ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 6c1434b922b99f7b363042a50c7da249f4e1ce52
parent 6c74872af07f02ef9d8c0882959368d8b3d2661c
Author: miksa234 <milutin@popovic.xyz>
Date:   Tue, 27 Jul 2021 15:57:40 +0200

checkpoint

Diffstat:
Dsrc/thesis/12 | 49-------------------------------------------------
Msrc/thesis/chapters/basics.tex | 1-
Msrc/thesis/chapters/finitencg.tex | 279+++++++++++++++++++++++++++++++++++--------------------------------------------
Msrc/thesis/chapters/realncg.tex | 616+++++++++++++++++++++++++++++++++++++------------------------------------------
Msrc/thesis/main.pdf | 0
Msrc/thesis/main.tex | 14+++++++-------
6 files changed, 419 insertions(+), 540 deletions(-)

diff --git a/src/thesis/12 b/src/thesis/12 @@ -1,49 +0,0 @@ -\documentclass[12pt]{article} - -%-------------------- BACKHAND --------------------- - -\input{back/packages} - -\begin{document} - -\input{back/title} - -\newpage - -\tableofcontents - -\newpage - -\input{back/abstract} - -%------------------- INTRO ------------------------- - -\input{chapters/intro} - -%----------------- MAIN SECTION -------------------- - -\input{chapters/main_sec} - -%\input{chapters/basics} - -\input{chapters/finitencg} - -%\input{chapters/realncg} - -%\input{chapters/heatkernel} -% -%\input{chapters/twopointspace} -% -%\input{chapters/electroncg} - -%------------------ OUTRO ------------------------- - -\input{chapters/conclusion} - -\input{chapters/acknowledgment} - -%------------------- BACKHAND --------------------- - -\input{back/refs} - -\end{document} diff --git a/src/thesis/chapters/basics.tex b/src/thesis/chapters/basics.tex @@ -400,7 +400,6 @@ which is satisfied by $\phi = \text{id}_A$ that $A$ or $B$ is a bimodule by itself. \end{definition} -\end{align} The modules $E$ and $F$ are each others inverse in regards to the Kasparov Product, because we land in the same space as we started. To clarify, in the definition we have $E \in KK_f(A, B)$. We start from $A$ and $E \otimes diff --git a/src/thesis/chapters/finitencg.tex b/src/thesis/chapters/finitencg.tex @@ -1,4 +1,4 @@ - +\subsection{Finite Spectral Triples} \subsubsection{Metric on Finite Discrete Spaces} Let us come back to our finite discrete space $X$, we can describe it by a structure space $\hat{A}$ of a matrix algebra $A$. To describe distance between @@ -45,13 +45,13 @@ metric on $X$ in terms of algebraic data. (d_{21})^{-1} & 0 \end{pmatrix} \end{align} - Then we commpute the commutator + Then we compute the commutator \begin{align} \big|\big|[D, \pi(a)]\big|\big| = (d_{12})^{-1} \big| a(1) - a(2)\big| \end{align} For the case $A=\mathbb{C}^3$, we have $H = (\mathbb{C}^2)^{\oplus 3} = H_2 - \oplus H_2^1 \oplus H_2^2$. The the representation $\pi (a)$ reads + \oplus H_2^1 \oplus H_2^2$. The representation $\pi (a)$ reads \begin{align} \pi((a(1), a(2), a(3)) &= \begin{pmatrix} @@ -214,13 +214,13 @@ mathematical structure which encodes finite discrete geometry into algebraic dat \begin{proof} The wording 'acting faithfully on a Hilbertspace' means that the $*$-representation is injective, or for a $*$-homomorphism that means - one-to-one correspondance. And since $A$ acts faithfully on a Hilbert + one-to-one correspondence. And since $A$ acts faithfully on a Hilbert space, this means that $A$ is a $*$ subalgebra of a matrix algebra $L(H) = M_{\dim (H)}(\mathbb{C}$. Hence it follows, that $A$ is isomorphic to a matrix algebra. \end{proof} -A simple ilustration would be for an algebra $A = M_n(\mathbb{C})$ and +A simple illustration would be for an algebra $A = M_n(\mathbb{C})$ and $H=\mathbb{C}^n$. Since $A$ acts on $H$ with matrix multiplication and standard inner product and $D$ on $H$ is a hermitian matrix $n\times n$ matrix. @@ -233,15 +233,15 @@ inner product and $D$ on $H$ is a hermitian matrix $n\times n$ matrix. \end{align} \end{definition} Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$. Where -$d$ is a derivation of the $*$-algebra in the sence that +$d$ is a derivation of the $*$-algebra in the sense that \begin{align} - d(ab) = d(a)b + ad(b), \\ + d(a\ b) = d(a)b + ad(b), \\ d(a^*) = -d(a)^*. \end{align} Since we have $d(\cdot) = [D, \cdot]$, we can easily check the above equations \begin{align} d(a\ b) &= [D, a\ b] = [D, a]b + a[D,b]\nonumber\\ - &= d(a)\ b + a\ d(b) + &= d(a)\ b + a\ d(b). \end{align} And \begin{align} @@ -250,7 +250,7 @@ And &= -d(a)^*. \end{align} Furthermore $\Omega _D^1 (A)$ is an $A$-bimodule, which can be seen by -rewriting the definition \eqref{eq:connesoneforms} into +rewriting the defining equation \eqref{eq:connesoneforms} into \begin{align} a\ (a_k[D, b_k])\ b &= a\ a_k(D\ b_k - b_k\ D)\ b = \nonumber\\ &= a\ a_k(D\ b_k\ b - b_k\ D\ b)=\nonumber\\ @@ -300,116 +300,94 @@ rewriting the definition \eqref{eq:connesoneforms} into \ \subsubsection{Morphisms Between Finite Spectral Triples} +Next we will define an equivalence relation between finite spectral triples, called +spectral unitary equivalence, which is given by the unitarity of the +two matrix algebras themselves, and an additional map $U$ which allows us to associate a +one operator to another second operator. \begin{definition} Two finite spectral tripes $(A_1, H_1, D_1)$ and $(A_2, H_2, D_2)$ are - called unitarily equivalent if - \begin{itemize} - \item $A_1 = A_2$ - \item $\exists \;\; U: H_1 \rightarrow H_2$, unitary with - \begin{enumerate} - \item $U\pi_1(a)U^* = \pi_2(a)$ with $a \in A_1$ - \item $UD_1 U^* = D_2$ - \end{enumerate} - \end{itemize} + called unitary equivalent if $A_1 = A_2$ and there exists a map $U:\ H_1 + \rightarrow H_2$ that satisfies + \begin{align} + U\ \pi_1(a)\ U^* &= \pi_2(a)\;\;\;\; \text{with} \;\;\; a \in A_1,\\ + U\ D_1\ U^* &= D_2. + \end{align} \end{definition} +Notice that for any such $U$ we have the relation $(A, H, D) \sim (A, H, UDU^*)$. +And hence $U\ D\ U^* = D + U[D, U^*]$ are of the form of elements in $\Omega _D^1 (A)$. -Some remarks -\begin{itemize} - \item the above is an equivalence relation - \item spectral unitary equivalence is given by the unitaries of the - matrix algebra itself - \item for any such $U$ then $(A, H, D) \sim (A, H, UDU^*)$ - \item $UDU^* = D + U[D, U^*]$ of the form of elements in - $\Omega _D^1 (A)$. -\end{itemize} - -%\begin{MyExercise} -% \textbf{ -% Show that the unitary equivalence between finite spectral -% triples is a equivalence relation -%}\newline -% -% An equivalence relation needs to satisfy reflexivity, symmetry -% transitivity. -% Let $(A_1, H_1, D_1)$, $(A_2, H_2, D_2)$ and $(A_3, H_3, D_3)$ -% be three finite spectral triples. -% \newline -% -% For reflexivity $(A_1, H_1, D_1) \sim (A_1, H_1, D_1)$. So there -% exists a $U: H_1 \rightarrow H_1$ unitary, which is the identity -% and always exists. -% \newline -% -% For symmetry we need -% \begin{align} -% (A_1, H_1, D_1) \sim (A_2, H_2, D_2) \Leftrightarrow -% (A_2, H_2, D_2) \sim (A_1, H_1, D_1) -% \end{align} -% because $U$ is unitary: -% \begin{align} -% &U\pi_1(a)U^* = \pi_2(a) \;\;\; | \cdot U^*\boxdot U \\ -% &U^*U\pi_1(a)U^*U = \pi_1(a) = U^*\pi_2(a)U \\ -% \end{align} -% The same with the symmetric operator $D$. -% \newline -% -% For transitivity we need -% \begin{align} -% (A_1, H_1, D_1) &\sim (A_2, H_2, D_2) \;\;\; \text{and} \;\;\; -% (A_2, H_2, D_2) \sim (A_3, H_3, D_3) \\ -% &\Rightarrow (A_1, H_1, D_1) \sim (A_3, H_3, D_3) -% \end{align} -% There are two unitary maps $U_{12}:H_1 \rightarrow H_2$ and -% $U_{23}: H_2 \rightarrow H_3$ then -% \begin{align} -% U_{23}U_{12} \pi_1(a) U^*_{12}U^*_{23} &= U_{23} -% \pi_2(a) U_23^* \\ -% &= \pi_3(a) \\ -% U_{23}U_{12} D_1U^*_{12}U^*_{23} &= U_{23} -% D_2 U_23^* \\ -% &= D_3 -% \end{align} -%\end{MyExercise} - -Extending the this relation we look again at the notion of equivalence from -Morita equivalence of Matrix Algebras. -\newline +%-------------- EXERCISE +To make it clear that the above definition is an equivalence relation between +finite spectral triples, we need to see if the relation satisfies +reflexivity, symmetry and transitivity. Let us look then at three spectral +triples $(A_1, H_1, D_1)$, $(A_2, H_2, D_2)$ and $(A_3, H_3, D_3)$. +For reflexivity $(A_1, H_1, D_1) \sim (A_1, H_1, D_1)$. So there +exists the unitary map $U: H_1 \rightarrow H_1$, which is the identity +and always exists. On the other hand the symmetry condition requires +\begin{align} + (A_1, H_1, D_1) \sim (A_2, H_2, D_2) \Leftrightarrow + (A_2, H_2, D_2) \sim (A_1, H_1, D_1). +\end{align} +Because $U$ is unitary we can rewrite for the representation for $A_1$ +\begin{align} + &U\pi_1(a)U^* = \pi_2(a) \;\;\; | \cdot U^*\boxdot U\nonumber \\ + &U^*U\pi_1(a)U^*U = \pi_1(a) = U^*\pi_2(a)U. +\end{align} +The same relation applies for the symmetric operator $D$. +Lastly for transitivity the condition is +\begin{align} + (A_1, H_1, D_1) &\sim (A_2, H_2, D_2) \;\;\; \text{and} \;\;\; + (A_2, H_2, D_2) \sim (A_3, H_3, D_3) \nonumber\\ + &\Rightarrow (A_1, H_1, D_1) \sim (A_3, H_3, D_3). +\end{align} +Therefore the two unitary maps $U_{12}:H_1 \rightarrow H_2$ and +$U_{23}: H_2 \rightarrow H_3$ are +\begin{align} + U_{23}\ U_{12}\ \pi_1(a)\ U^*_{12}\ U^*_{23} &= U_{23}\ + \pi_2(a)\ U_{23}^*\nonumber \\ + &= \pi_3(a), \\ + U_{23}\ U_{12}\ D_1\ U^*_{12}\ U^*_{23} &= U_{23}\ + D_2 U_{23}^* \nonumber\\ + &= D_3. +\end{align} +%-------------- EXERCISE +In order to extend this relation we take a look at Morita equivalence of Matrix Algebras. \begin{definition} Let $A$ be an algebra. We say that $I \subset A$, as a vector space, is a - right(left) ideal if $ab \in I$ for $a \in A$ and $b\in I$ (or $ba \in + right(left) ideal if $a\ b \in I$ for $a \in A$ and $b\in I$ (or $b\ a \in I$, $b\in I$, $a\in A$). We call a left-right ideal simply an ideal. \end{definition} Given a Hilbert bimodule $E \in KK_f(B, A)$ and $(A, H, D)$ we construct a finite spectral triple on $B$, $(B, H', D')$ \begin{equation} - H' = E \otimes _A H + H' = E \otimes _A H. \end{equation} We might define $D'$ with $D'(e \otimes \xi) = e\otimes D\xi$, thought this would not satisfy the ideal defining the balanced tensor product over $A$, which is generated by elements of the form \begin{align} - e a \otimes \xi - e\otimes a \xi ;\;\;\;\; e\in E, a\in A, \xi \in H + e\ a \otimes \xi - e\otimes a\ \xi, \;\;\;\;\; e\in E, a\in A, \xi \in H. \end{align} This inherits the left action on $B$ from $E$ and has a $\mathbb{C}$ -valued inner