ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 6c74872af07f02ef9d8c0882959368d8b3d2661c
parent 0a0cbb5730039680562f1a6c1f0b7a0c712536d8
Author: miksa <milutin@popovic.xyz>
Date:   Tue, 27 Jul 2021 12:56:44 +0200

checkpoint

Diffstat:
Asrc/thesis/12 | 49+++++++++++++++++++++++++++++++++++++++++++++++++
Msrc/thesis/back/title.tex | 9++++++---
Msrc/thesis/chapters/basics.tex | 1690++++++++++++++++---------------------------------------------------------------
Asrc/thesis/chapters/finitencg.tex | 693+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/thesis/chapters/realncg.tex | 329+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Dsrc/thesis/main.aux | 83-------------------------------------------------------------------------------
Dsrc/thesis/main.bcf | 2372-------------------------------------------------------------------------------
Dsrc/thesis/main.log | 1534-------------------------------------------------------------------------------
Dsrc/thesis/main.out | 25-------------------------
Msrc/thesis/main.pdf | 0
Dsrc/thesis/main.run.xml | 85-------------------------------------------------------------------------------
Msrc/thesis/main.tex | 6+++++-
Dsrc/thesis/main.toc | 51---------------------------------------------------
13 files changed, 1415 insertions(+), 5511 deletions(-)

diff --git a/src/thesis/12 b/src/thesis/12 @@ -0,0 +1,49 @@ +\documentclass[12pt]{article} + +%-------------------- BACKHAND --------------------- + +\input{back/packages} + +\begin{document} + +\input{back/title} + +\newpage + +\tableofcontents + +\newpage + +\input{back/abstract} + +%------------------- INTRO ------------------------- + +\input{chapters/intro} + +%----------------- MAIN SECTION -------------------- + +\input{chapters/main_sec} + +%\input{chapters/basics} + +\input{chapters/finitencg} + +%\input{chapters/realncg} + +%\input{chapters/heatkernel} +% +%\input{chapters/twopointspace} +% +%\input{chapters/electroncg} + +%------------------ OUTRO ------------------------- + +\input{chapters/conclusion} + +\input{chapters/acknowledgment} + +%------------------- BACKHAND --------------------- + +\input{back/refs} + +\end{document} diff --git a/src/thesis/back/title.tex b/src/thesis/back/title.tex @@ -34,9 +34,12 @@ { \fontsize{10}{0} \selectfont Vienna, July 2021}\\ -\vspace*{3.5cm} +\vspace*{3.4cm} \begin{tabular}{p{9cm}p{11.25cm}} + \fontsize{10}{0} \selectfont + student ID number:\vspace*{0.3cm}& \fontsize{10}{0} \selectfont 11807930\\ + \fontsize{10}{0} \selectfont degree programme code as it appears on / & \fontsize{10}{0} \selectfont A 033 676 \\ @@ -46,11 +49,11 @@ \fontsize{10}{0} \selectfont degree programme as it appears on / & \fontsize{10}{0} \selectfont Physics \\ - \fontsize{10}{0} \selectfont the student record sheet:\vspace*{0.4cm} & + \fontsize{10}{0} \selectfont the student record sheet:\vspace*{0.3cm} & \fontsize{10}{0} \selectfont \\ \fontsize{10}{0} \selectfont - Supervisor:\vspace*{0.4cm}& \fontsize{10}{0} \selectfont Lisa Glaser, PhD\\ + Supervisor:\vspace*{0.3cm}& \fontsize{10}{0} \selectfont Lisa Glaser, PhD\\ \end{tabular} \end{center} \end{titlepage} diff --git a/src/thesis/chapters/basics.tex b/src/thesis/chapters/basics.tex @@ -8,15 +8,15 @@ introduce the first ingredient of a spectral triple, an unital $C^*$ algebra. \begin{enumerate} \item $A \times A \rightarrow A$, - $(a, b)\ \mapsto \ a\cdot b$, - \item with an identity element + $(a,\ b)\ \mapsto \ a\cdot b$, + \item with an identity element: $1a = a1 =a$. \end{enumerate} Extending the definition, a $*$-algebra is an algebra $A$ with a \textit{conjugate linear map (involution)} $*:A\ \rightarrow A$, $\forall a, b \in A$ satisfying: \begin{enumerate} \item - $(ab)^* = b^*a^*$, + $(a\ b)^* = b^*a^*$, \item $(a^*)^* = a$. \end{enumerate} @@ -26,14 +26,14 @@ In the following all unital algebras are referred to as algebras. \subsubsection{Finite Discrete Space} Let us consider an example of an $*$-algebra of continuous functions $C(X)$ on a discrete topological space $X$ with $N$ points. Functions of a -continuous $*$-algebra $C(X)$ assign values to $\mathbb{C}$, thus $f, g \in +continuous $*$-algebra $C(X)$ assign values to $\mathbb{C}$, thus $f,\ g \in C(X)$, $\lambda \in \mathbb{C}$ and $x \in X$ they provide the following structure: \begin{itemize} \item \textit{pointwise linear} \\ $(f + g)(x) = f(x) + g(x)$,\\ - $(\lambda f)(x) = \lambda (f(x)),$ + $(\lambda\ f)(x) = \lambda (f(x)),$ \item \textit{pointwise multiplication} \\ - $fg(x) = f(x)g(x)$, + $f\ g\ (x) = f(x)g(x)$, \item \textit{pointwise involution} \\ $f^*(x) = \overline{f(x)}.$ \end{itemize} @@ -60,9 +60,9 @@ Note that the pullback doesn't map points back, but maps functions on an $*$-alg The pullback, in literature often called a $*$-homomorphism or a $*$-algebra map under pointwise product has the following properties \begin{itemize} - \item $\phi ^*(fg) = \phi ^*(f) \phi ^*(g)$, + \item $\phi ^*(f\ g) = \phi ^*(f)\ \phi ^*(g)$, \item $\phi ^*(\overline{f}) = \overline{\phi ^*(f)}$, - \item $\phi ^*(\lambda f + g) = \lambda \phi ^*(f) + \phi ^*(g)$. + \item $\phi ^*(\lambda\ f + g) = \lambda\ \phi ^*(f) + \phi ^*(g)$. \end{itemize} %------------ Exercise The map $\phi :X_1\ \rightarrow \ X_2$ is an injective (surjective) map, @@ -102,8 +102,9 @@ $(\cdot,\cdot)\rightarrow \mathbb{C}$. We denote $L(H)$ as the $*$-algebra of o equipped with a product given by composition and involution of the adjoint, $T \mapsto T^*$. Then $L(H)$ is a \textit{normed vector space} with \begin{align} - &\|T\|^2 = \text{sup}_{h \in H}\{(Th,Th): (h,h) \leq 1\} \hspace{0.1\textwidth} T \in L(H) \\ - &\|T\| = \text{sup}\{\sqrt{\lambda}: \lambda \text{ eigenvalue of } T\} + \|T\|^2 &= \sup_{h \in H}\big\{(T\ h,\ T\ h): (h,\ h) \leq 1\big|\ T + \in L(H)\big \},\\ + \|T\| &= \sup\big\{\sqrt{\lambda}:\; \lambda \text{ eigenvalue of } T\big\}. \end{align} This allows us to define representations of $*$-algebras. \begin{definition} @@ -150,7 +151,8 @@ triple and a space. Given a representation $(H, \pi)$ of a $*$-algebra $A$, the \textbf{commutant} $\pi (A)'$ of $\pi (A)$ is defined as a set of operators in $L(H)$ that commute with all $\pi (a)$ \begin{align} - \pi (A)' = \{T \in L(H):\pi (a)T = T\pi (a) \;\;\; \forall a\in A\} + \pi (A)' = \big\{T \in L(H):\ \pi(a)\ T = T\ \pi(a) \;\; \forall a\in + A\big\} \end{align} The commutant $\pi (A)'$ is also a $*$-algebra, because it has unital, associative and involutive properties. @@ -182,7 +184,7 @@ triple and a space. \begin{align} \pi (a) &= \mathbbm{1}_n^*\ \tilde{\pi}((a_{ij})), \\ \mathbbm{1}_n &= \tilde{\pi}((a_{ij})) = \pi (a_{ij}) - \Rightarrow a_{ij} = a\mathbbm{1}_n. + \Rightarrow a_{ij} = a\ \mathbbm{1}_n. \end{align} %------------- EXERCISE @@ -207,1373 +209,347 @@ generalized notion of isomorphisms between matrix algebras (\textit{Morita Equivalence}) \subsubsection{Algebraic Modules} +An important notion for Morita Equivalence are algebraic modules, later +extended with Hilbert bimodules. \begin{definition} Let $A$, $B$ be algebras (need not be matrix algebras) \begin{enumerate} - \item \textit{left} A-module is a vector space $E$, that carries a left representation of $A$, - that is $\exists$ a bilinear map $\gamma: A \times E \rightarrow E$ with + \item \textit{left} A-module is a vector space $E$, that carries a left + representation of $A$, that is $\exists$ a bilinear map $\gamma: A + \times E \rightarrow E$ with \begin{align} - (a_1a_2)\cdot e = a_1 \cdot (a_2 \cdot e);\;\;\; a_1, a_2 \in A, e \in E + (a_1\ a_2)\cdot e = a_1 \cdot (a_2 \cdot e);\;\;\; a_1, a_2 \in + A, e \in E. \end{align} - \item \textit{right} B-module is a vector space $F$, that carries a right representation of $A$, - that is $\exists$ a bilinear map $\gamma: F \times B \rightarrow F$ with + \item \textit{right} B-module is a vector space $F$, that carries a + right representation of $A$, that is there exists a bilinear map + $\gamma: F \times B \rightarrow F$ with \begin{align} - f \cdot (b_1b_2)= (f \cdot b_1) \cdot b_2;\;\;\; b_1, b_2 \in B, f \in F + f \cdot (b_1\ b_2)= (f \cdot b_1) \cdot b_2;\;\;\; b_1, b_2 \in B, f \in F \end{align} - \item \textit{left} A-module and \textit{right} B-module is a \textit{bimodule}, a vector space $E$ - satisfying + \item \textit{left} A-module and \textit{right} B-module is a + \textit{bimodule}, a vector space $E$ satisfying \begin{align} a \cdot (e \cdot b)= (a \cdot e) \cdot b;\;\;\; a \in A, b \in B, e \in E \end{align} \end{enumerate} \end{definition} -Notion of A-\textbf{module homomorphism} as linear map $\phi: E\rightarrow F$ which respects the -representation of A, e.g. for left module. +An $A$-\textbf{module homomorphism} as linear map $\phi: E\rightarrow F$ which respects the +representation of A, e.g.\ for left module. \begin{align} - \phi (ae) = a \phi (e); \;\;\; a \in A, e \in E. + \phi (a\ e) = a \phi (e); \;\;\; a \in A, e \in E. \end{align} -Remark on the notation +We will use the notation \begin{itemize} - \item ${}_A E$ left $A$-module $E$; - \item ${}_A E_B$ right $B$-module $F$; - \item ${}_A E_B$ $A$-$B$-bimodule $E$; + \item ${}_A E$, for left $A$-module $E$; + \item ${}_A E_B$, for right $B$-module $F$; + \item ${}_A E_B$, for $A$-$B$-bimodule $E$, simply bimodule. \end{itemize} +%------------------- EXERCISE +From a simple observation, we see that an arbitrary representation $\pi : A +\rightarrow L(H)$ of a $*$-algebra A, turns H into a left module ${}_A H$. If +$_A H$ than $(a_1\ a_2) h = a_1 (a_2\ h)$ for $a_1, a_2 \in A$ and $h \in H$. We +take the representation of an $a \in A$, $\pi (a)$, and write +\begin{align} + \big(\pi(a_1)\ \pi(a_2)\big)h = \pi(a_1)\big(\pi(a_2)\ h\big) = + \big(T_1\ T_2\big) h = T_1 \big(T_2\ h\big) +\end{align} +For $T_1, T_2 \in L(H)$, which operate naturally from the left on $h$. + +%------------------- EXERCISE +%------------------- EXERCISE + +Furthermore notice that that an $*$-algebra $A$ is a bimodule ${}_A A_A$ with +itself, given by the map +\begin{align} + \gamma: A\times A\times A \rightarrow A, +\end{align} +which is the inner product of a $*$-algebra. +%------------------- EXERCISE + +\subsubsection{Balanced Tensor Product and Hilbert Bimodules} + +\begin{definition} + Let $A$ be an algebra, $E$ be a \textit{right} $A$-module and $F$ be a + \textit{left} $A$-module. The \textit{balanced tensor product} of $E$ and + $F$ forms a $A$-bimodule. + \begin{align} + E \otimes _A F := E \otimes F / \left\{\sum _i e_i a_i \otimes f_i - + e_i \otimes a_i f_i : \;\;\; a_i \in A,\ e_i \in E,\ f_i \in F + \right\}. + \end{align} +\end{definition} +The $/$ denotes the quotient space. By that the operation $\otimes _A$ takes +two left/right modules and makes a bimodule with the help the tensor product of +the two modules and the quotient space that takes out all the elements from the +tensor product that don't preserver the left/right representation and that are +duplicates. +\begin{definition} + Let $A$, $B$ be \textit{matrix algebras}. The \textit{Hilbert bimodule} for + $(A, B)$ is given by an $A$-$B$-bimodue $E$ and by an $B$-valued + \textit{inner product} $\langle \cdot,\cdot\rangle_E: E\times E \rightarrow + B$, which satisfies the following conditions for $e, e_1, e_2 \in + E,\ a \in A$ and $b \in B$ +\begin{align} + \langle e_1,\ a\cdot e_2\rangle_E &= \langle a^*\cdot e_1,\ e_2\rangle_E + \;\;\;\; & \text{sesquilinear in $A$},\\ + \langle e_1,\ e_2 \cdot b\rangle_E + &= \langle e_1,\ e_2\rangle_E b \;\;\;\; & \text{scalar in $B$},\\ + \langle e_1,\ e_2\rangle_E &= \langle e_2,\ e_1\rangle^*_E \;\;\;\; & + \text{hermitian}, \\ + \langle e,\ e\rangle_E &\ge 0 \;\;\;\; & \text{equality + holds iff $e=0$}. +\end{align} +We denote $KK_f(A,\ B)$ as the set of all \textit{Hilbert bimodules} of $(A,\ B)$. +\end{definition} +%-------------- EXERCISE -\begin{MyExercise} - \textbf{ - Check that a representation of $\pi : A \rightarrow L(H)$ of a $*$-algebra A turns H into a - left module ${}_A H$. -}\newline +And indeed the Hilbert bimodule extension takes a representation $\pi:\ A \ +\rightarrow L(H)$ of a matrix algebra $A$ and turns $H$ into a Hilbert bimodule for +$(A, \mathbb{C})$, because the representation of $a \in A$, $\pi(a)=T \in L(H)$ fulfills +the conditions of the $\mathbb{C}$-valued inner product for $h_1, h_2 \in H$ +\begin{itemize} + \item $\langle h_1,\ \pi(a)\ h_2\rangle _\mathbb{C} = \langle h_1,\ T\ h_2\rangle _\mathbb{C} = + \langle T^* h_1, h_2\rangle _\mathbb{C}$, $T^*$ given by the adjoint, + \item $\langle h_1,\ h_2\ \pi(a)\rangle _\mathbb{C} = \langle h_1,\ h_2\ + T\rangle _\mathbb{C} = \langle h_1,\ h_2\rangle _\mathbb{C}$ , $T$ acts + from the left, + \item $\langle h_1,\ h_2\rangle _\mathbb{C}^* = \langle h_2,\ h_1\rangle _\mathbb{C}$, hermitian because of the + $\mathbb{C}$-valued inner product + \item $\langle h_1,\ h_2\rangle \ge 0$, $\mathbb{C}$-valued inner product. +\end{itemize} +%-------------- EXERCISE - Not quite sure but \\ - $a \in A$, $h_1, h_2 \in H$, we know $\pi (a) = T \in L(H)$ than +%-------------- EXERCISE +Take again the $A-A$ bimodule given by an $*$-algebra $A$, it is in +$KK_f(A,\ A)$. This becomes clear by looking at the following inner product + $\langle \cdot,\cdot\rangle_A:A \times A \rightarrow A$: \begin{align} - \langle \pi (a) h_1, \pi (a) h_2\rangle = \langle T h_1, T h_2\rangle = \langle T^*T h_1, h_2\rangle = \langle h_1, h_2\rangle + \langle a,\ a\rangle_A = a^*a' \;\;\;\; a,a'\in A. \label{eq:inner-product} \end{align} - Or maybe this \\ - If $_A H$ than $(a_1a_2) h = a_1 (a_2 h)$ for $a_1, a_2 \in A$ and $h \in H$.