ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 426279727d81800c0e37a92c527120538732a9a4
parent 30fec419bdd434928e5155667b35d4f5a9080a6b
Author: miksa <milutin@popovic.xyz>
Date:   Wed,  9 Jun 2021 11:01:52 +0200

week10.tex initial

Diffstat:
Asrc/week10.tex | 164+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Msrc/week8.tex | 5+++--
2 files changed, 167 insertions(+), 2 deletions(-)

diff --git a/src/week10.tex b/src/week10.tex @@ -0,0 +1,164 @@ +\documentclass[a4paper]{article} + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} + +\usepackage{mathptmx} + +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{amssymb} +\usepackage{amsthm} +\usepackage{mathtools} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} + +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} + +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + +\newcounter{exercise} + +\renewcommand*\theexercise{Exercise~\arabic{exercise}} + +\makeatletter +\mdfdefinestyle{exercisestyle}{% + outerlinewidth=1em,% + outerlinecolor=white,% + leftmargin=-1em,% + rightmargin=-1em,% + middlelinewidth=1.2pt,% + roundcorner=5pt,% + linecolor=black,% + backgroundcolor=blue!5, + innertopmargin=1.2\baselineskip, + skipabove={\dimexpr0.5\baselineskip+\topskip\relax}, + skipbelow={-1em}, + needspace=3\baselineskip, + frametitlefont=\sffamily\bfseries, + settings={\global\stepcounter{exercise}}, + singleextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};},% + firstextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};}, +} +\makeatother + +\newenvironment{MyExercise}% +{\begin{mdframed}[style=exercisestyle]}{\end{mdframed}} + +\theoremstyle{definition} +\newtheorem{definition}{Definition} + +\theoremstyle{definition} +\newtheorem{question}{Question} + +\theoremstyle{definition} +\newtheorem{example}{Example} + +\theoremstyle{theorem} +\newtheorem{theorem}{Theorem} + +\theoremstyle{theorem} +\newtheorem{lemma}{Lemma} + + +\theoremstyle{theorem} +\newtheorem{proposition}{Proposition} + +\newtheorem*{idea}{Proof Idea} + + +\title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm} +Notes on\\ Noncommutative Geometry and Particle Phyiscs} +\author{Milutin Popovic \\ Supervisor: Dr. Lisa +Glaser} +\date{Week 8: 8.05 - 18.05} + +\begin{document} + + \maketitle + \tableofcontents + \newpage + + +\section{Spectral Action of the Fluctuated Dirac Operator} +\begin{proposition} + The spectral action of the almost commutative manifold $M$ with $\dim(M) + =4$ with a fluctuated Dirac operator is. + \begin{align} + \text{Tr}(f\frac{D_\omega}{\Lambda}) \sim \int_M \mathcal{L}(g_{\mu\nu}, + B_\mu, \Phi) \sqrt{g}\ d^4x + O(\Lambda^{-1}) + \end{align} + with + \begin{align} + \mathcal{L}(g_{\mu\nu}, B_\mu, \Phi) = + N\mathcal{L}_M(g_{\mu\nu}) + \mathcal{L}_B(B_\mu)+ + \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi) + \end{align} + where $N=4$ and $\mathcal{L}_M$ is the Lagrangian of the spectral triple + $(C^\infty(M) , L^2(S), D_M)$ + \begin{align}\label{lagr} + \mathcal{L}_M(g_{\mu\nu}) := \frac{f_4 \Lambda ^4}{2\pi^2} - + \frac{f_2 \Lambda^2}{24\pi ^2}s - \frac{f(0)}{320\pi^2} C_{\mu\nu + \varrho \sigma}C^{\mu\nu \varrho \sigma}. + \end{align} + Here $C^{\mu\nu \varrho \sigma}$ is defined in terms of the Riemannian + curvature tensor $R_{\mu\nu \varrho \sigma}$ and the Ricci tensor + $R_{\nu\sigma} = g^{\mu\varrho} R_{\mu\nu \varrho\sigma}$. + + + Furthermore $\mathcal{L}_B$ describes the kinetic term of the gauge field + \begin{align} + \mathcal{L}_B(B_\mu) := \frac{f(0)}{24\pi^2} + \text{Tr}(F_{\mu\nu}F^{\mu\nu}). + \end{align} + Last $\mathcal{L}_\phi$ is the scalar-field Lagrangian with a boundary + term. + \begin{align} + \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi) := + &-\frac{2f_2\Lambda^2}{4\pi^2}\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2} + \text{Tr}(\Phi^4) + \frac{f(0)}{24\pi^2} \Delta(\text{Tr}(\Phi^2))\\ + &+ \frac{f(0)}{48\pi^2}s\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2}\text{Tr}((D_\mu \Phi)(D^\mu \Phi)). + \end{align} +\end{proposition} +\begin{proof} + Will maybe be filled in if I go through the last two chapters in the + book and understand the proof. + \textbf{PROOF IN week10.pdf} +\end{proof} + +\section{Fermionic Action} +\begin{definition} + The fermionic action is defined by + \begin{align} + S_f[\omega, \psi] = (J\tilde{\psi}, D_\omega \tilde{\psi}) + \end{align} + with $\tilde{\psi} \in H_{cl}^+ := \{\tilde{\psi}: \psi \in H^+\}$. + $H_{cl}^+$ is the set of Grassmann variables in $H$ in the +1-eigenspace + of the grading $\gamma$. +\end{definition} + +\begin{align} + M\times F_{ED} := \left(C^\infty(M,\mathbb{C}^2),\ L^2(S)\otimes + \mathbb{C}^4,\ + D_M\otimes 1 +\gamma _M \otimes D_F;\; J_M\otimes J_F,\ \gamma_M\otimes + \gamma _F\right) +\end{align} + + + + +\end{document} diff --git a/src/week8.tex b/src/week8.tex @@ -665,9 +665,10 @@ $\theta _i, \theta _j$ some Grassmann variables we have \begin{proof} Will maybe be filled in if I go through the last two chapters in the book and understand the proof. + \textbf{PROOF IN week10.pdf} \end{proof} -Here on we go and calculate the spectral action of $M\times F_{ED}$ +From here on we go and calculate the spectral action of $M\times F_{ED}$ \begin{proposition} The Spectral action of $M\times F_{ED}$ is \begin{align} @@ -709,5 +710,5 @@ Here on we go and calculate the spectral action of $M\times F_{ED}$ The proof is relying itself on just plugging the terms into the previous proposition, for which I didn't write the proof for. -\end{proof} + \end{document}