product space. $B$ also satisfies the ideal. +valued inner product space. $B$ also satisfies the ideal \begin{equation} - D'(e\otimes \xi) = e \otimes D \xi + \nabla (e) \xi \;\;\;\; e\in - E, a\in A + D'(e\otimes \xi) = e \otimes D\ \xi + \nabla (e)\ \xi, \;\;\;\; e\in + E, a\in A, \end{equation} -Where $\nabla$ is called the \textit{connection on the right A-module E} -associated with the derivation $d=[D, \cdot]$ and satisfying the -\textit{Leibnitz Rule} which is +where $\nabla$ is called the \textit{connection on the right A-module E} +associated with the derivation $d=[D, \cdot]$. The connection needs to +satisfy the \textit{Leibnitz Rule} \begin{equation} - \nabla(ae) = \nabla(e)a + e \otimes [D, a] \;\;\;\;\; e\in E,\; a\in A + \nabla(ae) = \nabla(e)a + e \otimes [D, a], \;\;\;\;\; e\in E,\; a\in A. \end{equation} -Then $D'$ is well defined on $E \otimes _A H$: +Hence $D'$ is well defined on $E \otimes _A H$ \begin{align} - D'(ea \otimes \xi - e \otimes a \xi) &= D'(ea \otimes \xi) - D'(e - \otimes \xi) \\ - &= ea\otimes D\xi + \nabla(ae) \xi - e \otimes D(a\xi ) - \nabla (e)a - \xi \\ + D'(e\ a \otimes \xi - e \otimes a\ \xi) &= D'(e\ a \otimes \xi) - D'(e + \otimes \xi) \nonumber\\ + &= e\ a\otimes D\ \xi + \nabla(a\ e)\ \xi - e \otimes D(a\ \xi) - \nabla + (e)\ a\ \xi \nonumber\\ &= 0. \end{align} With the information thus far we can prove the following theorem @@ -423,75 +401,68 @@ With the information thus far we can prove the following theorem \end{equation} \end{theorem} \begin{proof} - $E\otimes _A H$ was shown in the previous subsection (text before the - theorem). The only thing left is to show that $D'$ is a symmetric + $E\otimes _A H$ was previously. The only thing left is to show that $D'$ is a symmetric operator, this we can just compute. Let $e_1, e_2 \in E$ and $\xi _1, \xi _2 \in H$ then \begin{align} \langle e_1 \otimes \xi _1, D'(e_2 \otimes \xi_2)\rangle _{E\otimes _A H} &= - \langle \xi _1, \langle e_1, \nabla e_2\rangle _E \xi _2\rangle + \langle \xi _1 , \langle e_1, e_2\rangle _E D\xi - _2\rangle _H \\ - &= \langle \xi _1, \langle \nabla e_1, e_2\rangle _E \xi _2\rangle _H + \langle \xi _1, d\langle e_1, e_2\rangle _E - \xi _2\rangle _H \\ - &+ \langle D\xi _1,\langle e_1, e_2\rangle _E \xi _2\rangle _H - \langle \xi _1, [D, \langle e_1, e_2\rangle _E] \xi - _2 \rangle _H \\ + \langle \xi _1, \langle e_1, \nabla e_2\rangle _E\ \xi _2\rangle + \langle \xi _1 , \langle e_1, e_2\rangle _E\ D\ \xi_2\rangle_H \nonumber\\ + &= \langle \xi _1, \langle \nabla e_1, e_2\rangle _E\ \xi _2\rangle _H + \langle \xi _1, d\langle e_1, e_2\rangle _E + \ \xi _2\rangle _H \nonumber\\ + &+ \langle D\ \xi _1,\langle e_1, e_2\rangle _E\ \xi _2\rangle _H - + \langle \xi _1, [D, \langle e_1, e_2\rangle _E]\ \xi + _2 \rangle _H \nonumber\\ &= \langle D'(e_1 \otimes \xi _1), e_2 \otimes \xi _2\rangle _{E \otimes _A H} \end{align} \end{proof} -%\begin{MyExercise} -% \textbf{ -% Let $\nabla$ and $\nabla'$ be two connections on a right $A$-module -% $E$. Show that $\nabla - \nabla'$ is a right $A$-linear map -% $E \rightarrow E\otimes _A \Omega _D^1(A)$ -%}\newline -% -% Both $\nabla$ and $\nabla'$ need to satisfy the Leiblitz rule, so -% let's see if $\nabla - \nabla'$ does. -% -% \begin{align} -% \nabla(ea)-\nabla'(ea)&=\nabla(e) + e\otimes[D, a]\\ -% &-(\nabla'(e)a + e\otimes[D',a])\\ -% &=\bar{\nabla}a + e\otimes(Da-aD-D'a+aD')\\ -% &=\bar{\nabla}a + e\otimes((D-D')a-a(D-D'))\\ -% &=\bar{\nabla}a + e\otimes[D', a]\\ -% &=\bar{\nabla}(ea) -% \end{align} -% Therefore $\nabla-\nabla'$ is a linear map. -%\end{MyExercise} +Let us examin what happens if we look at difference of connectoins $\nabla$ and +$\nabla'$ on a right $A$-module $E$. Since both connections need to satisfy +the Leiblitz rule, the difference should also + \begin{align} + \nabla(ea)-\nabla'(ea)&=\nabla(e) + e\otimes[D, a]\nonumber\\ + &-(\nabla'(e)a + e\otimes[D',a])\nonumber\\ + &=\bar{\nabla}a + e\otimes(Da-aD-D'a+aD')\nonumber\\ + &=\bar{\nabla}a + e\otimes((D-D')a-a(D-D'))\nonumber\\ + &=\bar{\nabla}a + e\otimes[D', a]\nonumber\\ + &=\bar{\nabla}(ea). + \end{align} +Therefore $\nabla-\nabla'$ is a right $A$-linear map +$E \rightarrow E\otimes _A \Omega _D^1(A)$. -%\begin{MyExercise} -% \textbf{ -% Construct a finite spectral triple $(A, H', D')$ from $(A, H, D)$ -% \begin{enumerate} -% \item show that the derivation $d(\cdot):A \rightarrow A\otimes _A -% \Omega_D^1(A)=\Omega_D^1(A)$ is a connection on $A$ -% considered a right $A$-module -% \item Upon identifying $A\otimes_A H\simeq H$, what is $D'$ -% when the connection is $d(\cdot)$. -% \item Use 1) and 2) to show that any connection $\nabla: -% A\rightarrow A\otimes_A \Omega_D^1(A)$ is given by -% \begin{align} -% \nabla = d + \omega -% \end{align} -% where $\omega \in \Omega_D^1(A)$ -% \item Upon identifying $A\otimes_A H \simeq H$, what is the -% difference operator $D'$ with the connection on $A$ given by -% $\nabla = d + \omega$ -% \end{enumerate} -%} -% \begin{enumerate} -% \item $\nabla(e \cdot a) = d(a)$ -% \item -% $D'(a\xi) = a(D\xi) + (\nabla a) \xi = D(a\xi)$ -% \item Use the identity element $e \in A$\\ -% $\nabla (e\cdot a) = \nabla(e) a + 1 \otimes