ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 49238ee2daaba327d0c814407ac67e7518958d1c
parent 68188395cea0fea2c0342eddcf352029677dae97
Author: miksa234 <milutin@popovic.xyz>
Date:   Wed, 24 Mar 2021 16:07:22 +0100

boxes around exercise and finished some exercises

Diffstat:
Mpdfs/week5.pdf | 0
Msrc/week5.tex | 90+++++++++++++++++++++++++++++++++++++++++++++++++++++++------------------------
2 files changed, 63 insertions(+), 27 deletions(-)

diff --git a/pdfs/week5.pdf b/pdfs/week5.pdf Binary files differ. diff --git a/src/week5.tex b/src/week5.tex @@ -85,6 +85,7 @@ \section{Noncommutative Geometric Spaces } \subsection{Exercises} + \begin{MyExercise} \textbf{ Make the proof of the last theorem (see week4.pdf) explicit for $N=3$. @@ -118,10 +119,10 @@ 0 & x_1 \\ x_1 & 0 \end{pmatrix} \oplus \begin{pmatrix} - 0 & x_1 \\ x_1 & 0 + 0 & x_2 \\ x_2 & 0 \end{pmatrix} \oplus \begin{pmatrix} - 0 & x_1 \\ x_1 & 0 + 0 & x_3 \\ x_3 & 0 \end{pmatrix} \nonumber \\ &= \begin{pmatrix} @@ -135,19 +136,19 @@ \end{align} Then the norm of the commutator would be the largest eigenvalue \begin{align} - &||[D, \pi(a)]|| = ||D\pi(a) - \pi(a)D||\nonumber - % &= - % \left|\left| - % \setlength{\arraycolsep}{0.1cm} - % \renewcommand{\arraystretch}{0.1} - % \begin{pmatrix} - % 0 & x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 \\ - % -x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 & 0 \\ - % 0 & 0 & 0 & x_2(a(3)-a(1)) & 0 & 0 \\ - % 0 & 0 & -x_2(a(3)-a(1)) & 0 & 0 & 0 \\ - % 0 & 0 & 0 & 0 & 0 & x_3(a(3)-a(2)) \\ - % 0 & 0 & 0 & 0 & -x_3(a(2)-a(3)) & 0 \\ - % \end{pmatrix}\right|\right| \label{skew matrix} + &||[D, \pi(a)]|| = ||D\pi(a) - \pi(a)D||\nonumber\\ + &= + \left|\left| + \setlength{\arraycolsep}{0.1cm} + \renewcommand{\arraystretch}{0.1} + \begin{pmatrix} + 0 & x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 \\ + -x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 & 0 \\ + 0 & 0 & 0 & x_2(a(3)-a(1)) & 0 & 0 \\ + 0 & 0 & -x_2(a(3)-a(1)) & 0 & 0 & 0 \\ + 0 & 0 & 0 & 0 & 0 & x_3(a(3)-a(2)) \\ + 0 & 0 & 0 & 0 & -x_3(a(2)-a(3)) & 0 \\ + \end{pmatrix}\right|\right| \label{skew matrix} \end{align} The matrix in Equation \ref{shew matrix} is a skew symmetric matrix its eigenvalues are $i\lambda_1, i\lambda_2, i\lambda_3, i\lambda_4$, where the $\lambda$'s are on the @@ -155,7 +156,18 @@ upper and lower diagonal check \url{https://en.wikipedia.org/wiki/Skew-symmetric matrix#Skew-symmetrizable_matrix}. The matrix norm of would be the maximum of the norm of the larges eigenvalues: \begin{align} - ||[D, \pi(a)]|| = \max_{a\in A}\{x_i|a(j)-a(k)|\} + ||[D, \pi(a)]|| = \max_{a\in A}\{&x_1|a(2)-a(1)|,\\ + &x_2|(a(3)-a(1))|,\nonumber\\ + &x_3|(a(3)-a(2))|,\}\nonumber +\end{align} +The metric is then: +\begin{align} + d = + \begin{pmatrix} + 0 & a(1)-a(2) & a(1)-a(3)\\ + a(2)-a(1) & 0 & a(2)-a(3)\\ + a(3)-a(1) & a(3)-a(2) & 0 + \end{pmatrix} \end{align} \end{MyExercise} @@ -183,8 +195,16 @@ the larges eigenvalues: 0 & a(2)-a(1) & 0 \\ -(a(2)-a(1)) & 0 & 0 \\ 0 & 0 & 0 - \end{pmatrix} \right|\right| \\ - &= d^{-1} |a(2) - a(1)| + \end{pmatrix} \right|\right| + \end{align} + The metric is then + \begin{align} + d = + \begin{pmatrix} + 0 & a(1)-a(2) & a(1) \\ + a(2)-a(1) & 0 & a(2) \\ + -a(1) & -a(2) & 0 + \end{pmatrix} \end{align} \end{MyExercise} @@ -234,6 +254,10 @@ holds. For $i = k$ then $d_{ik} = 0$ and equality holds. Else set $d_{ik} = What does the author mean when he sais 'acts faithfully on a Hilbertspace`? Then the representation is fully reducible, or that the presentation is irreducible? + \newline + + For a *-representation 'faithful` if it is injective. For a + *-homomorphism 'faithful` means one-to-one correspondance \end{question} \begin{example} @@ -243,14 +267,18 @@ holds. For $i = k$ then $d_{ik} = 0$ and equality holds. Else set $d_{ik} = \end{example} $D$ is referred to as a finite Dirac operator as in as its $\infty$ -dimensional on Riemannian Spin manifolds coming in Chapter 4. Now we -introduce it as +dimensional on Riemannian Spin manifolds coming in Chapter 4. +\newline + +Now can introduce a 'differential 'geometric structure` on the finite space X +with the \textbf{devided difference} \begin{equation} \frac{a(i)-a(j)}{d_{ij}} \end{equation} -for each pair $i$, $j$ $\in X$ the finite dimensional discrete space. +for each pair $i$, $j$ $\in X$ the finite dimensional discrete space $X$. This appears in the entries in the commutator $[D, a]$ in the above exercises. + \begin{definition} Given an finite spectral triple $(A, H, D)$, the $A$-bimodule of Connes' differential one form is: @@ -293,7 +321,7 @@ Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$. Verify that $\Omega _D^1 (A)$ is an $A$-bimodule by rewriting } \begin{align*} - a(a_k[D, b_k]b = \sum_k a'_k[D, b'_k] \;\;\;\; a'_k, b'_k \in A + a(a_k[D, b_k])b = \sum_k a'_k[D, b'_k] \;\;\;\; a'_k, b'_k \in A \end{align*} \newline @@ -493,10 +521,10 @@ With the information thus far we can prove the following theorem &-(\nabla'(e)a + e\otimes[D',a])\\ &=\bar{\nabla}a + e\otimes(Da-aD-D'a+aD')\\ &=\bar{\nabla}a + e\otimes((D-D')a-a(D-D'))\\ - &=\bar{\nabla}a + e\otimes[\prime{D}, a]\\ + &=\bar{\nabla}a + e\otimes[D', a]\\ &=\bar{\nabla}(ea) \end{align*} - For some $\bar{\nabla}=\nabla-\nabla'$. + Therefore $\nabla-\nabla'$ is a linear map. \end{MyExercise} \begin{MyExercise} @@ -519,9 +547,17 @@ With the information thus far we can prove the following theorem $\nabla = d + \omega$ \end{enumerate} } - - I did some notes on this one, but they are not really correct. I'll try - it again next session. + \begin{enumerate} + \item $\nabla(e \cdot a) = d(a)$ + \item + $D'(a\xi) = a(D\xi) + (\nabla a) \xi = D(a\xi)$ + \item Use the identity element $e \in A$\\ + $\nabla (e\cdot a) = \nabla(e) a + 1 \otimes d(a)=d(a) + \nabla(e) a$ + \item $D'(a\otimes \xi) = D'(a \xi) = a(D\xi) + (\nabla a)\xi = + a(D\xi) + \nabla(e \cdot a) \xi \\ + = D(a\xi) + \nabla(e) (a\xi)$ + \end{enumerate} \end{MyExercise} \subsection{Graphing Finite Spectral Triples}