into them, but they can be calculated like the +mode from Eq. \ref{eig: 3}. + +\begin{figure}[h] + \begin{subfigure}[b]{0.32\textwidth} + \centering + \resizebox{\linewidth}{!}{ + \begin{tikzpicture}[ + mass/.style = {draw,circle, minimum size=0.6cm, inner sep=0pt, thick}, + spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}}, + arrow/.style = {thick, ->, shorten >= 2pt, shorten <=2pt} + ] + \node[mass] (m1) at (2,3) {$1$}; + \node[mass] (m2) at (-2,3) {$2$}; + \node[mass] (m3) at (0,0) {$3$}; + + \draw[spring] (m1) -- node[above] {} (m2); + \draw[spring] (m2) -- node[above] {} (m3); + \draw[spring] (m3) -- node[above] {} (m1); + + \draw[arrow] (m1) -- (2.5, 3.5); + \draw[arrow] (m2) -- (-2.5, 3.5); + \draw[arrow] (m3) -- (0, -0.7); + + \end{tikzpicture} + } + \caption{Motion given by \ref{eig: 1}\\Breathing Mode} + \end{subfigure} + \begin{subfigure}[b]{0.32\textwidth} + \centering + \resizebox{\linewidth}{!}{ + \begin{tikzpicture}[ + mass/.style = {draw,circle, minimum size=0.6cm, inner sep=0pt, thick}, + spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}}, + arrow/.style = {thick, ->, shorten >= 2pt, shorten <=2pt} + ] + \node[mass] (m1) at (2,3) {$1$}; + \node[mass] (m2) at (-2,3) {$2$}; + \node[mass] (m3) at (0,0) {$3$}; + + \draw[spring] (m1) -- node[above] {} (m2); + \draw[spring] (m2) -- node[above] {} (m3); + \draw[spring] (m3) -- node[above] {} (m1); + + \draw[arrow] (m1) -- (1.5, 3.5); + \draw[arrow] (m2) -- (-2.5, 2.5); + \draw[arrow] (m3) -- (0.7, 0); + \end{tikzpicture} + } + \caption{Motion given by \ref{eig: 2}\\ Rotation} + \end{subfigure} + \begin{subfigure}[b]{0.32\textwidth} + \centering + \resizebox{\linewidth}{!}{ + \begin{tikzpicture}[ + mass/.style = {draw,circle, minimum size=0.6cm, inner sep=0pt, thick}, + spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}}, + arrow/.style = {thick, ->, shorten >= 2pt, shorten <=2pt} + ] + \node[mass] (m1) at (2,3) {$1$}; + \node[mass] (m2) at (-2,3) {$2$}; + \node[mass] (m3) at (0,0) {$3$}; + + \draw[spring] (m1) -- node[above] {} (m2); + \draw[spring] (m2) -- node[above] {} (m3); + \draw[spring] (m3) -- node[above] {} (m1); + + \draw[arrow] (m1) -- (2.5, 2.5); + \draw[arrow] (m2) -- (-2.5, 2.5); + \draw[arrow] (m3) -- (0, 0.7); + \end{tikzpicture} + } + \caption{Motion given by \ref{eig: 3}} + \end{subfigure} +\end{figure} + + + + \subsection{Physical Approach} +The physical approach would be to construct the lagrangian $\mathfrak{L} = T - V$. Were $T$ is +simply the kinetic energy of the system in $\eta = (x_1, y_1, x_2, y_2, x_3, y_3)$ coordinates and +for simplicity we set all masses to $m$. +\begin{align*} + T = \frac{m}{2} \dot{\eta} _i \dot{\eta} ^i \;\;\;\; \text{for\footnote{Einstein Summation Convention}} + \;\; i = 1,\dots,6 +\end{align*} +For $V$ the potential energy we have three springs and \textit{small oscillations around equilibrium}, +two of them are the offset of the one to the angle +of $\theta = \pm \frac{\pi}{3}$, which is $\begin{pmatrix} cos(\theta) \\ sin(\theta)\end{pmatrix} = + \begin{pmatrix} \frac{1}{2} \\ \pm \frac{\sqrt{3}}{2}\end{pmatrix}$. Then $V$ is: +\begin{align*} + V &= \frac{k}{2} U^i_{\; j} \eta _i \eta ^j \\ + &= \frac{k}{2} \bigg((x_1 - x_2)^2 +(\frac{1}{2}(x_2-x_3 + \frac{\sqrt{3}}{2} (y_2 - y_3))^2 + +(\frac{1}{2}(x_1-x_3) + \frac{\sqrt{3}}{2}(y_1 - y_3))^2 \bigg) +\end{align*} +Where $U$ is: +\begin{align*} + U = \frac{1}{4} + \begin{pmatrix} + 5 & \sqrt{3} & -4 & 0 & -1 & -\sqrt{3} \\ + \sqrt{3} & 3 & 0 & 0 & -\sqrt{3} & -3 \\ + -4 & 0 & 5 & -\sqrt{3} & -1 & \sqrt{3} \\ + 0 & 0 & -\sqrt{3} & 3 & \sqrt{3} & -3 \\ + -1 & -\sqrt{3} & -1 & \sqrt{3} & 2 & 0 \\ + -\sqrt{3} & -3 & \sqrt{3} & -3 & 0 & 6 + \end{pmatrix} +\end{align*} + +The Euler-Lagrange equations then give us : +\begin{equation} + m\ddot{\eta}^i = -k U^i_{\; j} \eta ^j +\end{equation} +With the exponential ansatz $\eta = \eta _0 e^{i\omega t}$ we get +\begin{equation} + U^i_{\; j}\eta ^j = \lambda \eta ^i \;\;\;\;\;\;\; \text{where} \;\; \lambda = \frac{m\omega^2}{k} +\end{equation} +The normal modes are the eigenvalues of $U$, which were calculated only using symmetry in Equations +\ref{eig: 1}, \ref{eig: 2} and \ref{eig: 3}. With some more character theory we can extract even more +information