d(a)=d(a) -% \nabla(e) a$ -% \item $D'(a\otimes \xi) = D'(a \xi) = a(D\xi) + (\nabla a)\xi = -% a(D\xi) + \nabla(e \cdot a) \xi \\ -% = D(a\xi) + \nabla(e) (a\xi)$ -% \end{enumerate} -%\end{MyExercise} +To get a better grasp of the results let us construct a finite spectral +triple $(A, H', D')$ from $(A, H, D)$. The derivation $d(\cdot):A \rightarrow +A\otimes _A \Omega_D^1(A)=\Omega_D^1(A)$ is a connection on $A$ considered a +right $A$-module +\begin{align} + \nabla(e \cdot a) = d(a), +\end{align} +hence $A\otimes_A H\simeq H$. Next we can construct the operator $D'$ +for the connection $d(\cdot)$, +\begin{align} + D'(a\xi) = a(D\xi) + (\nabla a) \xi = D(a\xi). +\end{align} +By using the identity element in the connection relation +\begin{align} + \nabla (e\cdot a) = \nabla(e) a + 1 \otimes d(a)=d(a) \nabla(e) a, +\end{align} +we see that any connection $\nabla: A\rightarrow A\otimes_A \Omega_D^1(A)$ is +given by +\begin{align} + \nabla = d + \omega, +\end{align} +where $\omega \in \Omega_D^1(A)$. Ultimately the the +difference operator $D'$ with the connection on $A$ is given by +\begin{align} + D'(a\otimes \xi) &= D'(a \xi) = a(D\xi) + (\nabla a)\xi \nonumber \\ + &=a(D\xi) + \nabla(e \cdot a) \xi \nonumber\\ + &= D(a\xi) + \nabla(e) (a\xi). +\end{align} +So any such connection is of the form +\begin{align} + \nabla = d + \omega. +\end{align} %\subsubsection{Graphing Finite Spectral Triples} %\begin{definition} diff --git a/src/thesis/chapters/realncg.tex b/src/thesis/chapters/realncg.tex @@ -1,329 +1,287 @@ -%\subsection{Finite Real Noncommutative Spaces} -%\subsubsection{Finite Real Spectral Triples} -%Add on to finite real spectral triples a \textit{real structure}. The -%requirement is that $H$ is a $A$-$A$-bimodule (before only a $A$-left -%module). -%\newline -% -%For this we introduce a $\mathbb{Z}_2$-grading $\gamma$ with -%\begin{align} -% &\gamma ^* = \gamma \\ -% &\gamma ^2 = 1 \\ -% &\gamma D = - D \gamma\\ -% &\gamma a = a \gamma \;\;\;\; a\in A -%\end{align} -% -%\begin{definition} -% A \textit{finite real spectral triple} is given by a finite spectral -% triple $(A, H, D)$ and a anti-unitary operator $J:H\rightarrow H$ called -% the \textit{real structure}, such that -% \begin{align} -% a^\circ := J a^* J^{-1} -% \end{align} -% is a right representation of $A$ on $H$, that is $(ab)^\circ = b^\circ -% a^\circ$. With two requirements -% \begin{align} -% &[a, b^\circ] = 0\\ -% &[[D, a],b^\circ] = 0. -% \end{align} -% They are called the \textit{commutant property}, and mean that the left -% action of an element in $A$ and $\Omega _D^1(A)$ commutes with the right -% action on $A$. -%\end{definition} -%\begin{definition} -% The $KO$-dimension of a real spectral triple is determined by the sings -% $\epsilon, \epsilon ' ,\epsilon '' \in \{-1, 1\}$ appearing in -% \begin{align} -% &J^2 = \epsilon \\ -% &JD = \epsilon \ DJ\\ -% &J\gamma = \epsilon '' \gamma J. -% \end{align} -%\end{definition} -%\begin{table}[h!] -% \centering -% \caption{$KO$-dimension $k$ modulo $8$ of a real spectral triple} -% \begin{tabular}{ c | c c c c c c c c} -% \hline -% $k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ -% \hline -% $\epsilon$ & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ -% $\epsilon '$ & 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\ -% $\epsilon ''$ & 1 & & -1 & & 1 & & -1 & \\ -% \hline -% \end{tabular} -%\end{table} -% -% -%\begin{definition} -%An opposite-algebra $A^\circ$ of a $A$ is defined to be equal to $A$ as a -%vector space with the opposite product -%\begin{align} -% &a\circ b := ba\\ -% &\Rightarrow a^\circ = Ja^* J^{-1} \;\;\; \text{defines the left -% representation of $A^\circ$ on $H$} -%\end{align} -%\end{definition} -% -% -%\begin{example} -% Matrix algebra $M_N(\mathbb{C})$ acting on $H=M_N(\mathbb{C})$ by left -% matrix multiplication with the Hilbert Schmidt inner product. -% \begin{align} -% \langle a , b \rangle = \text{Tr}(a^* b) -% \end{align} -% Then we define $\gamma (a) = a$ and $J(a) = a^*$ with $a\in H$. -% Since $D$ mus be odd with respect to $\gamma$ it vanishes identically. -%\end{example} -% -%\begin{definition} -% We call $\xi \in H$ \textbf{cyclic vector} in $A$ if: -% \begin{align} -% A\xi := { a\xi:\;\; a\in A} = H -% \end{align} -% -% We call $\xi \in H$ \textbf{separating vector} in $A$ if: -% \begin{align} -% a\xi = 0\;\; \Rightarrow \;\; a=0;\;\;\; a\in A -% \end{align} -%\end{definition} -% -%%\begin{MyExercise} -%% \textbf{ -%% In the previous example, show that the right action on $M_N(\mathbb{C})$ -%% on $H = M_N(\mathbb{C})$ as defined by $a \mapsto a^\circ$ -%% is given by right matrix multiplication. -%%}\newline -%% -%% \begin{align} -%% a^\circ \xi = J a^* J^{-1}\xi = Ja^* \xi^* = J\xi a=\xi^* a -%% \end{align} -%%\end{MyExercise} -%%\begin{MyExercise} -%% \textbf{ -%% Let $A= \bigoplus _i M_{n_i}(\mathbb{C})$, represented on $H = \bigoplus_i \mathbb{C}^{n_i} -%% \otimes \mathbb{C}^{m_i}$, meaning that the irreducible representation $\textbf{n}_i$ has -%% multiplicity $m_i$. -%% \begin{enumerate} -%% \item Show that the commutant $A'$ of $A$ is $A'\simeq \bigoplus_i M_{m_i} (\mathbb{C})$. As a consequence show $A'' \simeq A$. -%% \item Show that if $\xi$ is a separating vector for $A$ than it is cyclic for $A'$. -%% \end{enumerate} -%% } -%% -%% -%% \begin{enumerate} -%% \item We know the multiplicity space is $V_i = \mathbb{C}^{m_i}$. We know that -%% for $T\in H$ and -%% $a\in A'$ to work we need $aT=Ta$ by laws of matrix multiplication we need -%% $A' \simeq \oplus _i M_{m_i}(\mathbb{C})$ for this to work since $H = \bigoplus_i -%% \mathbb{C}^{n_i} -%% \otimes \mathbb{C}^{m_i}$ -%% -%% \item Suppose $\xi$ is cyclic for $A$ then $A'\xi = \{0\}$. Under the action of $A$ we -%% then have $A'A\xi = AA' \xi = 0 \Rightarrow A' = 0$.