\\ - Then we take the representation of an $a \in A$, $\pi (a)$: + Simply checking the conditions in $\langle \cdot, \cdot\rangle _A$ for + $a, a_1, a_2 \in A$ \begin{align} - (\pi(a_1)\pi(a_2))h = \pi(a_1)(\pi(a_2) h) = (T_1T_2) h = T_1 (T_2 h) + \langle a_1,\ a\cdot a_2\rangle _A &= a^* a\cdot a_2 = + (a^*a_1)^*\ a_2 = \langle a^*\ a_1,\ a_2\rangle, \\ + \langle a_1,\ a_2 \cdot a\rangle _A &= a^*_1\ (a_2\cdot a) = + (a^*a_2)\cdot a = \langle a_1,\ a_2\rangle _A\ a,\\ + \langle a_1,\ a_2\rangle _A^* &= (a_1^*\ a_2)^* = a_2^*\ + (a_1^*)^* = a_2^*\ a_1 = \langle a_2,\ a_1\rangle. \end{align} - For $T_1, T_2 \in L(H)$, which operate naturally from the left on $h$. -\end{MyExercise} -\begin{MyExercise} - \textbf{ - Show that $A$ is a bimodule ${}_A A_A$ with itself. -}\newline +%-------------- EXERCISE - $\gamma: A\times A\times A \rightarrow A$ which is given by the inner product of the $*$-algebra. -\end{MyExercise} +%-------------- EXAMPLE +As an exemplar for overview consider a $*$ homomorphism between two matrix +algebras $\phi:A\rightarrow B$, we can construct a Hilbert bimodule +$E_{\phi} \in KK_f(A, B)$ in the following way. We let $E_{\phi}$ be $B$ in +as an vector space and an inner product from above in equation +\eqref{eq:inner-product}, with $A$ acting on the left with $\phi$. +\begin{align} + a\cdot b = \phi(a)\ b +\end{align} +for $a\in A, b\in E_{\phi}$. +%-------------- EXAMPLE + +\subsubsection{Kasparov Product and Morita Equivalence} +\begin{definition} + Let $E \in KK_f(A, B)$ and $F \in KK_F(B, D)$ the \textit{Kasparov product} is defined as + with the balanced tensor product + \begin{align} + F \circ E := E \otimes _B F. + \end{align} + Then $F\circ E \in KK_f(A,D)$ is equipped with a $D$-valued inner product + \begin{align} + \langle e_1 \otimes f_1,\ e_2 \otimes f_2\rangle _{E\otimes _B F} = + \langle f_1,\langle e_1,\ e_2\rangle _E f_2\rangle _F + \end{align} +\end{definition} + +%-------------- EXERCISE +The Kasparov product for $*$-algebra homomorphism $\phi: A \rightarrow B$ and +$\psi: B \rightarrow C$ are isomorphisms in the sense of +\begin{align} + E_{\psi} \circ E_{\phi}\ \equiv\ E_{\phi} \otimes _B E_{\psi}\ + \simeq\ + E_{\psi \circ \phi} \in KK_f(A,C). +\end{align} + +In the direct computation for elements $a \in A$, $b\in B$, and $c\in C$ which +is $\psi \circ \phi$ gives us +\begin{align} +a \cdot b \cdot c = \psi(\phi (a) \cdot b) \cdot c +\end{align} +An interesting case arises when looking at $E_{\text{id}_A} \simeq A \in KK_f(A,A)$ for +$\text{id}_A: A \rightarrow A$. This is obvious when we let $E_{\phi}$ be $A$ +with a natural right representation. It follows that $E_{\phi}\simeq A$, thus +an inner product, acting from the left on $A$ for $\phi$, $a', a\in A$ reads +\begin{align} + a'\ a = (\phi(a')\ a) \in A, +\end{align} +which is satisfied by $\phi = \text{id}_A$ + +\begin{definition} + Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita equivalent} if there + exists an $E \in KK_f(A, B)$ and an $F \in KK_f(B, A)$ such that + \begin{align} + E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq + B, + \end{align} + where $\simeq$ denotes the isomorphism between Hilbert bimodules and note + that $A$ or $B$ is a bimodule by itself. +\end{definition} + +\end{align} +The modules $E$ and $F$ are each others inverse in regards to the Kasparov +Product, because we land in the same space as we started. To clarify, in +the definition we have $E \in KK_f(A, B)$. We start from $A$ and $E \otimes +_B F$, which lands in $A$. Oppositely we have $F \in KK_f(B, D)$ we start +from $B$ and $F \otimes _A E$, which lands in $B$. + + +%------------- EXERCISE +By definition $E \otimes _B F$ is a $A-D$ bimodule. Since +\begin{align} + E \otimes _B F = E \otimes F / \bigg\{\sum_i\ e_i\ b_i \otimes f_i - e_i + \otimes b_i\ f_i\ \big|\;\; e_i \in E_i,\ b_i \in B,\ f_i \in F\bigg\}, +\end{align} +the last part takes out all tensor product elements of $E$ and $F$ that don't +preserver the left/right representation and that are duplicates. + +Additionally $\langle \cdot,\cdot\rangle _{E\oplus _B F}$ defines a $D$ valued +inner product, as $\langle e_1,\ e_2\rangle _E \in B$ and $\langle f_1,\ f_2\rangle _F \in C$ by +definition. So for $\langle e_1,\ e_2\rangle _E =b$ we have +\begin{align} + \langle e_1 \otimes f_1,\ e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle + f_1,\ \langle e_1,\ e_2\rangle _E\ f_2\rangle _F = \langle f_1,\ b\ f_2\rangle _F \in C +\end{align} +%------------- EXERCISE +%------------- EXAMPLE +Picking up the example of $(A, A)$, the Hilbert bimodule $A$, we can +consider an $E \in KK_f(A,B)$ for +\begin{align} + E \circ A = A\oplus _A E \simeq E. +\end{align} +We conclude, that $_A A_A$ is the identity element in the Kasparov product (up +to isomorphism). +%------------- EXAMPLE +%------------- EXAMPLE +Let us examine another example for $E = \mathbb{C}^n$, which is a +$(M_n(\mathbb{C}), \mathbb{C})$ Hilbert bimodule with the standard $\mathbb{C}$ +inner product. Further let $F = \mathbb{C}^n$, which is a $(\mathbb{C}, +M_n(\mathbb{C}))$ Hilbert bimodule by right matrix multiplication with +$M_n(\mathbb{C})$ valued inner product, we can write + \begin{align} + \langle v_1, v_2\rangle =\bar{v_1}v_2^t \;\; \in M_n(\mathbb{C}). + \end{align} +If we take the Kasparov product of $E$ and $F$ + \begin{align} + F\circ E\ &=\ E\otimes _{\mathbb{C}}F\ \;\;\;\;\;\; \simeq \ + M_n(\mathbb{C}),\\ + E\circ F\ &=\ F\otimes _{M_n(\mathbb{C})}E\ \simeq\ \mathbb{C}, + \end{align} +we see that $M_n(\mathbb{C})$ and $\mathbb{C}$ are Morita equivalent! +%------------- EXAMPLE + +\begin{theorem} + Two matrix algebras are Morita Equivalent if, and only if their their structure spaces + are isomorphic as discreet spaces (have the same cardinality / same number + of elements). +\end{theorem} +\begin{proof} + Let $A$, $B$ be \textit{Morita equivalent}. Then there exist $_A E_B$ and $_B F_A$ with + \begin{align} + E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq + B. + \end{align} + Also consider $[(\pi _B, H)] \in \hat{B}$. We can construct a + representation of $A$, which reads + \begin{align} + \pi _A \rightarrow L(E \otimes _B H)\;\;\; \text{with} \;\;\; \pi _A(a) + (e \otimes v) = a e \otimes w + \end{align} + Vice versa, we have $[(\pi _A, W)] \in \hat{A}$ we can construct $\pi _B$ + as + \begin{align} + \pi _B: B \rightarrow L(F \otimes _A W) \;\;\; \text{and}\;\;\; \pi + _B(b) (f\otimes w) = bf\otimes w. + \end{align} + Now we need to show that the representation $\pi _A$ is irreducible if and + only if $\pi _B$ is irreducible. For $(\pi _B, H)$ to be irreducible, we + need $H \neq \emptyset$ and only $\emptyset$ or $H$ to be invariant under + the Action of $B$ on $H$. Than $E\otimes _B H$ and $E\otimes _B H \simeq A$ + cannot be empty, because $E$ preserves left representation of $A$. + + Lastly we need to check if the association of the class $[\pi _A]$ to $[\pi + _B]$ is independent of the choice of representatives $\pi _A$ and $\pi _B$. + The important thing is that $[\pi _A] \in \hat{A}$ respectively $[\pi _B] \in + \hat{B}$, hence any choice of representation is irreducible, because the + structure space denotes all unitary equivalence classes of irreducible + representations. + + Note that the statements $E \simeq H$ and $F \simeq W$ are not particularly + true, since all infinite dimensional Hilbert spaces are isomorphic. Here + we are looking at finite dimensional Hilbert spaces. Another thing to keep + in mind, is that for $[\pi _B, H] \in \hat{B}$ and looking at algebraic + bimodules, we know that $H$ is a bimodule of $B$, hence $E \otimes _B + H\simeq A$, and for $[\pi _A, W]$, which is the same. + Finally we can conclude, that these maps are each others inverses, thus + $\hat{A} \simeq \hat{B}$. +\end{proof} + +\begin{lemma} + The matrix algebra $M_n(\mathbb{C})$ has a unique irreducible + representation (up to isomorphism) given by the defining representation on + $\mathbb{C}^n$. +\end{lemma} +\begin{proof} + We know $\mathbb{C}^n$ is a irreducible representation of $A= + M_n(\mathbb{C})$. Let $H$ be irreducible and of dimension $k$, then we + define a map + \begin{align} + \phi : A\oplus...\oplus A &\rightarrow H^* \\ + (a_1,...,a_k)&\mapsto e^1\circ a_1^t+...+e^k\circ a_k^t, + \end{align} +where $\{e^1,...,e^k\}$ is the basis of the dual space $H^*$ and +$(\circ)$ being the pre-composition of elements in $H^*$ and $A$ acting on $H$. +This forms a morphism of $M_n(\mathbb{C})$ modules, provided a matrix $a \in A$ +acts on $H^*$ with $v\mapsto v\circ a^t$ ($v\in H^*$). Furthermore this +morphism is surjective, thus making the pullback $\phi ^*:H\mapsto (A^k)^*$ +injective. Now identify $(A^k)^*$ with $A^k$ as a $A$-module and note that +$A=M_n(\mathbb{C}) \simeq \oplus ^n \mathbb{C}^n$ as a n A module. It follows +that $H$ is a submodule of $A^k \simeq \oplus ^{nk}\mathbb{C}$. By +irreducibility $H \simeq \mathbb{C}$. +\end{proof} + +%---------------- EXAMPLE +Let us look at an examples for two matrix algebras $A$, and $B$. +\begin{align} + A = \bigoplus ^N_{i=1} M_{n_i}(\mathbb{C}), \;\;\; + B = \bigoplus ^M_{j=1} M_{m_j}(\mathbb{C}). +\end{align} +Let $\hat{A} \simeq \hat{B}$, this implies $N=M$. Further define $E$ with $A$ +acting by block-diagonal matrices on the first tensor and B acting in the same +manner on the second tensor. Define $F$ vice versa, ultimately reading +\begin{align} + E:= \bigoplus _{i=1}^N \mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i}, \;\;\; + F:= \bigoplus _{i=1}^N \mathbb{C}^{m_i} \otimes \mathbb{C}^{n_i}. +\end{align} +When we calculate the Kasparov product we get the following +\begin{align} + E \otimes _B F &\simeq \bigoplus _{i=1}^N (\mathbb{C}^{n_i}\otimes\mathbb{C}^{m_i}) + \otimes _{M_{m_i}(\mathbb{C})} (\mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i}) \\ + &\simeq \bigoplus _{i=1}^N \mathbb{C}^{n_i}\otimes + \left(\mathbb{C}^{m_i}\otimes _{M_{m_i}(\mathbb{C})}\mathbb{C}^{m_i}\right) + \oplus \mathbb{C}^{n_i} \\ + &\simeq \bigoplus _{i=1}^N + \mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i} \simeq A. +\end{align} +On the other hand we get +\begin{align} + F \otimes _A E \simeq B. +\end{align} +%---------------- EXAMPLE -%\subsubsection{Balanced Tensor Product and Hilbert Bimodules} -% -%\begin{definition} -% Let $A$ be an algebra, $E$ be a \textit{right} $A$-module and $F$ be a \textit{left} $A$-module. -% The \textit{balanced tensor product} of $E$ and $F$ forms a $A$-bimodule. -% \begin{align} -% E \otimes _A F := E \otimes F / \left\{\sum _i e_i a_i \otimes f_i - e_i \otimes a_i f_i : \;\;\; -% a_i \in A,\ e_i \in E,\ f_i \in F \right\} -% \end{align} -%\end{definition} -%Note $/$ denotes the quotient space. So $\otimes _A$ takes two left/right modules and makes a -%bimodule with the help the tensor product of the two modules and the quotient space that takes -%out all the elements from the tensor product that dont preserver the left/right representation and that -%are duplicates. -%\begin{definition} -% Let $A$, $B$ be \textit{matrix algebras}. The \textit{Hilbert bimodule} for $(A, B)$ is given by -% \begin{itemize} -% \item $E$, an $A$-$B$-bimodue $E$ and by -% \item an $B$-valued \textit{inner product} $\langle \cdot,\cdot\rangle_E: E\times E \rightarrow B$ -% \end{itemize} -%$\langle \cdot,\cdot\rangle_E$ needs to satisfy the following for $e, e_1, e_2 \in E,\ a \in A$ and $b \in B$. -%\begin{align} -% \langle e_1, a\cdot e_2\rangle_E &= \langle a^*\cdot e_1, e_2\rangle_E \;\;\;\; & \text{sesquilinear in $A$}\\ -% \langle e_1, e_2 \cdot b\rangle_E &= \langle e_1, e_2\rangle_E b \;\;\;\; & \text{scalar in $B$} \\ -% \langle e_1, e_2\rangle_E &= \langle e_2,e_1\rangle^*_E \;\;\;\; & \text{hermitian} \\ -% \langle e, e\rangle_E &\ge 0 \;\;\;\; & \text{equality holds iff $e=0$} -%\end{align} -% -%\end{definition} -% -%We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. -% -%%\begin{MyExercise} -%% \textbf{ -%% Check that a representation $\pi:\ A \ \rightarrow L(H)$ of a matrix algebra $A$ turns $H$ into -%% a Hilbert bimodule for $(A, \mathbb{C})$. -%% \label{ex: bimodule} -%%}\newline -%% -%% -%% We check if the representation of $a \in A$, $\pi(a)=T \in L(H)$ fulfills -%% the conditions on the $\mathbb{C}$-valued inner product for $h_1, h_2 \in H$: -%% \begin{itemize} -%% \item $\langle h_1, \pi(a) h)2\rangle _\mathbb{C} = \langle h_1, T h_2\rangle _\mathbb{C} = -%% \langle T^* h_1, h_2\rangle _\mathbb{C}$, $T^*$ given by the adjoint -%% \item $\langle h_1, h_2 \pi(a)\rangle _\mathbb{C} = \langle h_1, h_2 T\rangle _\mathbb{C} = \langle h_1, h_2\rangle _\mathbb{C}$, $T$ acts from the left -%% \item $\langle h_1, h_2\rangle _\mathbb{C}^* = \langle h_2,h_1\rangle _\mathbb{C}$, hermitian because of the -%% $\mathbb{C}$-valued inner product -%% \item $\langle h_1, h_2\rangle \ge 0$, $\mathbb{C}$-valued inner product. -%% \end{itemize} -%%\end{MyExercise} -% -%%\begin{MyExercise} -%% \textbf{ -%% Show that the $A-A$ bimodule given by $A$ is in $KK_f(A,A)$ by taking the following inner product -%% $\langle \cdot,\cdot\rangle_A:A \times A \rightarrow A$: -%% \begin{align} -%% \langle a, a\rangle_A = a^*a' \;\;\;\; a,a'\in A -%% \end{align} -%% \label{exercise: inner-product} -%%}\newline -%% -%% -%% We check again the conditions on $\langle \cdot, \cdot\rangle _A$, let $a, a_1, a_2 \in A$: -%% \begin{itemize} -%% \item $\langle a_1, a\cdot a_2\rangle _A = a^*\ a\cdot a_2 = (a^*a_1)^* a_2 = \langle a^*a_1, a_2\rangle $ -%% \item $\langle a_1, a_2 \cdot a\rangle _A = a^*_1 (a_2\cdot a) = (a^*a_2)\cdot a = \langle a_1, a_2\rangle _A a$ -%% \item $\langle a_1, a_2\rangle _A^* = (a_1^* a_2)^* = a_2^*(a_1^*)^* = a_2^* a_1 = \langle a_2, a_1\rangle $ -%% \end{itemize} -%%\end{MyExercise} -% -%\begin{example} -% Consider a $*$ homomorphism between two matrix algebras $\phi:A\rightarrow B$. -% From it we can construct a Hilbert bimodule $E_{\phi} \in KK_f(A, B)$ in the following way. -% We let $E_{\phi}$ be $B$ in the vector space sense and an inner product from the above -% Exercise \ref{exercise: inner-product}, with $A$ acting on the left with $\phi$. -% \begin{align} -% a\cdot b = \phi(a)b \;\;\;\; a\in A, b\in E_{\phi} -% \end{align} -%\end{example} -% -% -%\subsubsection{Kasparov Product and Morita Equivalence} -%\begin{definition} -% Let $E \in KK_f(A, B)$ and $F \in KK_F(B, D)$ the \textit{Kasparov product} is defined as -% with the balanced tensor product -% \begin{align} -% F \circ E := E \otimes _B F -% \end{align} -% Such that $F\circ E \in KK_f(A,D)$ with a $D$-valued inner product. -% \begin{align} -% \langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle f_1,\langle e_1, e_2\rangle _E f_2\rangle _F -% \end{align} -%\end{definition} -% -%\begin{question} -% How do we go from $\langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F}$ to $ -% \langle f_1,\langle e_1, e_2\rangle _E f_2\rangle _F$ \label{q: tensorproduct}\\ -% This statement is still in the definition. -%\end{question} -% -%%\begin{question} -%%What is the meaning of `associative up to isomorphism'? Isomorphism of $F \circ E$ or of $A, B$ or $D$? -%%\end{question} -% -%% \begin{MyExercise} -%% \textbf{ -%% Show that the association $\phi \leadsto E_\phi$ (from the previous Example) is natural -%% in the sense -%% \begin{enumerate} -%% \item $E_{\text{id}_A} \simeq A \in KK_f(A,A)$ -%% \item for $*$-algebra homomorphism $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$ we have -%% an isomorphism -%% \begin{align} -%% E_{\psi} \circ E_{\phi}\ \equiv\ E_{\phi} \otimes _B E_{\psi}\ \simeq\ -%% E_{\psi \circ \phi} \in KK_f(A,C) -%% \end{align} -%% \end{enumerate} -%%} -%% \begin{enumerate} -%% \item $\text{id}_A: A \rightarrow A$.\\ -%% To construct $E_{\phi}\in KK_f(A,A)$, we let $E_{\phi}$ be $A$ with a natural right -%% representation, so $\Rightarrow E_{\phi}\simeq A$.\\ -%% With an inner product, acting on $A$ from the left with $\phi$, $a', a\in A$\\ -%% $a'a = (\phi(a') a) \in A $, which is satisfied by $\text{id}_A$, so $\phi = \text{id}_A$. -%% \item $a \cdot b \cdot c = \psi(\phi (a) \cdot b) \cdot c$ for $a \in A$, $b\in B$, and $c\in C$ -%% which is $\psi \circ \phi$ -%% \end{enumerate} -%%\end{MyExercise} -% -%%\begin{MyExercise} -%% \textbf{ -%% In the definition of Morita equivalence: -%% \begin{enumerate} -%% \item Check that $E \otimes _B F$ is a $A-D$ bimodule -%% \item Check that $\langle \cdot,\cdot\rangle _{E\oplus _B F}$ defines a $D$ valued inner product -%% \item Check that $\langle a^*(e_1 \otimes f_1), e_2 \otimes f_2\rangle _{E \otimes _B F} = \langle e_1 \otimes f_1, a(e_2 \otimes f_2)\rangle _{E \otimes _B F}$. -%% \end{enumerate} -%%} -%% \begin{enumerate} -%% \item $E \otimes _B F = E \otimes F / \{\sum_i e_i b_i \otimes f_i - e_i \otimes b_i f_i; -%% e_i \in E_i, b_i \in B, f_i \in F\}$ the last part takes out all tensor product elements of -%% $E$ and $F$ that don't preserver the left/right representation and that are duplicates. -%% \item $\langle e_1, e_2\rangle _E \in B$ and $\langle f_1, f_2\rangle _F \in C$ by definition. So let $\langle e_1, e_2\rangle _E =b$. \\ -%% Then $\langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle f_1, \langle e_1, e_2\rangle _E f_2\rangle _F = -%% \langle f_1, b f_2\rangle _F \in C$ -%% \item Check Question \ref{q: tensorproduct}.\\ -%% But let $G := E\otimes _B F \in KK_f(A,C)$ then $\forall g_1, g_2 \in G$ and $a \in A$ we need -%% by definition $\langle g_1, ag_2\rangle _G = \langle a^*g_1, g_2\rangle _G$ and we set $g_1 = e_1 \otimes f_1$ and -%% $g_2 = e_2 \otimes f_2$ for some $e_1, e_2 \in E$ and $f_1, f_2 \in F$, or else -%% $G \notin KK_f(A,C)$ which would violate the Kasparov product -%% \end{enumerate} -%% \end{MyExercise} -% -%\begin{definition} -% Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita equivalent} if there -% exists an $E \in KK_f(A, B)$ and an $F \in KK_f(B, A)$ such that: -% \begin{align} -% E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq B -% \end{align} -% Where $\simeq$ denotes the isomorphism between Hilbert bimodules, note that $A$ or $B$ is a bimodule by -% itself. -%\end{definition} -% -%\begin{question} -% Why are $E$ and $F$ each others inverse in the Kasparov Product? \\ -% They are each others inverse with respect to the Kasparov Product because we land in the same space as we started. -% In the definition we have $E \in KK_f(A, B)$ we start from $A$ and $E \otimes _B F$ lands in $A$.\\ -% On the other hand we have $F \in KK_f(B, D)$ we start from $B$ and $F \otimes _A E$ lands in $B$. -%\end{question} -% -%\begin{example} -% \ -% \begin{itemize} -% \item Hilber bimodule of $(A,A)$ is $A$ -% \item Let $E \in KK_f(A,B)$, we take $E \circ A = A\oplus _A E \simeq E$ -% \item we conclude, that $_A A_A$ is the identity in the Kasparov product (up to isomorphism) -% \end{itemize} -%\end{example} -% -%\begin{example} -% Let $E = \mathbb{C}^n$, which is a $(M_n(\mathbb{C}), \mathbb{C})$ Hilbert bimodule with the -% standard $\mathbb{C}$ inner product.\\ -% On the other hand let $F = \mathbb{C}^n$, which is a $(\mathbb{C}, M_n(\mathbb{C}))$ Hilbert -% bimodule by right matrix multiplication with $M_n(\mathbb{C})$ valued inner product: -% \begin{align} -% \langle v_1, v_2\rangle =\bar{v_1}v_2^t \;\; \in M_n(\mathbb{C}) -% \end{align} -% Now we take the Kasparov product of $E$ and $F$: -% \begin{itemize} -% \item $F\circ E\ =\ E\otimes _{\mathbb{C}}F\ \;\;\;\;\;\; \simeq \ M_n(\mathbb{C})$ -% \item $E\circ F\ =\ F\otimes _{M_n(\mathbb{C})}E\ \simeq\ \mathbb{C}$ -% \end{itemize} -% $M_n(\mathbb{C})$ and $\mathbb{C}$ are Morita equivalent -%\end{example} -% -%\begin{theorem} -% Two matrix algebras are Morita Equivalent iff their their Structure spaces -% are isomorphic as discreet spaces (have the same cardinality / same number of elements) -%\end{theorem} -%\begin{proof} -% Let $A$, $B$ be \textit{Morita equivalent}. So there exists $_A E_B$ and $_B F_A$ with -% \begin{align} -% E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq B -% \end{align} -% Consider $[(\pi _B, H)] \in \hat{B}$ than we construct a representation of $A$, -% \begin{align} -% \pi _A \rightarrow L(E \otimes _B H)\;\;\; \text{with} \;\;\; \pi _A(a) (e \otimes v) = a e \otimes w -% \end{align} -% \begin{question} -% Is $E \simeq H$ and $F \simeq W$? \\ -% Not in particular, there is a theorem that all infinite dimensional Hilbert spaces are isomorphic. -% Here we are looking at finite dimensional Hilbert spaces.\\ -% Another thing to is that $[\pi _B, H] \in \hat{B}$ and looking at Exercise \ref{ex: bimodule} -% we know that $H$ is a bimodule of $B$, hence $E \otimes _B H\simeq A$, and for $[\pi _A, W]$ -% the same. -% \end{question} -% \textit{vice versa}, consider $[(\pi _A, W)] \in \hat{A}$ we can construct $\pi _B$ -% \begin{align} -% \pi _B: B \rightarrow L(F \otimes _A W) \;\;\; \text{and}\;\;\; \pi _B(b) (f\otimes w) = bf\otimes w -% \end{align} -% These maps are each others inverses, thus $\hat{A} \simeq \hat{B}$ -%\end{proof} -% -%%\begin{MyExercise} -%% \textbf{ -%% Fill in the gaps in the above proof: -%% \begin{enumerate} -%% \item show that the representation of $\pi _A$ defined is irreducible iff $\pi _B$ is. -%% \item Show that the association of the class $[\pi _A]$ to $[\pi _B]$ is independent -%% of the choice of representatives $\pi _A$ and $\pi _B$ -%% \end{enumerate} -%%} -%% -%% \begin{enumerate} -%% \item $(\pi _B, H)$ is irreducible means $H \neq \emptyset$ and only $\emptyset$ or $H$ -%% is invariant under the Action of $B$ on $H$. -%% Than $E\otimes _B H$ cannot be empty, because also $E$ preserves left representation of $A$ -%% and also $E\otimes _B H \simeq A$. -%% \item The important thing is that $[\pi _A] \in \hat{A}$ respectively $[\pi _B] \in \hat{B}$, -%% hence any choice of representation is irreducible, because the structure space denotes all unitary -%% equivalence classes of irreducible representations. -%% \end{enumerate} -%%\end{MyExercise} -% -% \begin{lemma} -% The matrix algebra $M_n(\mathbb{C})$ has a unique irreducible representation (up to isomorphism) -% given by the defining representation on $\mathbb{C}^n$. -%\end{lemma} -%\begin{proof} -% We know $\mathbb{C}^n$ is a irreducible representation of $A= M_n(\mathbb{C})$. Let $H$ be irreducible -% and of dimension $k$, then we define a map -% \begin{align} -% \phi : A\oplus...\oplus A &\rightarrow H^* \\ -% (a_1,...,a_k) &\mapsto e^1\circ a_1^t+...