explicitly on the eigenvalues. To sum it up there are four different eigenvalues, which means +that some modes have the same frequency, to find the frequencies (eigenvalues) go through a calculation in +diagonal coordinates of $U$ and $D(g)$ (we know all traces of $D(g)$) the trace is then invariant and the +sum of all eigenvectors, it will give 3 equation with four unknown but one is the trivial oscillation +with $\lambda = 0$ making the system solvable. + \section{Noncommutative geometric Finite Spaces} -\subsection{The Metric on Finite Discrete Spaces} +\subsection{Metric on Finite Discrete Spaces} +Let $X$ be a \textit{finite discrete space}, described by a structure space $\hat{A}$ of +a matrix algebra $A$. To describe distance between two points in X (as we would in a metric space) +we use an array $\{d_{ij}\}_{i, j \in X}$ of \textit{real nonnegative} entries on $X$ +such that +\begin{itemize} + \item $d_{ij} = d_{ji}$ Symmetric + \item $d_{ij} \leq d_{ik} d_{kj}$ Triangle Inequality + \item $d_{ij} = 0$ for $i=j$ (the same element) +\end{itemize} + +\begin{example} + The \textit{discrete metric} on a discrete space X is $d_{ij}=1$ for $i\neq j$ and $d_{ij}=0$ + for $i = j$ + \newline + Properties of the discrete metric \url{https://en.wikipedia.org/wiki/Discrete_space#Properties} +\end{example} + +The commutative case, where $A$ is assumed commutative can desrcibe the metric on $X$ in terms of +algebraic data. The result is the following theorem can be proved. +\begin{theorem} + Let $d_{ij}$ be a metric on $X$ a finite discrete space with $N$ points, $A = \mathbb{C}^N$ + with elements $a = (a(i))_{i=1}^N$ such that $\hat{A} \simeq X$. Then there exists a + representation $\pi$ of $A$ on a finite-dimensional inner product space $H$ and a symmetric + operator $D$ on $H$ such that + \begin{equation} + d_{ij} = \sup_{a\in A}\{|a(i)-a(j)| : ||[D, \pi(a)]|| \leq 1\} + \end{equation} +\end{theorem} + +\begin{proof} + Claim that this would follow from the equality: + \begin{equation} + ||[D, \pi(a)]|| = \max_{k\neq l} \big\{\frac{1}{d_{kl}}|a(k) - a(l)|\big\} + \label{induction} + \end{equation} + This can be proved with induction. Set $N=2$ then $H=\mathbb{C}^2$, $\pi:A\rightarrow L(H)$ and + a hermitian matrix $D$. + \begin{align} + \pi(a) = + \begin{pmatrix} + a(1) & 0 \\ + 0 & a(2) + \end{pmatrix} + \;\;\;\; + D = + \begin{pmatrix} + 0 & (d_{12})^{-1} \\ + (d_{21})^{-1} & 0 + \end{pmatrix} + \end{align} + Then: + \begin{align} + ||[D, \pi(a)]|| = (d_{12})^{-1} | a(1) - a(2)| + \end{align} + Suppose this holds for $N$ with $\pi_N$, $H_N = \mathbb{C}^N$ and $D_N$. + Then it holds for $N+1$ with $H_{N+1} = H_{N} \oplus \bigoplus_{i=1}^N H_N^i$ and + \begin{align} + \pi_{N+1}(a(1),\dots,a(N+1)) = \pi_N(a(1),\dots,a(N)) + \oplus + \begin{pmatrix} + a(1) & 0 \\ + 0 & a(N+1) + \end{pmatrix} + \oplus \cdots \oplus + \begin{pmatrix} + a(N) & 0 \\ + 0 1 & a(N+1) + \end{pmatrix} + \end{align} + And $D_{N+1}$: + \begin{align} + D_{N+1} = D_N + \oplus + \begin{pmatrix} + 0 & (d_{1(N+1)})^-1 \\ + (d_{1(N+1)})^-1 & 0 + \end{pmatrix} + \oplus \cdots \oplus + \begin{pmatrix} + 0 & (d_{N(N+1)})^-1 \\ + (d_{N(N+1)})^-1 & 0 + \end{pmatrix} + \end{align} + From this follows \ref{induction}. + Then we can continue the proof, we set for fixed $i, j$, $a(k) = d_{ik}$, which gives + $|a(i) - a(j)| = d_{ij}$ + \begin{align} + \Rightarrow \frac{1}{d_{kl}} | a(k) - a(l) | = \frac{1}{d_{kl}} | d_{ik} - d_{il} | \leq 1 + \end{align} +\end{proof} + +The translation of the metric on $X$ into algebraic data assumes commutativity in $A$, but this can be +extended to noncommutative matrix algebra, with the following metric on a structure space $\hat{A}$ +of a matrix algebra $M_{n_i}(\mathbb{C}$ +\begin{equation} + d_{ij} = \sup_{a\in A}\big\{|\text{Tr}(a(i)) - \text{Tr}((a(j))|: ||[D, a]|| \leq 1\big\} +\end{equation} +This is special case of the Connes' distance formula on a structure space of $A$. + +\begin{definition} + A \textit{finite spectral triple} is a tripe $(A, H, D)$, where $A$ is a unital $*$-algebra, + faithfully represented on a finite-dimensional Hilbert space $H$, with a symmetric operator + $D: H \rightarrow H$. +\end{definition} +$A$ is automatically a matrix algebra. \end{document}