\\ -%% Suppose now $\xi$ is separating for $A'$, we have $A'\xi = \{0\}$. We can define a -%% projection in $A'$, $A\xi = P'$. With this projection we have $(1-P')\xi = 0 -%% \Rightarrow 1-P' = 0 \Rightarrow A\xi = H$. -%% \end{enumerate} -%%\end{MyExercise} -%%\begin{MyExercise} -%% \textbf{ Suppose $(A, H, D = 0)$ is a finite spectral triple such that $H$ possesses a -%% cyclic and separating vector for $A$. -%% \begin{enumerate} -%% \item Show that the formula $S(a \xi) = a* \xi$ defines a anti-linear operator\\ -%% $S: H \rightarrow H$. -%% \item Show that $S$ is invertible -%% \item Let $J: H \rightarrow H$ be the operator in $S = J \Delta ^{1/2}$ with -%% $\Delta = S^*S$. Show that $J$ is anti-unitary -%% \end{enumerate} -%% } -%% -%% -%% \begin{enumerate} -%% \item By composition $S(a\xi) = a*\xi$ this is literally anti-linearity. Does this mean -%% $S\xi = \xi$? -%% \item Let $\xi \in H$ be cyclic then: $S(A\xi) = A^*\xi = A\xi = H$. The same has to work -%% for $S^{-1}$ if not then $\xi$ wouldn't exist. $S^{-1}(A^*\xi) = S^{-1}(H) = H$. -%% \item Since $S$ is bijective then $\Delta ^{1/2}$ and $J$ need to be bijective. -%% We also have $J = S \Delta^{-1/2}$ and $\Delta^* = \Delta$\\ -%% Now let $\xi _1 , \xi _2 \in H$ \begin{align} -%% <J \xi _1 , J \xi _2 > &= < J^*J\xi_1 , \xi_2>^* =\\ -%% &= <(\Delta ^{-1/2})^* S^* S \Delta ^{-1/2} \xi_1, \xi_2>^* = \\ -%% &= <(\Delta^{-1/2})^* \Delta \Delta^{-1/2} \xi_1, \xi_2>^* =\\ -%% &= <\Delta^{-1/2} \Delta^{1/2}\Delta^{1/2} \Delta^{-1/2} \xi_1, \xi_2>^* =\\ -%% &= <\xi _1, \xi_2>^* = <\xi_2 , \xi_1>. -%% \end{align} -%% \end{enumerate} -%%\end{MyExercise} -%\subsubsection{Morphisms Between Finite Real Spectral Triples} -%Extend unitary equivalence of finite spectral triples to real ones (with $J$ -%and $\gamma$) -% -%\begin{definition} -% We call two finite real spectral triples $(A_1, H_1 ,D_1 ; J_1 , \gamma -% _1)$ and $(A_2, H_2, D_2; J_2, \gamma _2)$ unitarily equivalent if $A_1 = -% A_2$ and if there exists a unitary operator $U: H_1 \rightarrow H_2$ such -% that -% \begin{align} -% &U\pi_1(a) U^* = \pi _2(a)\\ -% &UD_1U^*=D_2\\ -% &U\gamma _1 U^* = \gamma _2\\ -% &UJ_1 U^* = J_2 -% \end{align} -%\end{definition} -%\begin{definition} -% Let $E$ be a $B$-$A$ bimodule. The \textit{conjugate Module} $E^\circ$ is -% given by the $A$-$B$-bimodule. -% \begin{align} -% E^\circ = \{\bar{e} : e\in E\} -% \end{align} -% with -% \begin{align} -% a \cdot \bar{e} \cdot b = b^* \bar{e} a^* \;\;\;\; \forall a\in A, b \in -% B -% \end{align} -%\end{definition} -%$E^\circ$ is not a Hilbert bimodule for $(A, B)$ because it doesn't have a -%natural $B$-valued inner product. But there is a $A$-valued inner product on -%the left $A$-module $E^\circ$ with -%\begin{align} -% \langle \bar{e}_1, \bar{e}_2 \rangle = \langle e_2 , e_1 \rangle -% \;\;\;\; e_1, e_2 \in E -%\end{align} -%and linearity in $A$: -%\begin{align} -% \langle a \bar{e}_1, \bar{e}_2 \rangle = a \langle \bar{e}_1, \bar{e}_2 -% \rangle \;\;\;\; \forall a \in A. -%\end{align} -% -%%\begin{MyExercise} -%% \textbf{Show that $E^\circ$ is a Hilbert bimodule $(B^{\circ}, A^{\circ})$ -%% }\newline -%% -%% -%% Straightforward show properties of the Hilbert bimodule and its $B^{\circ}$ -%% valued inner product. Let $\bar{e}_1, \bar{e}_2 \in E^{\circ}$ and $a^\circ \in A, -%% b^\circ \in B$. \\ -%% \begin{align} -%% <\bar{e}_1, a^\circ \bar{e}_2> &= <\bar{e}_1, Ja^*J^{-1} \bar{e}_2>=\\ -%% &= <\bar{e}_1 , J a^* e_2> = \\ -%% &= <J^{-1} e_1, a^* e_2> =\\ -%% & = <a^* e_1, e_2>= <J^{-1}(a^\circ)^* J e_1, e_2> = \\ -%% & = <J^{-1} (a^\circ)^* \bar{e}_1, e_2> =\\ -%% & = <(a^\circ)^* \bar{e}_1 , \bar{e}_2>. -%% \end{align} -%% -%% Next $<\bar{e}_1, \bar{e}_2 b^\circ> = <\bar{e}_1, \bar{e_2}> b^\circ$. -%% \begin{align} -%% <\bar{e}_1, \bar{e}_2 b^\circ> &= <\bar{e}_1, \bar{e}_2 Jb^*J^{-1}> =\\ -%% &= <\bar{e}_1, \bar{e_2}> Jb^*J^{-1} = \\ -%% &= <\bar{e}_1, \bar{e}_2> b^\circ. -%% \end{align} -%% Then: -%% \begin{align} -%% (<\bar{e}_1, \bar{e}_2)>_{E^\circ})^* &= (<e_2, e_1>_E)^* =\\ -%% &= <e_1, e_2>_E^* = <\bar{e}_2, \bar{e}_2>_{E^\circ} -%% \end{align} -%% And of course $<\bar{e}, \bar{e}> = <e, e> \geq 0$ -%%\end{MyExercise} -% -%\subsubsection{Construction of a Finite Real Spectral Triple from a Finite -%Real Spectral Triple} -%Given a Hilbert bimodule $E$ for $(B, A)$ we construct a spectral triple -%$(B, H', D'; J', \gamma ')$ from $(A, H, D; J, \gamma)$ -% -%For the $H'$ we make a $\mathbb{C}$-valued inner product on $H'$ by combining -%the $A$ valued inner product on $E$ and $E^\circ$ with the -%$\mathbb{C}$-valued