+e^k\circ a_k^t -% \end{align} -% With $\{e^1,...,e^k\}$ being the basis of the dual space $H^*$ and $(\circ)$ being the pre-composition -% of elements in $H^*$ and $A$ acting on $H$. This forms a morphism of $M_n(\mathbb{C})$ modules, -% provided a matrix $a \in A$ acts on $H^*$ with $v\mapsto v\circ a^t$ ($v\in H^*$). -% Furthermore this morphism is surjective, thus making the pullback $\phi ^*:H\mapsto (A^k)^*$ injective. -% Now identify $(A^k)^*$ with $A^k$ as a $A$-module and note that -% $A=M_n(\mathbb{C}) \simeq \oplus ^n \mathbb{C}^n$ as a n A module. -% It follows that $H$ is a submodule of $A^k \simeq \oplus ^{nk}\mathbb{C}$. By irreducibility -% $H \simeq \mathbb{C}$. -%\end{proof} -% -%\begin{example} -% Consider two matrix algebras $A$, and $B$. -% \begin{align} -% A = \bigoplus ^N_{i=1} M_{n_i}(\mathbb{C}) \;\;\; B = \bigoplus ^M_{j=1} M_{m_j}(\mathbb{C}) -% \end{align} -% Let $\hat{A} \simeq \hat{B}$ that implies $N=M$ and define $E$ with $A$ acting by block-diagonal -% matrices on the first tensor and B acting in the same way on the second tensor. Define $F$ vice versa. -% \begin{align} -% E:= \bigoplus _{i=1}^N \mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i} \;\;\; -% F:= \bigoplus _{i=1}^N \mathbb{C}^{m_i} \otimes \mathbb{C}^{n_i} -% \end{align} -% Then we calculate the Kasparov product. -% \begin{align} -% E \otimes _B F &\simeq \bigoplus _{i=1}^N (\mathbb{C}^{n_i}\otimes\mathbb{C}^{m_i}) -% \otimes _{M_{m_i}(\mathbb{C})} (\mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i}) \\ -% &\simeq \bigoplus _{i=1}^N \mathbb{C}^{n_i}\otimes -% \left(\mathbb{C}^{m_i}\otimes _{M_{m_i}(\mathbb{C})}\mathbb{C}^{m_i}\right) -% \oplus \mathbb{C}^{n_i} \\ -% &\simeq \bigoplus _{i=1}^N \mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i} \simeq A -% \end{align} -% and from $F \otimes _A E \simeq B$. -%\end{example} -% -%We conclude that. -%\begin{itemize} -% \item There is a duality between finite spaces and Morita equivalence classes of matrix algebras. -% \item By replacing $*$-homomorphism $A\rightarrow B$ with Hilbert bimodules $(A,B)$ we introduce -% a richer structure of morphism between matrix algebras. -%\end{itemize} -% -%\subsection{Noncommutative Geometric Spaces } -%\subsubsection{Exercises} -% -%%\begin{MyExercise} -%%\textbf{ -%% Make the proof of the last theorem (see week4.pdf) explicit for $N=3$. -%%}\newline -%% -%% For the C* algebra we have $A=\mathbb{C}^3$ -%% For $H$ we have $H = (\mathbb{C}^2)^{\oplus 3} = H_2 \oplus H_2^1 \oplus H_2^2$. -%% The symmetric operator $D$ acting on $H$ and the representation $\pi (a)$: -%% \begin{align} -%% \pi((a(1), a(2), a(3)) &= -%% \begin{pmatrix} -%% a(1) & 0 \\ 0 & a(2) -%% \end{pmatrix} \oplus -%% \begin{pmatrix} -%% a(1) & 0 \\ 0 & a(3) -%% \end{pmatrix} \oplus -%% \begin{pmatrix} -%% a(2) & 0 \\ 0 & a(2) -%% \end{pmatrix} \nonumber \\ -%% & = -%% \begin{pmatrix} -%% a(1) & 0 & 0 & 0 & 0 & 0 \\ -%% 0 & a(2) & 0 & 0 & 0 & 0 \\ -%% 0 & 0 & a(1) & 0 & 0 & 0 \\ -%% 0 & 0 & 0 & a(3) & 0 & 0 \\ -%% 0 & 0 & 0 & 0 & a(2) & 0 \\ -%% 0 & 0 & 0 & 0 & 0 & a(3) -%% \end{pmatrix} \\ -%% D &= -%% \begin{pmatrix} -%% 0 & x_1 \\ x_1 & 0 -%% \end{pmatrix} \oplus -%% \begin{pmatrix} -%% 0 & x_2 \\ x_2 & 0 -%% \end{pmatrix} \oplus -%% \begin{pmatrix} -%% 0 & x_3 \\ x_3 & 0 -%% \end{pmatrix} \nonumber \\ -%% &= -%% \begin{pmatrix} -%% 0 & x_1 & 0 & 0 & 0 & 0 \\ -%% x_1 & 0 & 0 & 0 & 0 & 0 \\ -%% 0 & 0 & 0 & x_2 & 0 & 0 \\ -%% 0 & 0 & x_2 & 0 & 0 & 0 \\ -%% 0 & 0 & 0 & 0 & 0 & x_3 \\ -%% 0 & 0 & 0 & 0 & x_3 & 0 \\ -%% \end{pmatrix} \\ -%% \end{align} -%% Then the norm of the commutator would be the largest eigenvalue -%% \begin{align} -%% &||[D, \pi(a)]|| = ||D\pi(a) - \pi(a)D||\nonumber\\ -%% &= -%% \left|\left| -%% \setlength{\arraycolsep}{0.1cm} -%% \renewcommand{\arraystretch}{0.1} -%% \begin{pmatrix} -%% 0 & x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 \\ -%% -x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 & 0 \\ -%% 0 & 0 & 0 & x_2(a(3)-a(1)) & 0 & 0 \\ -%% 0 & 0 & -x_2(a(3)-a(1)) & 0 & 0 & 0 \\ -%% 0 & 0 & 0 & 0 & 0 & x_3(a(3)-a(2)) \\ -%% 0 & 0 & 0 & 0 & -x_3(a(2)-a(3)) & 0 \\ -%% \end{pmatrix}\right|\right| \label{skew matrix} -%% \end{align} -%%The matrix in Equation \ref{shew matrix} is a skew symmetric matrix its eigenvalues -%%are $i\lambda_1, i\lambda_2, i\lambda_3, i\lambda_4$, where the $\lambda$'s are on the -%%upper and lower diagonal check \url{https://en.wikipedia.org/wiki/Skew-symmetric_ -%%matrix#Skew-symmetrizable_matrix}. The matrix norm of would be the maximum of the norm of -%%the larges eigenvalues: -%%\begin{align} -%% ||[D, \pi(a)]|| = \max_{a\in A}\{&x_1|a(2)-a(1)|,\\ -%% &x_2|(a(3)-a(1))|,\nonumber\\ -%% &x_3|(a(3)-a(2))|,\}\nonumber -%%\end{align} -%%The metric is then: -%%\begin{align} -%% d = -%% \begin{pmatrix} -%% 0 & a(1)-a(2) & a(1)-a(3)\\ -%% a(2)-a(1) & 0 & a(2)-a(3)\\ -%% a(3)-a(1) & a(3)-a(2) & 0 -%% \end{pmatrix} -%%\end{align} -%%\end{MyExercise} -% -%%\begin{MyExercise} -%% \textbf{ -%% Compute the metric on the space of three points given by $d_{ij} = -%% \sup_{a\in A}\{|a(i) - a(j)|: ||[D, \pi(a)]|| \leq 1\}$ for the set of data -%% $A = \mathbb{C}^3$ acting in the defining representation $H = \mathbb{C}^3$, and -%% \begin{align} -%% D = -%% \begin{pmatrix} -%% 0 & d^{-1} & 0 \\ -%% d^{-1} & 0 & 0 \\ -%% 0 & 0 & 0 -%% \end{pmatrix} -%% \end{align} -%% for some $d \in \mathbb{R}$ -%%}\newline -%% -%% We have $A=\mathbb{C}^3$, $H=\mathbb{C}^3$ and $D$ from above, then -%% -%% \begin{align} -%% ||[D, \pi(a)]|| &= d^{-1}\left|\left| -%% \begin{pmatrix} -%% 0 & a(2)-a(1) & 0 \\ -%% -(a(2)-a(1)) & 0 & 0 \\ -%% 0 & 0 & 0 -%% \end{pmatrix} \right|\right| -%% \end{align} -%% The metric is then -%% \begin{align} -%% d = -%% \begin{pmatrix} -%% 0 & a(1)-a(2) & a(1) \\ -%% a(2)-a(1) & 0 & a(2) \\ -%% -a(1) & -a(2) & 0 -%% \end{pmatrix} -%% \end{align} -%%\end{MyExercise} -% -%%\begin{MyExercise} -%% \textbf{ -%% Show that $d_{ij}$ from Equation \ref{ext metric} is a metric on $\hat{A}$ by -%% establishing that: -%% \begin{align} -%% d_{ij} &= 0\;\;\; \Leftrightarrow \;\;\; i=j \label{metric 1} \\ -%% d_{ij} &= d_{ji} \label{metric 2}\\ -%% d_{ij} &\leq d_{ik} + d_{kj} \label{metric 3} -%% \end{align} -%% \begin{equation} \label{ext metric} -%% d_{ij} = \sup_{a\in A}\big\{|\text{Tr}(a(i)) - \text{Tr}((a(j))|: ||[D, a]|| \leq 1\big\} -%% \end{equation} -%%}\newline -%% -%%For Equation \ref{metric 1} set $i=j$ in \ref{ext metric}. -%%\begin{align} -%% d_{ii} &= \sup_{a \in A}\{|\text{Tr}(a(i)) - \text{Tr}((a(i))|: ||[D, a]|| \leq -%% 1\big\} \\ -%% &= \sup_{a \in A}\{0: ||[D, a]|| \leq 1\big\} = 0 -%%\end{align} -%%For Equation \ref{metric 2} obviously we have the commuting property of -%%addition. -%%\newline -%%For Equation \ref{metric 3}, for $k=j$ then $d_{kj} = 0$ and the equality -%%holds. For $i = k$ then $d_{ik} = 0$ and equality holds. Else set $d_{ik} = -%%1$ and $d_{kj} = 1$ then $d_{ij} = 1 \leq d_{ik} + d_{kj} = 2$ -%%\end{MyExercise} -% -%\subsubsection{Properties of Matrix Algebras} -%\begin{lemma} -% If $A$ is a unital C* algebra that acts faithfully on a finite -% dimensional Hilbert space, then $A$ is a matrix algebra of the Form: -% \begin{equation} -% A \simeq \bigoplus _{i=1}^N M_{n_i}(\mathbb{C}) -% \end{equation} -%\end{lemma} -%\begin{proof} -% Since $A$ acts faithfully on a Hilbert space, then $A$ is a C* -% subalgebra of a matrix algebra $L(H) = M_{\dim (H)}(\mathbb{C} -% \Rightarrow A \simeq \text{Matrix algebra}$. -%\end{proof} -% -%\begin{question} -% What does the author mean when he sais 'acts faithfully on a -% Hilbertspace`? Then the representation is fully reducible, or that the -% presentation is irreducible? -% \newline -% -% For a *-representation 'faithful` if it is injective. For a -% *-homomorphism 'faithful` means one-to-one correspondance -%\end{question} -% -%\begin{example} -% $A = M_n(\mathbb{C})$ and $H=\mathbb{C}^n$, $A$ acts on $H$ with matrix -% multiplication and standard inner product. $D$ on $H$ is a hermitian -% matrix $n\times n$ matrix. -%\end{example} -% -%$D$ is referred to as a finite Dirac operator as in as its $\infty$ -%dimensional on Riemannian Spin manifolds coming in Chapter 4. -%\newline -% -%Now can introduce a 'differential 'geometric structure` on the finite space X -%with the \textbf{devided difference} -%\begin{equation} -% \frac{a(i)-a(j)}{d_{ij}} -%\end{equation} -%for each pair $i$, $j$ $\in X$ the finite dimensional discrete space $X$. -%This appears in the entries in the commutator $[D, a]$ in the above -%exercises. -% -%\begin{definition} -% Given an finite spectral triple $(A, H, D)$, the $A$-bimodule of -% Connes' differential one-forms is: -% \begin{equation} -% \Omega _D ^1 (A) := \left\{ \sum _k a_k[D, b_k]: a_k, b_k \in A \right\} -% \end{equation} -%\end{definition} -% -%\begin{question} -% Is the Conne's differential one form the set of all '1st order -% differential operators` given $A$, that act on $H$? -%\end{question} -%Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$. -%%\begin{MyExercise} -%% \textbf{ -%% Verify that 'd` is a derivation of the C* algebra -%% \begin{align} -%% d(ab) = d(a)b + ad(b) \\ -%% d(a^*) = -d(a)^* -%% \end{align} -%%}\newline -%% -%% For the record $d(\cdot) = [D, \cdot]$, then we have -%% \begin{enumerate} -%% \item -%% \begin{align} -%% d(ab) &= [D, ab] = [D, a]b + a[D,b]\\ -%% &= d(a)b + ad(b) -%% \end{align} -%% \item -%% \begin{align} -%% d(a^*) &= [D, a^*] = Da^* - a^*D \\ -%% &=-(D^*a - aD^*) = -[D^*, a] \\ -%% &= -d(a)^* -%% \end{align} -%% \end{enumerate} -%%\end{MyExercise} -%%\begin{MyExercise} -%% \textbf{ -%% Verify that $\Omega _D^1 (A)$ is an $A$-bimodule by rewriting -%% } -%% \begin{align} -%% a(a_k[D, b_k])b = \sum_k a'_k[D, b'_k] \;\;\;\; a'_k, b'_k \in A -%% \end{align} -%% \newline -%% -%% Begin -%% \begin{align} -%% a(a_k[D, b_k])b &= aa_k(Db_k - b_k D) b = \\ -%% &= aa_k(Db_k b - b_k D b) = aa_k(Db_k b - b_k Db - b_kbD +b_kbD)=\\ -%% &= aa_k(Db_kb-b_kbD + b_k b D - b_k D b) = \\ -%% &= aa_k [D, b_kb] + aa_k b [D, b]=\\ -%% &= \sum _k a_k' [D, b_k'] -%% \end{align} -%% -%%\end{MyExercise} -% -%\begin{lemma} -% Let $(A, H, D) = (M_n(\mathbb{C}, \mathbb{C}^n, D)$, with $D$ a hermitian -% $n\times n$ matrix. If $D$ is not a multiple of the identity then: -% \begin{equation} -% \Omega _D ^1 (A) \simeq M_n(\mathbb{C}) = A -% \end{equation} -%\end{lemma} -% -%\begin{proof} -% Assume $D = \sum _i \lambda _i e_{ii}$ (diagonal), $\lambda _i \in \mathbb{R}$ and -% $\{e_{ij}\}$ the basis of $M_n(\mathbb{C}$. For fixed $i$, $j$ choose $k$ -% such that $\lambda _k \neq \lambda _j$ then -% \begin{align} \label{basis} -% \left(\frac{1}{\lambda _k - \lambda _j} e_{ik}\right) [D, e_{kj}] = -% e_{ij} -% \end{align} -% $e_{ij}\in \Omega _D ^1 (A)$ by the above definition. And $\Omega _D ^1 -% (A) \subset L(\mathbb{C}^n) = H \simeq M_n(\mathbb{C}) = A$ -%\end{proof} -% -%%\begin{MyExercise} -%% \textbf{ -%% Consider $(A=\mathbb{C}^2, H=\mathbb{C}^2, -%% D = \begin{pmatrix} 0 & \lambda \\ \bar{\lambda} & 0 -%% \end{pmatrix})$ with $\lambda \neq 0$. Show that $\Omega _D^1(A) -%% \simeq M_2(\mathbb{C})$ -%% } -%%\newline -%% -%% Because of the Hilbert Basis $D$ can be extended in terms of -%% the basis of $M_2(\mathbb{C})$, plugging this into Equation -%% \ref{basis} will get us the same cyclic result, thus -%% $\Omega _D^1(A) \simeq M_2(\mathbb{C})$ -%%\ -%%\end{MyExercise} -% -%\subsubsection{Morphisms Between Finite Spectral Triples} -%\begin{definition} -% two finite spectral tripes $(A_1, H_1, D_1)$ and $(A_2, H_2, D_2)$ are -% called unitarily equivalent if -% \begin{itemize} -% \item $A_1 = A_2$ -% \item $\exists \;\; U: H_1 \rightarrow H_2$, unitary with -% \begin{enumerate} -% \item $U\pi_1(a)U^* = \pi_2(a)$ with $a \in A_1$ -% \item $UD_1 U^* = D_2$ -% \end{enumerate} -% \end{itemize} -%\end{definition} -% -%Some remarks -%\begin{itemize} -% \item the above is an equivalence relation -% \item spectral unitary equivalence is given by the unitaries of the -% matrix algebra itself -% \item for any such $U$ then $(A, H, D) \sim (A, H, UDU^*)$ -% \item $UDU^* = D + U[D, U^*]$ of the form of elements in -% $\Omega _D^1 (A)$. -%\end{itemize} -% -%%\begin{MyExercise} -%% \textbf{ -%% Show that the unitary equivalence between finite spectral -%% triples is a equivalence relation -%%}\newline -%% -%% An equivalence relation needs to satisfy reflexivity, symmetry -%% transitivity. -%% Let $(A_1, H_1, D_1)$, $(A_2, H_2, D_2)$ and $(A_3, H_3, D_3)$ -%% be three finite spectral triples. -%% \newline -%% -%% For reflexivity $(A_1, H_1, D_1) \sim (A_1, H_1, D_1)$. So there -%% exists a $U: H_1 \rightarrow H_1$ unitary, which is the identity -%% and always exists. -%% \newline -%% -%% For symmetry we need -%% \begin{align} -%% (A_1, H_1, D_1) \sim (A_2, H_2, D_2) \Leftrightarrow -%% (A_2, H_2, D_2) \sim (A_1, H_1, D_1) -%% \end{align} -%% because $U$ is unitary: -%% \begin{align} -%% &U\pi_1(a)U^* = \pi_2(a) \;\;\; | \cdot U^*\boxdot U \\ -%% &U^*U\pi_1(a)U^*U = \pi_1(a) = U^*\pi_2(a)U \\ -%% \end{align} -%% The same with the symmetric operator $D$. -%% \newline -%% -%% For transitivity we need -%% \begin{align} -%% (A_1, H_1, D_1) &\sim (A_2, H_2, D_2) \;\;\; \text{and} \;\;\; -%% (A_2, H_2, D_2) \sim (A_3, H_3, D_3) \\ -%% &\Rightarrow (A_1, H_1, D_1) \sim (A_3, H_3, D_3) -%% \end{align} -%% There are two unitary maps $U_{12}:H_1 \rightarrow H_2$ and -%% $U_{23}: H_2 \rightarrow H_3$ then -%% \begin{align} -%% U_{23}U_{12} \pi_1(a) U^*_{12}U^*_{23} &= U_{23} -%% \pi_2(a) U_23^* \\ -%% &= \pi_3(a) \\ -%% U_{23}U_{12} D_1U^*_{12}U^*_{23} &= U_{23} -%% D_2 U_23^* \\ -%% &= D_3 -%% \end{align} -%%\end{MyExercise} -% -%Extending the this relation we look again at the notion of equivalence