ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 77ea854fcc4709ce5310c3d2200975dd69a7a602
parent b868322b01444266972b7aec8a69a92c57a81399
Author: miksa <milutin@popovic.xyz>
Date:   Tue,  9 Mar 2021 17:43:02 +0100

minor changers in week3.tex, redoing the balanced tensor product

Diffstat:
Mweek2.pdf | 0
Mweek2.tex | 30++++++++++--------------------
Aweek4.tex | 50++++++++++++++++++++++++++++++++++++++++++++++++++
3 files changed, 60 insertions(+), 20 deletions(-)

diff --git a/week2.pdf b/week2.pdf Binary files differ. diff --git a/week2.tex b/week2.tex @@ -59,20 +59,10 @@ a_i \in A,\ e_i \in E,\ f_i \in F \right\} \end{align*} \end{definition} -\begin{question} - Does $/$ denote the complement, because one usually writes $\setminus$. - $/$ denotes the Qutotient \url{https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)} -\end{question} -%In other words the balanced tensor product forms only elements of -%\begin{itemize} -% \item $E$ that preserver the \textit{left} representation of $A$ and -% \item $F$ that preserver the \textit{right} representation of $A$. -%\end{itemize} -%Which is the same saying: -%\begin{align*} -% E \otimes _A F = \left\{e a\otimes _A f = e \otimes _A a f: \;\;\; a \in A,\ e \in E,\ f \in F \right\} -%\end{align*} - +Note $/$ denotes the quotient space. So $\otimes _A$ takes two left/right modules and makes a +bimodule with the help the tensor product of the two modules and the quotient space that takes +out all the elements from the tensor product that dont preserver the left/right representation and that +are duplicates. \begin{definition} Let $A$, $B$ be \textit{matrix algebras}. The \textit{Hilbert bimodule} for $(A, B)$ is given by \begin{itemize} @@ -158,9 +148,9 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. This statement is still in the definition. \end{question} -\begin{question} -What is the meaning of `associative up to isomorphism'? Isomorphism of $F \circ E$ or of $A, B$ or $D$? -\end{question} +%\begin{question} +%What is the meaning of `associative up to isomorphism'? Isomorphism of $F \circ E$ or of $A, B$ or $D$? +%\end{question} \begin{exercise} Show that the association $\phi \leadsto E_\phi$ (from the previous Example) is natural @@ -184,8 +174,8 @@ What is the meaning of `associative up to isomorphism'? Isomorphism of $F \circ representation, so $\Rightarrow E_{\phi}\simeq A$.\\ With an inner product, acting on $A$ from the left with $\phi$, $a', a\in A$\\ $a'a = (\phi(a') a) \in A $, which is satisfied by $\text{id}_A$, so $\phi = \text{id}_A$. - \item Not sure but: $a \cdot b \cdot c = \psi(\phi(a) \cdot b) \cdot c$ which is in a sense - $\psi \circ \phi$ + \item $a \cdot b \cdot c = \psi(\phi(a) \cdot b) \cdot c$ for $a \in A$, $b\in B$, and $c\in C$ + which is $\psi \circ \phi$ \end{enumerate} \end{solution} @@ -203,7 +193,7 @@ What is the meaning of `associative up to isomorphism'? Isomorphism of $F \circ \begin{enumerate} \item $E \otimes _B F = E \otimes F / \{\sum_i e_i b_i \otimes f_i - e_i \otimes b_i f_i; e_i \in E_i, b_i \in B, f_i \in F\}$ the last part takes out all tensor product elements of - $E$ and $F$ that don't preserver the left/right representation. + $E$ and $F$ that don't preserver the left/right representation and that are duplicates. \item $\langle e_1, e_2\rangle _E \in B$ and $\langle f_1, f_2\rangle _F \in C$ by definition. So let $\langle e_1, e_2\rangle _E =b$. \\ Then $\langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle f_1, \langle e_1, e_2\rangle _E f_2\rangle _F = \langle f_1, b f_2\rangle _F \in C$ diff --git a/week4.tex b/week4.tex @@ -0,0 +1,50 @@ +\documentclass[a4paper]{article} + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} + +\usepackage{mathptmx} + +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{amsmath,amssymb} +\usepackage{amsthm} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} + +\theoremstyle{definition} +\newtheorem{definition}{Definition} + +\theoremstyle{definition} +\newtheorem{question}{Question} + +\theoremstyle{theorem} +\newtheorem{theorem}{Theorem} + +\theoremstyle{theorem} +\newtheorem{exercise}{Exercise} + +\theoremstyle{definition} +\newtheorem{solution}{Solution} + +\newtheorem*{idea}{Proof Idea} + + +\title{Notes on \\ Noncommutative Geometry and Particle Physics} +\author{Popovic Milutin} +\date{Week 4: 05.03 - 12.03} + +\begin{document} + +\maketitle +\tableofcontents + +\section{Spring System in a Equilateral Triangle} +\subsection{Group Theoretical Approach} +\subsection{Physical Approach} +\section{Noncommutative geometric Finite Spaces} +\subsection{The Metric on Finite Discrete Spaces} + +\end{document}