inner product on $H$. -%\begin{align} -% H' := E\otimes _A H \otimes _A E^\circ -%\end{align} -% -%Then the action of $B$ on $H'$ is: -%\begin{align} -% b(e_2 \otimes \xi \otimes \bar{e}_2 ) = (be_1) \otimes \xi \otimes -% \bar{e}_2 -%\end{align} -%The right action of $B$ on $H'$ defined by action on the right component -%$E^\circ$ -%\begin{align} -% J'(e_1 \otimes \xi \otimes \bar{e}_2) = e_2 \otimes J \xi \otimes -% \bar{e}_1 -%\end{align} -%with $b^\circ = J' b^* (J')^{-1}$, $b^* \in B$ action on $H'$. -%\newline -% -% -%\newpage -%%\begin{MyExercise} -%% \textbf{ Let $\nabla : E \Rightarrow E \otimes _A \Omega _d^1 (A)$ be a right connection on $E$ -%% consider the following anti-linear map: -%% \begin{align} -%% \tau : E \otimes_A \Omega _D^1 (A) &\rightarrow \Omega _D^1 (A) \otimes_A E^\circ\\ -%% e \otimes \omega &\mapsto -\omega ^* \otimes \bar{e} -%% \end{align} -%% Show that the map $\bar{\nabla} : E^\circ \rightarrow \Omega _D^1(A) \otimes E^\circ$ -%% with $\bar{\nabla}(\bar{e}) = \tau \circ \nabla(e)$ is a left connection, that means -%% show that it satisfied the left Leibniz rule: -%% \begin{equation} -%% \bar{\nabla}(a\bar{e}) = [D, a] \otimes \bar{e} + a \bar{\nabla}(\bar{e}) -%% \end{equation} -%% } -%% -%% Hagime: -%% \begin{align} -%% &\text{For one:}\\ -%% &\tau \circ \nabla(ae) = \bar{\nabla}(a\bar{e}) = \bar{\nabla}(a^* \bar{e})\\ -%% &\text{For two:}\\ -%% &\tau \circ \nabla(ae) = \tau(\nabla(e)a) + \tau \circ(e \otimes d(a))=\\ -%% &=a^*\bar{\nabla}(\bar{e}) - d(a)^* \otimes \bar{e}. \\ -%% &= a^*\bar{\nabla}(\bar{e}) + d(a^*) \otimes \bar{e}. -%% \end{align} -%%\end{MyExercise} -%Then the connections -%\begin{align} -% &\nabla: E \rightarrow E\otimes _A \Omega _D ^1(A) \\ -% &\bar{\nabla}:E^\circ \rightarrow \Omega _D^1(A) \otimes _A E^\circ -%\end{align} -%give us the Dirac operator on $H' = E \otimes _A H \otimes _A E^\circ$ -%\begin{align} -% D'(e_1 \otimes \xi \otimes \bar{e}_2) = (\nabla e_1) \xi \otimes -% \bar{e_2}+ e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes -% \xi(\bar{\nabla}\bar{e}_2) -%\end{align} -% -%And the right action of $\omega \in \Omega _D ^1(A)$ on $\xi \in H$ is -%defined by -%\begin{align} -% \xi \mapsto \epsilon' J \omega ^* J^{-1}\xi -%\end{align} -% -%Finally for the grading -%\begin{align} -% \gamma ' = 1 \otimes \gamma \otimes 1 -%\end{align} -% -%\begin{theorem} -% Suppose $(A, H, D; J, \gamma)$ is a finite spectral triple of -% $KO$-dimension $k$, let $\nabla$ be like above satisfying the -% compatibility condition (like with finite spectral triples). -% -% Then $(B, H',D'; J', \gamma')$ is a finite spectral triple of -% $KO$-Dimension $k$. ($H', D', J', \gamma'$ like above) -%\end{theorem} -% -%\begin{proof} -% The only thing left is to check if the $KO$-dimension is preserved, -% for this we check if the $\epsilon$'s are the same. -% \begin{align} -% &(J')^2 = 1 \otimes J^2 \otimes 1 = \epsilon\\ -% &J' \gamma '= \epsilon ''\gamma'J' -% \end{align} -% and for $\epsilon '$ -% \begin{align} -% J'D'(e_1 \otimes \xi \otimes \bar{e}_2)&=J'((\nabla e_1) \xi \otimes -% \bar{e_2} + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau -% \nabla e_2))\\ -% &= \epsilon' D'(e_2 \otimes J\xi \otimes \bar{e}_2)\\ -% &= \epsilon' D'J'(e_1 \otimes \xi \bar{e}_2) -% \end{align} -%\end{proof} +\subsection{Finite Real Noncommutative Spaces} +\subsubsection{Finite Real Spectral Triples} +In this chapter we supplement the finite spectral triples with a \textit{real +structure}. We additionally require a symmetry condition that that $H$ is a +$A$-$A$-bimodule rather than only a $A$-left module. This ansatz has tight +bounds with physical properties such as charge conjugation, which we will +dive in deeper in later chapters. For this we will need to set a basis +of definitions to get an overview. +First we introduce a $\mathbb{Z}_2$-grading $\gamma$ with the following +properties +\begin{align} + \gamma ^* &= \gamma, \\ + \gamma ^2 &= 1, \\ + \gamma D &= - D \gamma,\\ + \gamma a &= a \gamma, \;\;\;\; a\in A. +\end{align} +Then we can define a finite real spectral triple. +\begin{definition} + A \textit{finite real spectral triple} is given by a finite spectral + triple $(A, H, D)$ and a anti-unitary operator $J:H\rightarrow H$ called + the \textit{real structure}, such that + \begin{align} + a^\circ := J\ a^*\ J^{-1}, + \end{align} + is a right representation of $A$ on $H$, that is $(ab)^\circ = b^\circ + a^\circ$. With two requirements + \begin{align} + &[a, b^\circ] = 0,\\ + &[[D, a],\ b^\circ] = 0. + \end{align} + The two properties are called the \textit{commutant property}, they + require that the left action of an element in $A$ and $\Omega _D^1(A)$ commutes with the right + action on $A$. +\end{definition} +\begin{definition} + The $KO$-dimension of a real spectral triple is determined by the sings + $\epsilon, \epsilon ' ,\epsilon '' \in \{-1, 1\}$ appearing in + \begin{align} + J^2 &= \epsilon, \\ + J\ D &= \epsilon \ D\ J,\\ + J\ \gamma &= \epsilon''\ \gamma\ J. + \end{align} +\end{definition} +\begin{table}[h!] + \centering + \caption{$KO$-dimension $k$ modulo $8$ of a real spectral triple} + \begin{tabular}{ c | c c c c c c c c} + \hline + $k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ + \hline + $\epsilon$ & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ + $\epsilon '$ & 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\ + $\epsilon ''$ & 1 & & -1 & & 1 & & -1 & \\ + \hline + \end{tabular} +\end{table} +\noindent +Even thought the KO-dimension of a real spectral triple is important, we will +not be doing in-depth introduction of the KO-dimension, for this we reference +to \cite{ncgwalter}. + +\begin{definition} +An opposite-algebra $A^\circ$ of a $A$ is defined to be equal to $A$ as a +vector space with the opposite product +\begin{align} + &a\circ b := ba\\ + &\Rightarrow a^\circ = Ja^* J^{-1}, +\end{align} +which defines the left representation of $A^\circ$ on $H$ +\end{definition} + + +%------------EXAMPLE EXERCISE +Let us examine an example of a matrix algebra $M_N(\mathbb{C})$ acting on +$H=M_N(\mathbb{C})$ by left matrix multiplication with the Hilbert Schmidt +inner product. +\begin{align} + \langle a , b \rangle = \text{Tr}(a^* b). +\end{align} +We can define $\gamma (a) = a$ and $J(a) = a^*$ with $a\in H$. Since $D$ +must be odd with respect to $\gamma$ it vanishes identically. Furthermore we +know the multiplicity space is $V_i = \mathbb{C}^{m_i}$, and also we know +that for $T\in H$ and$a\in A'$ to work we need $a\ T=T\ a$. Thus by laws of +matrix multiplication we need $A' \simeq \bigoplus _i M_{m_i}(\mathbb{C})$. For +this to work we naturally need $H = \bigoplus_i \mathbb{C}^{n_i} \otimes +\mathbb{C}^{m_i}$. Hence the right action of $M_N(\mathbb{C})$ on $H = +M_N(\mathbb{C})$ as defined by $a \mapsto a^\circ$ is given by right matrix +multiplication +\begin{align} + a^\circ \xi = J a^* J^{-1}\xi = Ja^* \xi^* = J\xi a=\xi^* a +\end{align} + +%------------EXAMPLE EXERCISE + +\begin{definition} + We call $\xi \in H$ \textbf{cyclic vector} in $A$ if: + \begin{align} + A\xi := { a\xi:\;\; a\in A} = H + \end{align} + We call $\xi \in H$ \textbf{separating vector} in $A$ if: + \begin{align} + a\xi = 0\;\; \Rightarrow \;\; a=0;\;\;\; a\in A + \end{align} +\end{definition} +Suppose $(A, H, D = 0)$ is a finite spectral triple such that $H$ possesses a +cyclic and separating vector for $A$ and let $J: H \rightarrow H$ be the +operator in $S = J \Delta ^{1/2}$ with $\Delta = S^*S$ . By composition +$S(a\xi) = a*\xi$ this is literally anti-linearity, then $S(a \xi) = a* \xi$ +defines a anti-linear operator. Furthermore the operator $S$ is invertible +because, if a $\xi \in H$ is cyclic then we have $S(A\xi) = A^*\xi = A\xi = +H$. Vice versa the same has to work for $S^{-1}$, otherwise $\xi$ wouldn't +exist. And hence $S^{-1}(A^*\xi) = S^{-1}(H) = H$. Additionally $J$ is +anti-unitary because firstly, $S$ is bijective thus $\Delta ^{1/2}$ and $J$ need to be bijective. +Also have $J = S \Delta^{-1/2}$ and $\Delta^* = \Delta$, so for a $\xi _1 , +\xi _2 \in H$ we can write +\begin{align} + <J \xi _1 , J \xi _2 > &= < J^*J\xi_1 , \xi_2>^* =\nonumber\\ + &= <(\Delta ^{-1/2})^* S^* S \Delta ^{-1/2} \xi_1, \xi_2>^* =\nonumber \\ + &= <(\Delta^{-1/2})^* \Delta \Delta^{-1/2} \xi_1, \xi_2>^* =\nonumber\\ + &= <\Delta^{-1/2} \Delta^{1/2}\Delta^{1/2} \Delta^{-1/2} \xi_1, \xi_2>^* + =\nonumber\\ + &= <\xi _1, \xi_2>^* = <\xi_2 , \xi_1>, +\end{align} +which concludes the anti-unitarity by definition. +\subsubsection{Morphisms Between Finite Real Spectral Triples} +Like the unitary equivalence relation for finite spectral triples, we can it +to finite real spectral triples. +\begin{definition} + We call two finite real spectral triples $(A_1, H_1 ,D_1 ; J_1 , \gamma + _1)$ and $(A_2, H_2, D_2; J_2, \gamma _2)$ unitarily equivalent if $A_1 = + A_2$ and if there exists a unitary operator $U: H_1 \rightarrow H_2$ such + that + \begin{align} + U\ \pi_1(a)\ U^* &= \pi _2(a),\\ + U\ D_1\ U^* &= D_2,\\ + U \gamma _1\ U^* &= \gamma _2,\\ + U\ J_1\ U^* &= J_2. + \end{align} +\end{definition} +\begin{definition} + Let $E$ be a $B$-$A$ bimodule. The \textit{conjugate Module} $E^\circ$ is + given by the $A$-$B$-bimodule. + \begin{align} + E^\circ = \{\bar{e} : e\in E\}, + \end{align} + with + \begin{align} + a \cdot \bar{e} \cdot b = b^*\ \bar{e}\ a^*, \;\;\;\; \forall a\in A, b \in + B. + \end{align} +\end{definition} +We bear in mind that $E^\circ$ is not a Hilbert bimodule for $(A, B)$ because +it doesn't have a natural $B$-valued inner product. But there is a $A$-valued +inner product on the left $A$-module $E^\circ$ with +\begin{align} + \langle \bar{e}_1, \bar{e}_2 \rangle = \langle e_2 , e_1 \rangle, + \;\;\;\; e_1, e_2 \in E. +\end{align} +And linearity in $A$ by the terms +\begin{align} + \langle a\ \bar{e}_1, \bar{e}_2 \rangle = a \langle \bar{e}_1, \bar{e}_2 + \rangle, \;\;\;\; \forall a \in A. +\end{align} + +%------------- EXERCISE +With this it becomes obvious that $E^\circ$ is a Hilbert bimodule +of $(B^{\circ}, A^{\circ})$. A straightforward calculation of the properties of the Hilbert bimodule and its $B^{\circ}$ +valued inner product gives the results. So for $\bar{e}_1, \bar{e}_2 \in E^{\circ}$ and $a^\circ \in A, +b^\circ \in B$ we write +\begin{align} + \langle\bar{e}_1, a^\circ \bar{e}_2\rangle &= \langle\bar{e}_1, Ja^*J^{-1} + \bar{e}_2\rangle=\nonumber\\ + &= \langle\bar{e}_1 , J a^* e_2\rangle \nonumber \\ + &= \langle J^{-1} e_1, a^* e_2\rangle \nonumber\\ + & = \langle a^* e_1, e_2\rangle= \langle J^{-1}(a^\circ)^* J e_1, e_2\rangle \nonumber\\ + & = \langle J^{-1} (a^\circ)^* \bar{e}_1, e_2\rangle \nonumber\\ + & = \langle (a^\circ)^* \bar{e}_1 , \bar{e}_2\rangle. +\end{align} +Next for $\langle\bar{e}_1, \bar{e}_2 b^\circ\rangle = \langle\bar{e}_1, +\bar{e_2}\rangle b^\circ$ we write +\begin{align} + \langle\bar{e}_1, \bar{e}_2 b^\circ\rangle &= \langle\bar{e}_1, \bar{e}_2 Jb^*J^{-1}\rangle + \nonumber\\ + &= \langle\bar{e}_1, \bar{e_2}\rangle Jb^*J^{-1} \nonumber \\ + &= \langle\bar{e}_1, \bar{e}_2\rangle b^\circ. +\end{align} +Additionally we have +\begin{align} + (\langle\bar{e}_1, \bar{e}_2)\rangle_{E^\circ})^* &= (\langle e_2, e_1\rangle_E)^*\nonumber\\ + &= \langle e_1, e_2\rangle_E^* \nonumber\\ + &= \langle\bar{e}_2, \bar{e}_2\rangle_{E^\circ}. +\end{align} +And finally of course we have +\begin{align} + \langle\bar{e}, \bar{e}\rangle = \langle e, e\rangle \geq 0 +\end{align} +%------------- EXERCISE + +Given the results thus far with a Hilbert bimodule $E$ for $(B, A)$, we +construct a spectral triple $(B, H', D'; J', \gamma ')$ from $(A, H, D; J, +\gamma)$. For $H'$ we make a $\mathbb{C}$-valued inner product on $H'$ by combining +the $A$ valued inner product on $E$ and $E^\circ$ with the +$\mathbb{C}$-valued inner product on $H$ by defining +\begin{align} + H' := E\otimes _A H \otimes _A E^\circ. +\end{align} +Then the action of $B$ on $H'$ takes the following form +\begin{align} + b(e_2 \otimes \xi \otimes \bar{e}_2 ) = (be_1) \otimes \xi \otimes + \bar{e}_2. +\end{align} +The right action of $B$ on $H'$ defined by action on the right component +$E^\circ$ is +\begin{align} + J'(e_1 \otimes \xi \otimes \bar{e}_2) = e_2 \otimes J \xi \otimes + \bar{e}_1, +\end{align} +where $b^\circ = J' b^* (J')^{-1}$, $b^* \in B$ is the action on $H'$. +Hence the connection reads +\begin{align} + &\nabla: E \rightarrow E\otimes _A \Omega _D ^1(A) \\ + &\bar{\nabla}:E^\circ \rightarrow \Omega _D^1(A) \otimes _A E^\circ, +\end{align} +which gives us the Dirac operator on $H' = E \otimes _A H \otimes _A +E^\circ$ as +\begin{align} + D'(e_1 \otimes \xi \otimes \bar{e}_2) = (\nabla e_1) \xi \otimes + \bar{e_2}+ e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes + \xi(\bar{\nabla}\bar{e}_2). +\end{align} +And the right action of $\omega \in \Omega _D ^1(A)$ on $\xi \in H$ is +defined by +\begin{align} + \xi \mapsto \epsilon' J \omega ^* J^{-1}\xi. +\end{align} +Finally for the grading we have +\begin{align} + \gamma ' = 1 \otimes \gamma \otimes 1. +\end{align} + +Summarizing we can write down the following theorem +\begin{theorem} + Suppose $(A, H, D; J, \gamma)$ is a finite spectral triple of + $KO$-dimension $k$, let $\nabla$ be a connection satisfying the + compatibility condition (same as with finite spectral triples). + Then $(B, H',D'; J', \gamma')$ is a finite spectral triple of + $KO$-Dimension $k$. ($H', D', J', \gamma'$) +\end{theorem} + +\begin{proof} + The only thing left is to check if the $KO$-dimension is preserved, + for this we check if the $\epsilon$'s are the same. + \begin{align} + &(J')^2 = 1 \otimes J^2 \otimes 1 = \epsilon,\\ + &J' \gamma '= \epsilon ''\gamma'J'. + \end{align} + Lastly for $\epsilon '$ we have + \begin{align} + J'D'(e_1 \otimes \xi \otimes \bar{e}_2)&=J'\big((\nabla e_1) \xi \otimes + \bar{e_2} + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau + \nabla e_2)\big)\nonumber \\ + &= \epsilon' D'\left(e_2 \otimes J\xi \otimes \bar{e}_2\right)\nonumber\\ + &= \epsilon' D'J'\left(e_1 \otimes \xi \bar{e}_2\right) + \end{align} +\end{proof} + +Let us take a look at $\nabla : E \Rightarrow E \otimes _A \Omega _d^1 (A)$ right connection on $E$ +and consider the following anti-linear map +\begin{align} + \tau : E \otimes_A \Omega _D^1 (A) &\rightarrow \Omega _D^1 (A) \otimes_A E^\circ\\ + e \otimes \omega &\mapsto -\omega ^* \otimes \bar{e}. +\end{align} +Interestingly the map $\bar{\nabla} : E^\circ \rightarrow \Omega _D^1(A) \otimes E^\circ$ +with $\bar{\nabla}(\bar{e}) = \tau \circ \nabla(e)$ is a left connection, that means +show that it satisfied the left Leibniz rule, for one +\begin{align} + \tau \circ \nabla(ae) = \bar{\nabla}(a\bar{e}) = \bar{\nabla}(a^* + \bar{e}). +\end{align} +And for two +\begin{align} + \tau \circ \nabla(ae) &= \tau(\nabla(e)a) + \tau \circ(e \otimes + d(a))\nonumber \\ + &=a^*\bar{\nabla}(\bar{e}) - d(a)^* \otimes \bar{e}. \nonumber\\ + &= a^*\bar{\nabla}(\bar{e}) + d(a^*) \otimes \bar{e}. +\end{align} + diff --git a/src/thesis/main.pdf b/src/thesis/main.pdf Binary files differ. diff --git a/src/thesis/main.tex b/src/thesis/main.tex @@ -24,17 +24,17 @@ \input{chapters/main_sec} -%\input{chapters/basics} +\input{chapters/basics} \input{chapters/finitencg} -%\input{chapters/realncg} +\input{chapters/realncg} -%\input{chapters/heatkernel} -% -%\input{chapters/twopointspace} -% -%\input{chapters/electroncg} +\input{chapters/heatkernel} + +\input{chapters/twopointspace} + +\input{chapters/electroncg} %------------------ OUTRO -------------------------