from -%Morita equivalence of Matrix Algebras. -%\newline -% -%\begin{definition} -% Let $A$ be an algebra. We say that $I \subset A$, as a vector space, is a -% right(left) ideal if $ab \in I$ for $a \in A$ and $b\in I$ (or $ba \in -% I$, $b\in I$, $a\in A$). We call a left-right ideal simply an ideal. -%\end{definition} -% -%Given a Hilbert bimodule $E \in KK_f(B, A)$ and $(A, H, D)$ we construct -%a finite spectral triple on $B$, $(B, H', D')$ -%\begin{equation} -% H' = E \otimes _A H -%\end{equation} -%We might define $D'$ with $D'(e \otimes \xi) = e\otimes D\xi$, thought this -%would not satisfy the ideal defining the balanced tensor product over $A$, -%which is generated by elements of the form -%\begin{align} -% e a \otimes \xi - e\otimes a \xi ;\;\;\;\; e\in E, a\in A, \xi \in H -%\end{align} -%This inherits the left action on $B$ from $E$ and has a $\mathbb{C}$ -%valued inner product space. $B$ also satisfies the ideal. -%\begin{equation} -% D'(e\otimes \xi) = e \otimes D \xi + \nabla (e) \xi \;\;\;\; e\in -% E, a\in A -%\end{equation} -%Where $\nabla$ is called the \textit{connection on the right A-module E} -%associated with the derivation $d=[D, \cdot]$ and satisfying the -%\textit{Leibnitz Rule} which is -%\begin{equation} -% \nabla(ae) = \nabla(e)a + e \otimes [D, a] \;\;\;\;\; e\in E,\; a\in A -%\end{equation} -%Then $D'$ is well defined on $E \otimes _A H$: -%\begin{align} -% D'(ea \otimes \xi - e \otimes a \xi) &= D'(ea \otimes \xi) - D'(e -% \otimes \xi) \\ -% &= ea\otimes D\xi + \nabla(ae) \xi - e \otimes D(a\xi ) - \nabla (e)a -% \xi \\ -% &= 0. -%\end{align} -%With the information thus far we can prove the following theorem -%\begin{theorem} -% If $(A, H, D)$ a finite spectral triple, $E \in KK_f(B, A)$. -% Then $(V, E\otimes _A H, D')$ is a finite spectral triple, provided that -% $\nabla$ satisfies the compatibility condition -% \begin{equation} -% \langle e_1, \nabla e_2 \rangle _E - \langle \nabla e_1, e_2 -% \rangle _E = d\langle e_1, e_2 \rangle _E \;\;\;\; e_1, e_2 \in E -% \end{equation} -%\end{theorem} -%\begin{proof} -% $E\otimes _A H$ was shown in the previous subsection (text before the -% theorem). The only thing left is to show that $D'$ is a symmetric -% operator, this we can just compute. Let $e_1, e_2 \in E$ and $\xi _1, -% \xi _2 \in H$ then -% \begin{align} -% \langle e_1 \otimes \xi _1, D'(e_2 \otimes \xi_2)\rangle _{E\otimes _A H} &= -% \langle \xi _1, \langle e_1, \nabla e_2\rangle _E \xi _2\rangle + \langle \xi _1 , \langle e_1, e_2\rangle _E D\xi -% _2\rangle _H \\ -% &= \langle \xi _1, \langle \nabla e_1, e_2\rangle _E \xi _2\rangle _H + \langle \xi _1, d\langle e_1, e_2\rangle _E -% \xi _2\rangle _H \\ -% &+ \langle D\xi _1,\langle e_1, e_2\rangle _E \xi _2\rangle _H - \langle \xi _1, [D, \langle e_1, e_2\rangle _E] \xi -% _2 \rangle _H \\ -% &= \langle D'(e_1 \otimes \xi _1), e_2 \otimes \xi _2\rangle _{E \otimes _A H} -% \end{align} -%\end{proof} -% -%%\begin{MyExercise} -%% \textbf{ -%% Let $\nabla$ and $\nabla'$ be two connections on a right $A$-module -%% $E$. Show that $\nabla - \nabla'$ is a right $A$-linear map -%% $E \rightarrow E\otimes _A \Omega _D^1(A)$ -%%}\newline -%% -%% Both $\nabla$ and $\nabla'$ need to satisfy the Leiblitz rule, so -%% let's see if $\nabla - \nabla'$ does. -%% -%% \begin{align} -%% \nabla(ea)-\nabla'(ea)&=\nabla(e) + e\otimes[D, a]\\ -%% &-(\nabla'(e)a + e\otimes[D',a])\\ -%% &=\bar{\nabla}a + e\otimes(Da-aD-D'a+aD')\\ -%% &=\bar{\nabla}a + e\otimes((D-D')a-a(D-D'))\\ -%% &=\bar{\nabla}a + e\otimes[D', a]\\ -%% &=\bar{\nabla}(ea) -%% \end{align} -%% Therefore $\nabla-\nabla'$ is a linear map. -%%\end{MyExercise} -% -%%\begin{MyExercise} -%% \textbf{ -%% Construct a finite spectral triple $(A, H', D')$ from $(A, H, D)$ -%% \begin{enumerate} -%% \item show that the derivation $d(\cdot):A \rightarrow A\otimes _A -%% \Omega_D^1(A)=\Omega_D^1(A)$ is a connection on $A$ -%% considered a right $A$-module -%% \item Upon identifying $A\otimes_A H\simeq H$, what is $D'$ -%% when the connection is $d(\cdot)$. -%% \item Use 1) and 2) to show that any connection $\nabla: -%% A\rightarrow A\otimes_A \Omega_D^1(A)$ is given by -%% \begin{align} -%% \nabla = d + \omega -%% \end{align} -%% where $\omega \in \Omega_D^1(A)$ -%% \item Upon identifying $A\otimes_A H \simeq H$, what is the -%% difference operator $D'$ with the connection on $A$ given by -%% $\nabla = d + \omega$ -%% \end{enumerate} -%%} -%% \begin{enumerate} -%% \item $\nabla(e \cdot a) = d(a)$ -%% \item -%% $D'(a\xi) = a(D\xi) + (\nabla a) \xi = D(a\xi)$ -%% \item Use the identity element $e \in A$\\ -%% $\nabla (e\cdot a) = \nabla(e) a + 1 \otimes d(a)=d(a) -%% \nabla(e) a$ -%% \item $D'(a\otimes \xi) = D'(a \xi) = a(D\xi) + (\nabla a)\xi = -%% a(D\xi) + \nabla(e \cdot a) \xi \\ -%% = D(a\xi) + \nabla(e) (a\xi)$ -%% \end{enumerate} -%%\end{MyExercise} -% -%\subsubsection{Graphing Finite Spectral Triples} -%\begin{definition} -% A \textit{graph} is a ordered pair $(\Gamma ^{(0)}, \Gamma ^{(1)})$. -% Where $\Gamma ^{(0)}$ is the set of vertices (nodes) and $\Gamma ^{(1)}$ -% a set of pairs of vertices (edges) -%\end{definition} -%\begin{figure}[h!] -% \centering -%\begin{tikzpicture}[ -% mass/.style = {draw,circle, minimum size=0.2cm, inner sep=0pt, thick}, -% spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},] -% \node[mass] (m1) at (1,1.5) {}; -% \node[mass] (m2) at (-1,1.5) {}; -% \node[mass] (m3) at (0,0) {}; -% -% \draw (m1) -- (m2); -% \draw (m1) -- (m3); -% \draw (m2) -- (m3); -% \end{tikzpicture} -% \caption{A simple graph with three vertices and three edges} -%\end{figure} -%%\begin{MyExercise} -%% \textbf{ -%% Show that any finite-dimensional faithful representation $H$ of a matrix -%% algebra $A$ is completely reducible. To do that show that the complement -%% $W^{\perp}$ of an $A$-submodule $W\subset H$ is also an $A$-submodule -%% of $H$. -%%}\newline -%% -%% $A\simeq \bigoplus_{i=1}^N M_{n_i}(\mathbb{C})$ is the matrix algebra -%% then $H$ is a Hilbert $A$-bimodule and $W$ a submodule of $A$. -%% Because we have $H = W \cup W^{\perp}$, then $W^{\perp}$ is naturally a -%% $A$-submodule, because elements in $W^{\perp}$ need to satisfy the -%% bimodularity. -%%\end{MyExercise} -%\begin{definition} -% A $\Lambda$-decorated graph is given by an ordered pair $(\Gamma, -% \Lambda)$ of a finite graph $\Gamma$ and a set of positive integers -% $\Lambda$ with the labeling -% \begin{itemize} -% \item of the vetices $v\in \Gamma ^{(0)}$ given by $n(\nu) \in -% \Lambda$ -% \item of the edges $e = (\nu _1, \nu _2) \in \Gamma ^{(1)}$ by -% operators -% \begin{itemize} -% \item $D_e: \mathbb{C}^{n(\nu _1)} \rightarrow -% \mathbb{C}^{n(\nu _2)}$ -% \item and $D_e^*: \mathbb{C}^{n(\nu _2)} \rightarrow -% \mathbb{C}^{n(\nu _1)}$ its conjugate traspose -% (pullback?) -% \end{itemize} -% \end{itemize} -% such that -% \begin{equation} -% n(\Gamma ^{(0)}) = \Lambda -% \end{equation} -%\end{definition} -%\begin{question} -% Would then $D_e$ be the pullback? -%\end{question} -%\begin{question} -% These graphs are important in the next chapter I should look -% into it more, I don't understand much here, specific -% how to construct them with the abstraction of a spectral triple... -%\end{question} -% -%The operator $D_e$ between $\textbf{n}_i$ and $\textbf{n}_j$ add up to -%$D_{ij}$ -%\begin{align} -% D_{ij} = \sum\limits_{\substack{e = (\nu _1, \nu _2) \\ n(\nu _1) = -% \textbf{n}_i \\ n(\nu _2) = \textbf{n}_j}} D_e -%\end{align} -% -%\begin{theorem} -% There is a on to one correspondence between finite spectral triples -% modulo unitary equivalence and $\Lambda$-decorated graphs, given by -% associating a finite spectral triples $(A, H, D)$ to a $\Lambda$ decorated -% graph $(\Gamma, \Lambda)$ in the following way: -% \begin{equation} -% A = \bigoplus _{n\in \Lambda} M_n(\mathbb{C}); \;\;\; -% H = \bigoplus _{\nu \in \Gamma ^{(0)}} \mathbb{C}^{n(\nu)}; \;\;\; -% D = \sum _{e \in \Gamma ^{(1)}} D_e + D_e^* -% \end{equation} -%\end{theorem} -% \begin{figure}[h!] -% \centering -% \begin{tikzpicture}[ -% mass/.style = {draw,circle, minimum size=0.3cm, inner sep=0pt, thick}, -% ] -% -% \node[mass, label={\textbf{n}}] (m1) at (1,0) {}; -% \draw (m1) to [out=330, in=210, looseness=25] node[above] {$D_e$} (m1); -% \end{tikzpicture} -% \caption{A $\Lambda$-decorated Graph of $(M_n(\mathbb{C}), \mathbb{C}^n, -% D = D_e + D_e^*)$} -%\end{figure} -% -%%\begin{MyExercise} -%% \textbf{ -%% Draw a $\Lambda$ decorated graph corresponding to the spectral triple -%% $(A=\mathbb{C}^3, H=\mathbb{C}^3, D=\begin{pmatrix}0 & \lambda & 0\\ -%% \bar{\lambda} &0 &0 \\ 0&0&0\end{pmatrix})$ -%%}\newline -%% -%%\centering -%%\begin{tikzpicture}[ -%% mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick}, -%% spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},] -%% \node[mass] (m1) at (-1,1.5) {\textbf{1}}; -%% \node[mass] (m2) at (1,1.5) {\textbf{2}}; -%% \node[mass] (m3) at (3,1.5) {\textbf{3}}; -%% -%% \draw[style=thick, -] (1.1,1.7) -- (-1.1,1.7); -%% \draw[style=thick, -] (1.1,1.3) -- (-1.1,1.3); -%% \end{tikzpicture} -%% % \captionof{figure}{Solution} -%%\end{MyExercise} -%%\begin{MyExercise} -%% \textbf{ -%% Use $\Lambda$-decorated graphs to classify all finite spectral triples -%% (modulo unitary equivalence) on the matrix algebra -%% $A=\mathbb{C}\oplus M_2(\mathbb{C})$ -%%}\newline -%% -%% \centering -%%\begin{tikzpicture}[ -%% mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick}, -%% spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},] -%% \node[mass] (m1) at (-1,1) {\textbf{1}}; -%% \node[mass] (m2) at (1,1) {\textbf{2}}; -%% \node[mass] (m3) at (3,1) {\textbf{3}}; -%% -%% \node[mass] (m4) at (-1,0) {\textbf{1}}; -%% \node[mass] (m5) at (1,0) {\textbf{2}}; -%% \node[mass] (m6) at (3,0) {\textbf{3}}; -%% -%% \node[mass] (m7) at (-1,-1) {\textbf{1}}; -%% \node[mass] (m8) at (1,-1) {\textbf{2}}; -%% \node[mass] (m9) at (3,-1) {\textbf{3}}; -%% -%% \node[mass] (m10) at (-1,-2) {\textbf{1}}; -%% \node[mass] (m11) at (1,-2) {\textbf{2}}; -%% \node[mass] (m12) at (3,-2) {\textbf{3}}; -%% -%% \draw[style=thick, -] (1.1,0.2) -- (-1.1,0.2); -%% \draw[style=thick, -] (1.1,-0.2) -- (-1.1,-0.2); -%% \draw[style=thick, -] (m7) to [out=330, in=210, looseness=10] node[above] {} (m7); -%% \draw[style=thick, -] (m10) -- (m11) ; -%% -%%\end{tikzpicture} -%%% \captionof{figure}{Solution $A=M_3(\mathbb{C})$} -%%\end{MyExercise} -%\subsubsection{Graph Construction of Finite Spectral Triples} -%\textbf{Algebra:}We know if a acts on a finite dimensional Hilbert space then -%this C* algebra is isomorphic to a matrix algebra so $A \simeq -%\bigoplus_{i=1}^{N}M_{n_i}(\mathbb{C})$. Where $i\in -%\hat{A}$ represents an equivalence class and runs from $1$ to $N$, -%thus $\hat{A}\simeq\{1,\dots, N\}$. We label equivalence classes by -%$\textbf{n}_i$, then $\hat{A}\simeq\{\textbf{n}_1,\dots,\textbf{n}_N\}$. -%\newline -% -%\textbf{Hilbert Space:} Since every Hilbert space that acts faithfully on a -%C* algebra is completely reducible, it is isomorphic to the composition -%of irreducible representations. $H \simeq \bigoplus_{i=1}^N\mathbb{C}^{n_i} -%\otimes V_i$. Where all $V_i$'s are Vector spaces, their dimension is the -%multiplicity of the representation landed by $\textbf{n}_i$ to $V_i$ itself -%by the multiplicity space. -%\newline -% -%\textbf{Finite Dirac Operator:} $D_{ij}$ is connecting nodes $\textbf{n}_i$ -%and $\textbf{n}_j$, with a symmetric map $D_{ij}:\mathbb{C}^{n_i}\otimes V_i -%\rightarrow \mathbb{C}^{n_j}\otimes V_j$ -%\newline -% -%To draw a graph, draw nodes in position $\textbf{n}_i\in \hat{A}$. -%Multiple nodes at the same position represent multiplicities in $H$. -%Draw lines between nodes to represent $D_{ij}$. -% -%\begin{figure}[h!] -% \centering -%\begin{tikzpicture} -% \node[draw, label=above:{$\textbf{n}_1$},circle, thick] at (-3,0) {}; -% \node[label=above:{$\dots$}] at (-2,0) {}; -% \node[draw, label=above:{$\textbf{n}_i$},circle, thick] at (-1,0) {}; -% \node[label=above:{$\dots$}] at (0,0) {}; -% \node[draw, label=above:{$\textbf{n}_j$},circle, thick] at (1,0) {}; -% \node[draw, label=above:{},circle, thick, inner sep=0cm, minimum -% size=0.2cm] at (1,0) {}; -% \node[label=above:{$\dots$}] at (2,0) {}; -% \node[draw, label=above:{$\textbf{n}_N$},circle, thick] at (3,0) {}; -% -% \draw[style=thick, -] (-1,-0.2) -- (1,-0.2); -% \draw[style=thick, -] (-1,0.2) -- (1,0.2); -% \path[style=thick, -] (-1,-0.2) edge[bend right=15] -% node[pos=0.5,below] {} (3,-0.2); -% \end{tikzpicture} -% \caption{Example} -%\end{figure} -% -%\subsection{Finite Real Noncommutative Spaces} -%\subsubsection{Finite Real Spectral Triples} -%Add on to finite real spectral triples a \textit{real structure}. The -%requirement is that $H$ is a $A$-$A$-bimodule (before only a $A$-left -%module). -%\newline -% -%For this we introduce a $\mathbb{Z}_2$-grading $\gamma$ with -%\begin{align} -% &\gamma ^* = \gamma \\ -% &\gamma ^2 = 1 \\ -% &\gamma D = - D \gamma\\ -% &\gamma a = a \gamma \;\;\;\; a\in A -%\end{align} -% -%\begin{definition} -% A \textit{finite real spectral triple} is given by a finite spectral -% triple $(A, H, D)$ and a anti-unitary operator $J:H\rightarrow H$ called -% the \textit{real structure}, such that -% \begin{align} -% a^\circ := J a^* J^{-1} -% \end{align} -% is a right representation of $A$ on $H$, that is $(ab)^\circ = b^\circ -% a^\circ$. With two requirements -% \begin{align} -% &[a, b^\circ] = 0\\ -% &[[D, a],b^\circ] = 0. -% \end{align} -% They are called the \textit{commutant property}, and mean that the left -% action of an element in $A$ and $\Omega _D^1(A)$ commutes with the right -% action on $A$. -%\end{definition} -%\begin{definition} -% The $KO$-dimension of a real spectral triple is determined by the sings -% $\epsilon, \epsilon ' ,\epsilon '' \in \{-1, 1\}$ appearing in -% \begin{align} -% &J^2 = \epsilon \\ -% &JD = \epsilon \ DJ\\ -% &J\gamma = \epsilon '' \gamma J. -% \end{align} -%\end{definition} -%\begin{table}[h!] -% \centering -% \caption{$KO$-dimension $k$ modulo $8$ of a real spectral triple} -% \begin{tabular}{ c | c c c c c c c c} -% \hline -% $k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ -% \hline -% $\epsilon$ & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ -% $\epsilon '$ & 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\ -% $\epsilon ''$ & 1 & & -1 & & 1 & & -1 & \\ -% \hline -% \end{tabular} -%\end{table} -% -% -%\begin{definition} -%An opposite-algebra $A^\circ$ of a $A$ is defined to be equal to $A$ as a -%vector space with the opposite product -%\begin{align} -% &a\circ b := ba\\ -% &\Rightarrow a^\circ = Ja^* J^{-1} \;\;\; \text{defines the left -% representation of $A^\circ$ on $H$} -%\end{align} -%\end{definition} -% -% -%\begin{example} -% Matrix algebra $M_N(\mathbb{C})$ acting on $H=M_N(\mathbb{C})$ by left -% matrix multiplication with the Hilbert Schmidt inner product. -% \begin{align} -% \langle a , b \rangle = \text{Tr}(a^* b) -% \end{align} -% Then we define $\gamma (a) = a$ and $J(a) = a^*$ with $a\in H$. -% Since $D$ mus be odd with respect to $\gamma$ it vanishes identically. -%\end{example} -% -%\begin{definition} -% We call $\xi \in H$ \textbf{cyclic vector} in $A$ if: -% \begin{align} -% A\xi := { a\xi:\;\; a\in A} = H -% \end{align} -% -% We call $\xi \in H$ \textbf{separating vector} in $A$ if: -% \begin{align} -% a\xi = 0\;\; \Rightarrow \;\; a=0;\;\;\; a\in A -% \end{align} -%\end{definition} -% -%%\begin{MyExercise} -%% \textbf{ -%% In the previous example, show that the right action on $M_N(\mathbb{C})$ -%% on $H = M_N(\mathbb{C})$ as defined by $a \mapsto a^\circ$ -%% is given by right matrix multiplication. -%%}\newline -%% -%% \begin{align} -%% a^\circ \xi = J a^* J^{-1}\xi = Ja^* \xi^* = J\xi a=\xi^* a -%% \end{align} -%%\end{MyExercise} -%%\begin{MyExercise} -%% \textbf{ -%% Let $A= \bigoplus _i M_{n_i}(\mathbb{C})$, represented on $H = \bigoplus_i \mathbb{C}^{n_i} -%% \otimes \mathbb{C}^{m_i}$, meaning that the irreducible representation $\textbf{n}_i$ has -%% multiplicity $m_i$. -%% \begin{enumerate} -%% \item Show that the commutant $A'$ of $A$ is $A'\simeq \bigoplus_i M_{m_i} (\mathbb{C})$. As a consequence show $A'' \simeq A$. -%% \item Show that if $\xi$ is a separating vector for $A$ than it is cyclic for $A'$. -%% \end{enumerate} -%% } -%% -%% -%% \begin{enumerate} -%% \item We know the multiplicity space is $V_i = \mathbb{C}^{m_i}$. We know that -%% for $T\in H$ and -%% $a\in A'$ to work we need $aT=Ta$ by laws of matrix multiplication we need -%% $A' \simeq \oplus _i M_{m_i}(\mathbb{C})$ for this to work since $H = \bigoplus_i -%% \mathbb{C}^{n_i} -%% \otimes \mathbb{C}^{m_i}$ -%% -%% \item Suppose $\xi$ is cyclic for $A$ then $A'\xi = \{0\}$. Under the action of $A$ we -%% then have $A'A\xi = AA' \xi = 0 \Rightarrow A' = 0$.\\ -%% Suppose now $\xi$ is separating for $A'$, we have $A'\xi = \{0\}$. We can define a -%% projection in $A'$, $A\xi = P'$. With this projection we have $(1-P')\xi = 0 -%% \Rightarrow 1-P' = 0 \Rightarrow A\xi = H$. -%% \end{enumerate} -%%\end{MyExercise} -%%\begin{MyExercise} -%% \textbf{ Suppose $(A, H, D = 0)$ is a finite spectral triple such that $H$ possesses a -%% cyclic and separating vector for $A$. -%% \begin{enumerate} -%% \item Show that the formula $S(a \xi) = a* \xi$ defines a anti-linear operator\\ -%% $S: H \rightarrow H$. -%% \item Show that $S$ is invertible -%% \item Let $J: H \rightarrow H$ be the operator in $S = J \Delta ^{1/2}$ with -%% $\Delta = S^*S$. Show that $J$ is anti-unitary -%% \end{enumerate} -%% } -%% -%% -%% \begin{enumerate} -%% \item By composition $S(a\xi) = a*\xi$ this is literally anti-linearity. Does this mean -%% $S\xi = \xi$? -%% \item Let $\xi \in H$ be cyclic then: $S(A\xi) = A^*\xi = A\xi = H$. The same has to work -%% for $S^{-1}$ if not then $\xi$ wouldn't exist. $S^{-1}(A^*\xi) = S^{-1}(H) = H$. -%% \item Since $S$ is bijective then $\Delta ^{1/2}$ and $J$ need to be bijective. -%% We also have $J = S \Delta^{-1/2}$ and $\Delta^* = \Delta$\\ -%% Now let $\xi _1 , \xi _2 \in H$ \begin{align} -%% <J \xi _1 , J \xi _2 > &= < J^*J\xi_1 , \xi_2>^* =\\ -%% &= <(\Delta ^{-1/2})^* S^* S \Delta ^{-1/2} \xi_1, \xi_2>^* = \\ -%% &= <(\Delta^{-1/2})^* \Delta \Delta^{-1/2} \xi_1, \xi_2>^* =\\ -%% &= <\Delta^{-1/2} \Delta^{1/2}\Delta^{1/2} \Delta^{-1/2} \xi_1, \xi_2>^* =\\ -%% &= <\xi _1, \xi_2>^* = <\xi_2 , \xi_1>. -%% \end{align} -%% \end{enumerate} -%%\end{MyExercise} -%\subsubsection{Morphisms Between Finite Real Spectral Triples} -%Extend unitary equivalence of finite spectral triples to real ones (with $J$ -%and $\gamma$) -% -%\begin{definition} -% We call two finite real spectral triples $(A_1, H_1 ,D_1 ; J_1 , \gamma -% _1)$ and $(A_2, H_2, D_2; J_2, \gamma _2)$ unitarily equivalent if $A_1 = -% A_2$ and if there exists a unitary operator $U: H_1 \rightarrow H_2$ such -% that -% \begin{align} -% &U\pi_1(a) U^* = \pi _2(a)\\ -% &UD_1U^*=D_2\\ -% &U\gamma _1 U^* = \gamma _2\\ -% &UJ_1 U^* = J_2 -% \end{align} -%\end{definition} -%\begin{definition} -% Let $E$ be a $B$-$A$ bimodule. The \textit{conjugate Module} $E^\circ$ is -% given by the $A$-$B$-bimodule. -% \begin{align} -% E^\circ = \{\bar{e} : e\in E\} -% \end{align} -% with -% \begin{align} -% a \cdot \bar{e} \cdot b = b^* \bar{e} a^* \;\;\;\; \forall a\in A, b \in -% B -% \end{align} -%\end{definition} -%$E^\circ$ is not a Hilbert bimodule for $(A, B)$ because it doesn't have a -%natural $B$-valued inner product. But there is a $A$-valued inner product on -%the left $A$-module $E^\circ$ with -%\begin{align} -% \langle \bar{e}_1, \bar{e}_2 \rangle = \langle e_2 , e_1 \rangle -% \;\;\;\; e_1, e_2 \in E -%\end{align} -%and linearity in $A$: -%\begin{align} -% \langle a \bar{e}_1, \bar{e}_2 \rangle = a \langle \bar{e}_1, \bar{e}_2 -% \rangle \;\;\;\; \forall a \in A. -%\end{align} -% -%%\begin{MyExercise} -%% \textbf{Show that $E^\circ$ is a Hilbert bimodule $(B^{\circ}, A^{\circ})$ -%% }\newline -%% -%% -%% Straightforward show properties of the Hilbert bimodule and its $B^{\circ}$ -%% valued inner product. Let $\bar{e}_1, \bar{e}_2 \in E^{\circ}$ and $a^\circ \in A, -%% b^\circ \in B$. \\ -%% \begin{align} -%% <\bar{e}_1, a^\circ \bar{e}_2> &= <\bar{e}_1, Ja^*J^{-1} \bar{e}_2>=\\ -%% &= <\bar{e}_1 , J a^* e_2> = \\ -%% &= <J^{-1} e_1, a^* e_2> =\\ -%% & = <a^* e_1, e_2>= <J^{-1}(a^\circ)^* J e_1, e_2> = \\ -%% & = <J^{-1} (a^\circ)^* \bar{e}_1, e_2> =\\ -%% & = <(a^\circ)^* \bar{e}_1 , \bar{e}_2>. -%% \end{align} -%% -%% Next $<\bar{e}_1, \bar{e}_2 b^\circ> = <\bar{e}_1, \bar{e_2}> b^\circ$. -%% \begin{align} -%% <\bar{e}_1, \bar{e}_2 b^\circ> &= <\bar{e}_1, \bar{e}_2 Jb^*J^{-1}> =\\ -%% &= <\bar{e}_1, \bar{e_2}> Jb^*J^{-1} = \\ -%% &= <\bar{e}_1, \bar{e}_2> b^\circ. -%% \end{align} -%% Then: -%% \begin{align} -%% (<\bar{e}_1, \bar{e}_2)>_{E^\circ})^* &= (<e_2, e_1>_E)^* =\\ -%% &= <e_1, e_2>_E^* = <\bar{e}_2, \bar{e}_2>_{E^\circ} -%% \end{align} -%% And of course $<\bar{e}, \bar{e}> = <e, e> \geq 0$ -%%\end{MyExercise} -% -%\subsubsection{Construction of a Finite Real Spectral Triple from a Finite -%Real Spectral Triple} -%Given a Hilbert bimodule $E$ for $(B, A)$ we construct a spectral triple -%$(B, H', D'; J', \gamma ')$ from $(A, H, D; J, \gamma)$ -% -%For the $H'$ we make a $\mathbb{C}$-valued inner product on $H'$ by combining -%the $A$ valued inner product on $E$ and $E^\circ$ with the -%$\mathbb{C}$-valued inner product on $H$. -%\begin{align} -% H' := E\otimes _A H \otimes _A E^\circ -%\end{align} -% -%Then the action of $B$ on $H'$ is: -%\begin{align} -% b(e_2 \otimes \xi \otimes \bar{e}_2 ) = (be_1) \otimes \xi \otimes -% \bar{e}_2 -%\end{align} -%The right action of $B$ on $H'$ defined by action on the right component -%$E^\circ$ -%\begin{align} -% J'(e_1 \otimes \xi \otimes \bar{e}_2) = e_2 \otimes J \xi \otimes -% \bar{e}_1 -%\end{align} -%with $b^\circ = J' b^* (J')^{-1}$, $b^* \in B$ action on $H'$. -%\newline -% -% -%\newpage -%%\begin{MyExercise} -%% \textbf{ Let $\nabla : E \Rightarrow E \otimes _A \Omega _d^1 (A)$ be a right connection on $E$ -%% consider the following anti-linear map: -%% \begin{align} -%% \tau : E \otimes_A \Omega _D^1 (A) &\rightarrow \Omega _D^1 (A) \otimes_A E^\circ\\ -%% e \otimes \omega &\mapsto -\omega ^* \otimes \bar{e} -%% \end{align} -%% Show that the map $\bar{\nabla} : E^\circ \rightarrow \Omega _D^1(A) \otimes E^\circ$ -%% with $\bar{\nabla}(\bar{e}) = \tau \circ \nabla(e)$ is a left connection, that means -%% show that it satisfied the left Leibniz rule: -%% \begin{equation} -%% \bar{\nabla}(a\bar{e}) = [D, a] \otimes \bar{e} + a \bar{\nabla}(\bar{e}) -%% \end{equation} -%% } -%% -%% Hagime: -%% \begin{align} -%% &\text{For one:}\\ -%% &\tau \circ \nabla(ae) = \bar{\nabla}(a\bar{e}) = \bar{\nabla}(a^* \bar{e})\\ -%% &\text{For two:}\\ -%% &\tau \circ \nabla(ae) = \tau(\nabla(e)a) + \tau \circ(e \otimes d(a))=\\ -%% &=a^*\bar{\nabla}(\bar{e}) - d(a)^* \otimes \bar{e}. \\ -%% &= a^*\bar{\nabla}(\bar{e}) + d(a^*) \otimes \bar{e}. -%% \end{align} -%%\end{MyExercise} -%Then the connections -%\begin{align} -% &\nabla: E \rightarrow E\otimes _A \Omega _D ^1(A) \\ -% &\bar{\nabla}:E^\circ \rightarrow \Omega _D^1(A) \otimes _A E^\circ -%\end{align} -%give us the Dirac operator on $H' = E \otimes _A H \otimes _A E^\circ$ -%\begin{align} -% D'(e_1 \otimes \xi \otimes \bar{e}_2) = (\nabla e_1) \xi \otimes -% \bar{e_2}+ e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes -% \xi(\bar{\nabla}\bar{e}_2) -%\end{align} -% -%And the right action of $\omega \in \Omega _D ^1(A)$ on $\xi \in H$ is -%defined by -%\begin{align} -% \xi \mapsto \epsilon' J \omega ^* J^{-1}\xi -%\end{align} -% -%Finally for the grading -%\begin{align} -% \gamma ' = 1 \otimes \gamma \otimes 1 -%\end{align} -% -%\begin{theorem} -% Suppose $(A, H, D; J, \gamma)$ is a finite spectral triple of -% $KO$-dimension $k$, let $\nabla$ be like above satisfying the -% compatibility condition (like with finite spectral triples). -% -% Then $(B, H',D'; J', \gamma')$ is a finite spectral triple of -% $KO$-Dimension $k$. ($H', D', J', \gamma'$ like above) -%\end{theorem} -% -%\begin{proof} -% The only thing left is to check if the $KO$-dimension is preserved, -% for this we check if the $\epsilon$'s are the same. -% \begin{align} -% &(J')^2 = 1 \otimes J^2 \otimes 1 = \epsilon\\ -% &J' \gamma '= \epsilon ''\gamma'J' -% \end{align} -% and for $\epsilon '$ -% \begin{align} -% J'D'(e_1 \otimes \xi \otimes \bar{e}_2)&=J'((\nabla e_1) \xi \otimes -% \bar{e_2} + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau -% \nabla e_2))\\ -% &= \epsilon' D'(e_2 \otimes J\xi \otimes \bar{e}_2)\\ -% &= \epsilon' D'J'(e_1 \otimes \xi \bar{e}_2) -% \end{align} -%\end{proof} -% -% -%\end{document} +To summarize, there is a duality between finite spaces and Morita equivalence classes of matrix algebras. By replacing $*$-homomorphism $A\rightarrow B$ with Hilbert bimodules $(A,B)$ we introduce +a richer structure of morphism between matrix algebras. diff --git a/src/thesis/chapters/finitencg.tex b/src/thesis/chapters/finitencg.tex @@ -0,0 +1,693 @@ + +\subsubsection{Metric on Finite Discrete Spaces} +Let us come back to our finite discrete space $X$, we can describe it by a +structure space $\hat{A}$ of a matrix algebra $A$. To describe distance between +two points in $X$ (as we would in a metric space) we use an array $\{d_{ij}\}_{i, +j \in X}$ of \textit{real non-negative} entries in $X$ such that +\begin{itemize} + \item $d_{ij} = d_{ji}$ Symmetric + \item $d_{ij} \leq d_{ik} d_{kj}$ Triangle Inequality + \item $d_{ij} = 0$ for $i=j$ (the same element) +\end{itemize} + +In the commutative case, the algebra $A$ is commutative and can describe the +metric on $X$ in terms of algebraic data. +\begin{theorem} + Let $d_{ij}$ be a metric on $X$ a finite discrete space with $N$ points, $A = \mathbb{C}^N$ + with elements $a = (a(i))_{i=1}^N$ such that $\hat{A} \simeq X$. Then there exists a + representation $\pi$ of $A$ on a finite-dimensional inner product space $H$ and a symmetric + operator $D$ on $H$ such that + \begin{equation} + d_{ij} = \sup_{a\in A}\bigg\{\big|a(i)-a(j)\big| : |\big|\big[D, + \pi(a)]\big|\big| \leq 1\bigg\} + \end{equation} +\end{theorem} + +\begin{proof} + We claim that this would follow from the equality: + \begin{equation} + \big|\big|[D, \pi(a)]\big|\big| = \max_{k\neq l} + \bigg\{\frac{1}{d_{kl}}\big|a(k) - a(l)\big|\bigg\} + \label{induction} + \end{equation} + This can be proved with induction. Set $N=2$ then $H=\mathbb{C}^2$, $\pi:A\rightarrow L(H)$ and + a hermitian matrix $D$. + \begin{align} + \pi(a) = + \begin{pmatrix} + a(1) & 0 \\ + 0 & a(2) + \end{pmatrix} + \;\;\;\; + D = + \begin{pmatrix} + 0 & (d_{12})^{-1} \\ + (d_{21})^{-1} & 0 + \end{pmatrix} + \end{align} + Then we commpute the commutator + \begin{align} + \big|\big|[D, \pi(a)]\big|\big| = (d_{12})^{-1} \big| a(1) - a(2)\big| + \end{align} + + For the case $A=\mathbb{C}^3$, we have $H = (\mathbb{C}^2)^{\oplus 3} = H_2 + \oplus H_2^1 \oplus H_2^2$. The the representation $\pi (a)$ reads + \begin{align} + \pi((a(1), a(2), a(3)) &= + \begin{pmatrix} + a(1) & 0 \\ 0 & a(2) + \end{pmatrix} \oplus + \begin{pmatrix} + a(1) & 0 \\ 0 & a(3) + \end{pmatrix} \oplus + \begin{pmatrix} + a(2) & 0 \\ 0 & a(2) + \end{pmatrix} \nonumber \\ + & = \text{diag}\big(a(1), a(2), a(1), a(3), a(2), + a(3)\big) + \end{align} + And the operator $D$ takes the form + \begin{align} + D &= + \begin{pmatrix} + 0 & x_1 \\ x_1 & 0 + \end{pmatrix} \oplus + \begin{pmatrix} + 0 & x_2 \\ x_2 & 0 + \end{pmatrix} \oplus + \begin{pmatrix} + 0 & x_3 \\ x_3 & 0 + \end{pmatrix} \nonumber \\ + &= + \begin{pmatrix} + 0 & x_1 & 0 & 0 & 0 & 0 \\ + x_1 & 0 & 0 & 0 & 0 & 0 \\ + 0 & 0 & 0 & x_2 & 0 & 0 \\ + 0 & 0 & x_2 & 0 & 0 & 0 \\ + 0 & 0 & 0 & 0 & 0 & x_3 \\ + 0 & 0 & 0 & 0 & x_3 & 0 \\ + \end{pmatrix}. + \end{align} + Then the norm of the commutator would be the largest eigenvalue + \begin{align}\label{eq:skew matrix} + &\big|\big|[D, \pi(a)]\big|\big| = \big|\big|D\pi(a) - \pi(a)D\big|\big|, + \end{align} + where the matrix in the norm from equation \eqref{eq:skew matrix} is a + skew symmetric matrix. Its eigenvalues are $i\lambda_1, i\lambda_2, + i\lambda_3, i\lambda_4$. The $\lambda$'s are on the upper and lower + diagonal. The matrix norm would be the maximum of the norm with the + larges eigenvalues: + \begin{align} + \big|\big|[D, \pi(a)]\big|\big| = \max_{a\in A}\bigg\{&x_1\big|a(2)-a(1)\big|,\nonumber\\ &x_2\big|(a(3)-a(1))\big|,\nonumber\\ + &x_3\big|(a(3)-a(2))\big|\bigg\}. + \end{align} + Hence the metric turns out to be + \begin{align} + d = + \begin{pmatrix} + 0 & a(1)-a(2) & a(1)-a(3)\\ + a(2)-a(1) & 0 & a(2)-a(3)\\ + a(3)-a(1) & a(3)-a(2) & 0 + \end{pmatrix} + \end{align} + + Suppose this holds for $N$ with $\pi_N$, $H_N = \mathbb{C}^N$ and $D_N$. + Then it has to holds for $N+1$ with $H_{N+1} = H_{N} \oplus \bigoplus_{i=1}^N + H_N^i$, since the representation reads + \begin{align} + \pi_{N+1}(a(1),\dots,a(N+1)) &= \pi_N(a(1),\dots,a(N)) + \oplus + \begin{pmatrix} + a(1) & 0 \\ + 0 & a(N+1) + \end{pmatrix} \oplus \nonumber\\ + &\oplus \cdots \oplus + \begin{pmatrix} + a(N) & 0 \\ + 0 1 & a(N+1) + \end{pmatrix} + \end{align} + And the operator $D_{N+1}$ is + \begin{align} + D_{N+1} &= D_N + \oplus + \begin{pmatrix} + 0 & (d_{1(N+1)})^{-1} \\ + (d_{1(N+1)})^{-1} & 0 + \end{pmatrix}\oplus \nonumber \\ + &\oplus \cdots \oplus + \begin{pmatrix} + 0 & (d_{N(N+1)})^{-1} \\ + (d_{N(N+1)})^{-1} & 0 + \end{pmatrix} + \end{align} + From this follows equation \eqref{induction}. + Thus we can continue the proof by setting for fixed $i, j$, $a(k) = + d_{ik}$, which then gives $|a(i) - a(j)| = d_{ij}$ and thereby it follows + that + \begin{align} + \frac{1}{d_{kl}} \big| a(k) - a(l) \big| = \frac{1}{d_{kl}} \big| + d_{ik} - d_{il} \big| \leq 1. + \end{align} +\end{proof} + +%---------------- EXERCISE +To get a better understanding of the results of the theorem let us compute a +metric on the space of three points given by $d_{ij} = \sup_{a\in A}\{|a(i) - +a(j)|: ||[D, \pi(a)]|| \leq 1\}$ for the set of data $A = \mathbb{C}^3$ acting +in the defining representation $H = \mathbb{C}^3$, and +\begin{align} + D = + \begin{pmatrix} + 0 & d^{-1} & 0 \\ d^{-1} & 0 & 0 \\ 0 & 0 & 0 + \end{pmatrix}, +\end{align} +for some $d \in \mathbb{R}$. +From the data $A=\mathbb{C}^3$, $H=\mathbb{C}^3$ and $D$ we compute the +commutator +\begin{align} + \big|\big|[D, \pi(a)]\big|\big| &= d^{-1}\left|\left| +\begin{pmatrix} + 0 & a(2)-a(1) & 0 \\ + -(a(2)-a(1)) & 0 & 0 \\ + 0 & 0 & 0 +\end{pmatrix} \right|\right|. +\end{align} +Hence the metric is +\begin{align} +d = + \begin{pmatrix} + 0 & a(1)-a(2) & a(1) \\ + a(2)-a(1) & 0 & a(2) \\ + -a(1) & -a(2) & 0 + \end{pmatrix}. +\end{align} +%---------------- EXERCISE + +The translation of the metric on $X$ into algebraic data assumes commutativity +in $A$, this can be extended to a noncommutative matrix algebra, by the +following metric on a structure space $\hat{A}$ of a matrix algebra +$M_{n_i}(\mathbb{C}$ +\begin{equation} + d_{ij} = \sup_{a\in A}\big\{|\text{Tr}(a(i)) - \text{Tr}((a(j))|: ||[D, + a]|| \leq 1\big\}.\label{eq:discretemetric} +\end{equation} +Equation \eqref{eq:discretemetric} is special case of the Connes' distance +formula on a structure space of $A$. + +Finally we have all three ingredients to define a finite spectral triple, an +mathematical structure which encodes finite discrete geometry into algebraic data. +\begin{definition} + A \textit{finite spectral triple} is a tripe $(A, H, D)$, where $A$ is a unital $*$-algebra, + faithfully represented on a finite-dimensional Hilbert space $H$, with a symmetric operator + $D: H \rightarrow H$. (Note that $A$ is automatically a matrix algebra.) +\end{definition} + +\subsubsection{Properties of Matrix Algebras} +\begin{lemma} + If $A$ is a unital C* algebra acting faithfully on a finite + dimensional Hilbert space, then $A$ is a matrix algebra of the Form: + \begin{align} + A \simeq \bigoplus _{i=1}^N M_{n_i}(\mathbb{C}) + \end{align} +\end{lemma} +\begin{proof} + The wording 'acting faithfully on a Hilbertspace' means that the + $*$-representation is injective, or for a $*$-homomorphism that means + one-to-one correspondance. And since $A$ acts faithfully on a Hilbert + space, this means that $A$ is a $*$ subalgebra of a matrix algebra $L(H) = M_{\dim + (H)}(\mathbb{C}$. Hence it follows, that $A$ is isomorphic to a matrix + algebra. +\end{proof} + +A simple ilustration would be for an algebra $A = M_n(\mathbb{C})$ and +$H=\mathbb{C}^n$. Since $A$ acts on $H$ with matrix multiplication and standard +inner product and $D$ on $H$ is a hermitian matrix $n\times n$ matrix. + +\begin{definition} + Given an finite spectral triple $(A, H, D)$, the $A$-bimodule of + Connes' differential one-forms is + \begin{align}\label{eq:connesoneforms} + \Omega _D ^1 (A) := \left\{ \sum _k a_k[D, b_k]: a_k, b_k \in A + \right\}. + \end{align} +\end{definition} +Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$. Where +$d$ is a derivation of the $*$-algebra in the sence that +\begin{align} + d(ab) = d(a)b + ad(b), \\ + d(a^*) = -d(a)^*. +\end{align} +Since we have $d(\cdot) = [D, \cdot]$, we can easily check the above equations +\begin{align} + d(a\ b) &= [D, a\ b] = [D, a]b + a[D,b]\nonumber\\ + &= d(a)\ b + a\ d(b) +\end{align} +And +\begin{align} + d(a^*) &= [D, a^*] = Da^* - a^*D \nonumber\\ + &=-(D^*\ a - a\ D^*) = -[D^*, a] \nonumber\\ + &= -d(a)^*. +\end{align} +Furthermore $\Omega _D^1 (A)$ is an $A$-bimodule, which can be seen by +rewriting the definition \eqref{eq:connesoneforms} into +\begin{align} + a\ (a_k[D, b_k])\ b &= a\ a_k(D\ b_k - b_k\ D)\ b = \nonumber\\ + &= a\ a_k(D\ b_k\ b - b_k\ D\ b)=\nonumber\\ + &= a\ a_k(D\ b_k\ b - b_k\ D\ b - b_k\ + b\ D +b_k\ b\ D)= + \nonumber\\ + &= a\ a_k(D\ b_k\ b-b_k\ b\ D + b_k\ b\ D - b_k\ D\ b) = \nonumber \\ + &= a\ a_k [D, b_k\ b] + a\ a_k\ b [D, b]=\nonumber\\ + &= \sum _k\ a_k'\ [D, b_k'] +\end{align} + +\begin{lemma} + Let $\big(A, H, D\big) = \big(M_n(\mathbb{C}), \mathbb{C}^n, D\big)$, where + $D$ is a hermitian $n\times n$ matrix. If $D$ is not a multiple of the + identity then + \begin{align} + \Omega _D ^1 (A) \simeq M_n(\mathbb{C}) = A + \end{align} +\end{lemma} +\begin{proof} + Assume $D = \sum _i \lambda _i e_{ii}$ is diagonal, $\lambda _i \in \mathbb{R}$ and + $\{e_{ij}\}$ is the basis of $M_n(\mathbb{C})$. Then for fixed $i$, $j$ choose $k$ + such that $\lambda _k \neq \lambda _j$, hence we have + \begin{align} \label{eq:basis} + \left(\frac{1}{\lambda _k - \lambda _j} e_{ik}\right) [D, e_{kj}] = + e_{ij}, + \end{align} + for $e_{ij}\in \Omega _D ^1 (A)$ by the above definition + \eqref{eq:connesoneforms}. Ultimately we have + \begin{align} + \Omega _D ^1 + (A) \subset L(\mathbb{C}^n) = H \simeq M_n(\mathbb{C}) = A + \end{align} +\end{proof} + + Consider an example + \begin{align} + \left(A=\mathbb{C}^2, H=\mathbb{C}^2, + D = \begin{pmatrix} 0 & \lambda \\ \bar{\lambda} & 0 + \end{pmatrix}\right) + \end{align} + with $\lambda \neq 0$. We can show that $\Omega _D^1(A) + \simeq M_2(\mathbb{C})$. The Hilbert Basis $D$ can be extended in terms of + the basis of $M_2(\mathbb{C})$, plugging this into Equation + \eqref{eq:basis} will get us the same cyclic result, thus + $\Omega _D^1(A) \simeq M_2(\mathbb{C})$. +\ + +\subsubsection{Morphisms Between Finite Spectral Triples} +\begin{definition} + Two finite spectral tripes $(A_1, H_1, D_1)$ and $(A_2, H_2, D_2)$ are + called unitarily equivalent if + \begin{itemize} + \item $A_1 = A_2$ + \item $\exists \;\; U: H_1 \rightarrow H_2$, unitary with + \begin{enumerate} + \item $U\pi_1(a)U^* = \pi_2(a)$ with $a \in A_1$ + \item $UD_1 U^* = D_2$ + \end{enumerate} + \end{itemize} +\end{definition} + +Some remarks +\begin{itemize} + \item the above is an equivalence relation + \item spectral unitary equivalence is given by the unitaries of the + matrix algebra itself + \item for any such $U$ then $(A, H, D) \sim (A, H, UDU^*)$ + \item $UDU^* = D + U[D, U^*]$ of the form of elements in + $\Omega _D^1 (A)$. +\end{itemize} + +%\begin{MyExercise} +% \textbf{ +% Show that the unitary equivalence between finite spectral +% triples is a equivalence relation +%}\newline +% +% An equivalence relation needs to satisfy reflexivity, symmetry +% transitivity. +% Let $(A_1, H_1, D_1)$, $(A_2, H_2, D_2)$ and $(A_3, H_3, D_3)$ +% be three finite spectral triples. +% \newline +% +% For reflexivity $(A_1, H_1, D_1) \sim (A_1, H_1, D_1)$. So there +% exists a $U: H_1 \rightarrow H_1$ unitary, which is the identity +% and always exists. +% \newline +% +% For symmetry we need +% \begin{align} +% (A_1, H_1, D_1) \sim (A_2, H_2, D_2) \Leftrightarrow +% (A_2, H_2, D_2) \sim (A_1, H_1, D_1) +% \end{align} +% because $U$ is unitary: +% \begin{align} +% &U\pi_1(a)U^* = \pi_2(a) \;\;\; | \cdot U^*\boxdot U \\ +% &U^*U\pi_1(a)U^*U = \pi_1(a) = U^*\pi_2(a)U \\ +% \end{align} +% The same with the symmetric operator $D$. +% \newline +% +% For transitivity we need +% \begin{align} +% (A_1, H_1, D_1) &\sim (A_2, H_2, D_2) \;\;\; \text{and} \;\;\; +% (A_2, H_2, D_2) \sim (A_3, H_3, D_3) \\ +% &\Rightarrow (A_1, H_1, D_1) \sim (A_3, H_3, D_3) +% \end{align} +% There are two unitary maps $U_{12}:H_1 \rightarrow H_2$ and +% $U_{23}: H_2 \rightarrow H_3$ then +% \begin{align} +% U_{23}U_{12} \pi_1(a) U^*_{12}U^*_{23} &= U_{23} +% \pi_2(a) U_23^* \\ +% &= \pi_3(a) \\ +% U_{23}U_{12} D_1U^*_{12}U^*_{23} &= U_{23} +% D_2 U_23^* \\ +% &= D_3 +% \end{align} +%\end{MyExercise} + +Extending the this relation we look again at the notion of equivalence from +Morita equivalence of Matrix Algebras. +\newline + +\begin{definition} + Let $A$ be an algebra. We say that $I \subset A$, as a vector space, is a + right(left) ideal if $ab \in I$ for $a \in A$ and $b\in I$ (or $ba \in + I$, $b\in I$, $a\in A$). We call a left-right ideal simply an ideal. +\end{definition} + +Given a Hilbert bimodule $E \in KK_f(B, A)$ and $(A, H, D)$ we construct +a finite spectral triple on $B$, $(B, H', D')$ +\begin{equation} + H' = E \otimes _A H +\end{equation} +We might define $D'$ with $D'(e \otimes \xi) = e\otimes D\xi$, thought this +would not satisfy the ideal defining the balanced tensor product over $A$, +which is generated by elements of the form +\begin{align} + e a \otimes \xi - e\otimes a \xi ;\;\;\;\; e\in E, a\in A, \xi \in H +\end{align} +This inherits the left action on $B$ from $E$ and has a $\mathbb{C}$ +valued inner product space. $B$ also satisfies the ideal. +\begin{equation} + D'(e\otimes \xi) = e \otimes D \xi + \nabla (e) \xi \;\;\;\; e\in + E, a\in A +\end{equation} +Where $\nabla$ is called the \textit{connection on the right A-module E} +associated with the derivation $d=[D, \cdot]$ and satisfying the +\textit{Leibnitz Rule} which is +\begin{equation} + \nabla(ae) = \nabla(e)a + e \otimes [D, a] \;\;\;\;\; e\in E,\; a\in A +\end{equation} +Then $D'$ is well defined on $E \otimes _A H$: +\begin{align} + D'(ea \otimes \xi - e \otimes a \xi) &= D'(ea \otimes \xi) - D'(e + \otimes \xi) \\ + &= ea\otimes D\xi + \nabla(ae) \xi - e \otimes D(a\xi ) - \nabla (e)a + \xi \\ + &= 0. +\end{align} +With the information thus far we can prove the following theorem +\begin{theorem} + If $(A, H, D)$ a finite spectral triple, $E \in KK_f(B, A)$. + Then $(V, E\otimes _A H, D')$ is a finite spectral triple, provided that + $\nabla$ satisfies the compatibility condition + \begin{equation} + \langle e_1, \nabla e_2 \rangle _E - \langle \nabla e_1, e_2 + \rangle _E = d\langle e_1, e_2 \rangle _E \;\;\;\; e_1, e_2 \in E + \end{equation} +\end{theorem} +\begin{proof} + $E\otimes _A H$ was shown in the previous subsection (text before the + theorem). The only thing left is to show that $D'$ is a symmetric + operator, this we can just compute. Let $e_1, e_2 \in E$ and $\xi _1, + \xi _2 \in H$ then + \begin{align} + \langle e_1 \otimes \xi _1, D'(e_2 \otimes \xi_2)\rangle _{E\otimes _A H} &= + \langle \xi _1, \langle e_1, \nabla e_2\rangle _E \xi _2\rangle + \langle \xi _1 , \langle e_1, e_2\rangle _E D\xi + _2\rangle _H \\ + &= \langle \xi _1, \langle \nabla e_1, e_2\rangle _E \xi _2\rangle _H + \langle \xi _1, d\langle e_1, e_2\rangle _E + \xi _2\rangle _H \\ + &+ \langle D\xi _1,\langle e_1, e_2\rangle _E \xi _2\rangle _H - \langle \xi _1, [D, \langle e_1, e_2\rangle _E] \xi + _2 \rangle _H \\ + &= \langle D'(e_1 \otimes \xi _1), e_2 \otimes \xi _2\rangle _{E \otimes _A H} + \end{align} +\end{proof} + +%\begin{MyExercise} +% \textbf{ +% Let $\nabla$ and $\nabla'$ be two connections on a right $A$-module +% $E$. Show that $\nabla - \nabla'$ is a right $A$-linear map +% $E \rightarrow E\otimes _A \Omega _D^1(A)$ +%}\newline +% +% Both $\nabla$ and $\nabla'$ need to satisfy the Leiblitz rule, so +% let's see if $\nabla - \nabla'$ does. +% +% \begin{align} +% \nabla(ea)-\nabla'(ea)&=\nabla(e) + e\otimes[D, a]\\ +% &-(\nabla'(e)a + e\otimes[D',a])\\ +% &=\bar{\nabla}a + e\otimes(Da-aD-D'a+aD')\\ +% &=\bar{\nabla}a + e\otimes((D-D')a-a(D-D'))\\ +% &=\bar{\nabla}a + e\otimes[D', a]\\ +% &=\bar{\nabla}(ea) +% \end{align} +% Therefore $\nabla-\nabla'$ is a linear map. +%\end{MyExercise} + +%\begin{MyExercise} +% \textbf{ +% Construct a finite spectral triple $(A, H', D')$ from $(A, H, D)$ +% \begin{enumerate} +% \item show that the derivation $d(\cdot):A \rightarrow A\otimes _A +% \Omega_D^1(A)=\Omega_D^1(A)$ is a connection on $A$ +% considered a right $A$-module +% \item Upon identifying $A\otimes_A H\simeq H$, what is $D'$ +% when the connection is $d(\cdot)$. +% \item Use 1) and 2) to show that any connection $\nabla: +% A\rightarrow A\otimes_A \Omega_D^1(A)$ is given by +% \begin{align} +% \nabla = d + \omega +% \end{align} +% where $\omega \in \Omega_D^1(A)$ +% \item Upon identifying $A\otimes_A H \simeq H$, what is the +% difference operator $D'$ with the connection on $A$ given by +% $\nabla = d + \omega$ +% \end{enumerate} +%} +% \begin{enumerate} +% \item $\nabla(e \cdot a) = d(a)$ +% \item +% $D'(a\xi) = a(D\xi) + (\nabla a) \xi = D(a\xi)$ +% \item Use the identity element $e \in A$\\ +% $\nabla (e\cdot a) = \nabla(e) a + 1 \otimes d(a)=d(a) +% \nabla(e) a$ +% \item $D'(a\otimes \xi) = D'(a \xi) = a(D\xi) + (\nabla a)\xi = +% a(D\xi) + \nabla(e \cdot a) \xi \\ +% = D(a\xi) + \nabla(e) (a\xi)$ +% \end{enumerate} +%\end{MyExercise} + +%\subsubsection{Graphing Finite Spectral Triples} +%\begin{definition} +% A \textit{graph} is a ordered pair $(\Gamma ^{(0)}, \Gamma ^{(1)})$. +% Where $\Gamma ^{(0)}$ is the set of vertices (nodes) and $\Gamma ^{(1)}$ +% a set of pairs of vertices (edges) +%\end{definition} +%\begin{figure}[h!] +% \centering +%\begin{tikzpicture}[ +% mass/.style = {draw,circle, minimum size=0.2cm, inner sep=0pt, thick}, +% spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},] +% \node[mass] (m1) at (1,1.5) {}; +% \node[mass] (m2) at (-1,1.5) {}; +% \node[mass] (m3) at (0,0) {}; +% +% \draw (m1) -- (m2); +% \draw (m1) -- (m3); +% \draw (m2) -- (m3); +% \end{tikzpicture} +% \caption{A simple graph with three vertices and three edges} +%\end{figure} +%%\begin{MyExercise} +%% \textbf{ +%% Show that any finite-dimensional faithful representation $H$ of a matrix +%% algebra $A$ is completely reducible. To do that show that the complement +%% $W^{\perp}$ of an $A$-submodule $W\subset H$ is also an $A$-submodule +%% of $H$. +%%}\newline +%% +%% $A\simeq \bigoplus_{i=1}^N M_{n_i}(\mathbb{C})$ is the matrix algebra +%% then $H$ is a Hilbert $A$-bimodule and $W$ a submodule of $A$. +%% Because we have $H = W \cup W^{\perp}$, then $W^{\perp}$ is naturally a +%% $A$-submodule, because elements in $W^{\perp}$ need to satisfy the +%% bimodularity. +%%\end{MyExercise} +%\begin{definition} +% A $\Lambda$-decorated graph is given by an ordered pair $(\Gamma, +% \Lambda)$ of a finite graph $\Gamma$ and a set of positive integers +% $\Lambda$ with the labeling +% \begin{itemize} +% \item of the vetices $v\in \Gamma ^{(0)}$ given by $n(\nu) \in +% \Lambda$ +% \item of the edges $e = (\nu _1, \nu _2) \in \Gamma ^{(1)}$ by +% operators +% \begin{itemize} +% \item $D_e: \mathbb{C}^{n(\nu _1)} \rightarrow +% \mathbb{C}^{n(\nu _2)}$ +% \item and $D_e^*: \mathbb{C}^{n(\nu _2)} \rightarrow +% \mathbb{C}^{n(\nu _1)}$ its conjugate traspose +% (pullback?) +% \end{itemize} +% \end{itemize} +% such that +% \begin{equation} +% n(\Gamma ^{(0)}) = \Lambda +% \end{equation} +%\end{definition} +%\begin{question} +% Would then $D_e$ be the pullback? +%\end{question} +%\begin{question} +% These graphs are important in the next chapter I should look +% into it more, I don't understand much here, specific +% how to construct them with the abstraction of a spectral triple... +%\end{question} +% +%The operator $D_e$ between $\textbf{n}_i$ and $\textbf{n}_j$ add up to +%$D_{ij}$ +%\begin{align} +% D_{ij} = \sum\limits_{\substack{e = (\nu _1, \nu _2) \\ n(\nu _1) = +% \textbf{n}_i \\ n(\nu _2) = \textbf{n}_j}} D_e +%\end{align} +% +%\begin{theorem} +% There is a on to one correspondence between finite spectral triples +% modulo unitary equivalence and $\Lambda$-decorated graphs, given by +% associating a finite spectral triples $(A, H, D)$ to a $\Lambda$ decorated +% graph $(\Gamma, \Lambda)$ in the following way: +% \begin{equation} +% A = \bigoplus _{n\in \Lambda} M_n(\mathbb{C}); \;\;\; +% H = \bigoplus _{\nu \in \Gamma ^{(0)}} \mathbb{C}^{n(\nu)}; \;\;\; +% D = \sum _{e \in \Gamma ^{(1)}} D_e + D_e^* +% \end{equation} +%\end{theorem} +% \begin{figure}[h!] +% \centering +% \begin{tikzpicture}[ +% mass/.style = {draw,circle, minimum size=0.3cm, inner sep=0pt, thick}, +% ] +% +% \node[mass, label={\textbf{n}}] (m1) at (1,0) {}; +% \draw (m1) to [out=330, in=210, looseness=25] node[above] {$D_e$} (m1); +% \end{tikzpicture} +% \caption{A $\Lambda$-decorated Graph of $(M_n(\mathbb{C}), \mathbb{C}^n, +% D = D_e + D_e^*)$} +%\end{figure} +% +%%\begin{MyExercise} +%% \textbf{ +%% Draw a $\Lambda$ decorated graph corresponding to the spectral triple +%% $(A=\mathbb{C}^3, H=\mathbb{C}^3, D=\begin{pmatrix}0 & \lambda & 0\\ +%% \bar{\lambda} &0 &0 \\ 0&0&0\end{pmatrix})$ +%%}\newline +%% +%%\centering +%%\begin{tikzpicture}[ +%% mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick}, +%% spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},] +%% \node[mass] (m1) at (-1,1.5) {\textbf{1}}; +%% \node[mass] (m2) at (1,1.5) {\textbf{2}}; +%% \node[mass] (m3) at (3,1.5) {\textbf{3}}; +%% +%% \draw[style=thick, -] (1.1,1.7) -- (-1.1,1.7); +%% \draw[style=thick, -] (1.1,1.3) -- (-1.1,1.3); +%% \end{tikzpicture} +%% % \captionof{figure}{Solution} +%%\end{MyExercise} +%%\begin{MyExercise} +%% \textbf{ +%% Use $\Lambda$-decorated graphs to classify all finite spectral triples +%% (modulo unitary equivalence) on the matrix algebra +%% $A=\mathbb{C}\oplus M_2(\mathbb{C})$ +%%}\newline +%% +%% \centering +%%\begin{tikzpicture}[ +%% mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick}, +%% spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},] +%% \node[mass] (m1) at (-1,1) {\textbf{1}}; +%% \node[mass] (m2) at (1,1) {\textbf{2}}; +%% \node[mass] (m3) at (3,1) {\textbf{3}}; +%% +%% \node[mass] (m4) at (-1,0) {\textbf{1}}; +%% \node[mass] (m5) at (1,0) {\textbf{2}}; +%% \node[mass] (m6) at (3,0) {\textbf{3}}; +%% +%% \node[mass] (m7) at (-1,-1) {\textbf{1}}; +%% \node[mass] (m8) at (1,-1) {\textbf{2}}; +%% \node[mass] (m9) at (3,-1) {\textbf{3}}; +%% +%% \node[mass] (m10) at (-1,-2) {\textbf{1}}; +%% \node[mass] (m11) at (1,-2) {\textbf{2}}; +%% \node[mass] (m12) at (3,-2) {\textbf{3}}; +%% +%% \draw[style=thick, -] (1.1,0.2) -- (-1.1,0.2); +%% \draw[style=thick, -] (1.1,-0.2) -- (-1.1,-0.2); +%% \draw[style=thick, -] (m7) to [out=330, in=210, looseness=10] node[above] {} (m7); +%% \draw[style=thick, -] (m10) -- (m11) ; +%% +%%\end{tikzpicture} +%%% \captionof{figure}{Solution $A=M_3(\mathbb{C})$} +%%\end{MyExercise} +%\subsubsection{Graph Construction of Finite Spectral Triples} +%\textbf{Algebra:}We know if a acts on a finite dimensional Hilbert space then +%this C* algebra is isomorphic to a matrix algebra so $A \simeq +%\bigoplus_{i=1}^{N}M_{n_i}(\mathbb{C})$. Where $i\in +%\hat{A}$ represents an equivalence class and runs from $1$ to $N$, +%thus $\hat{A}\simeq\{1,\dots, N\}$. We label equivalence classes by +%$\textbf{n}_i$, then $\hat{A}\simeq\{\textbf{n}_1,\dots,\textbf{n}_N\}$. +%\newline +% +%\textbf{Hilbert Space:} Since every Hilbert space that acts faithfully on a +%C* algebra is completely reducible, it is isomorphic to the composition +%of irreducible representations. $H \simeq \bigoplus_{i=1}^N\mathbb{C}^{n_i} +%\otimes V_i$. Where all $V_i$'s are Vector spaces, their dimension is the +%multiplicity of the representation landed by $\textbf{n}_i$ to $V_i$ itself +%by the multiplicity space. +%\newline +% +%\textbf{Finite Dirac Operator:} $D_{ij}$ is connecting nodes $\textbf{n}_i$ +%and $\textbf{n}_j$, with a symmetric map $D_{ij}:\mathbb{C}^{n_i}\otimes V_i +%\rightarrow \mathbb{C}^{n_j}\otimes V_j$ +%\newline +% +%To draw a graph, draw nodes in position $\textbf{n}_i\in \hat{A}$. +%Multiple nodes at the same position represent multiplicities in $H$. +%Draw lines between nodes to represent $D_{ij}$. +% +%\begin{figure}[h!] +% \centering +%\begin{tikzpicture} +% \node[draw, label=above:{$\textbf{n}_1$},circle, thick] at (-3,0) {}; +% \node[label=above:{$\dots$}] at (-2,0) {}; +% \node[draw, label=above:{$\textbf{n}_i$},circle, thick] at (-1,0) {}; +% \node[label=above:{$\dots$}] at (0,0) {}; +% \node[draw, label=above:{$\textbf{n}_j$},circle, thick] at (1,0) {}; +% \node[draw, label=above:{},circle, thick, inner sep=0cm, minimum +% size=0.2cm] at (1,0) {}; +% \node[label=above:{$\dots$}] at (2,0) {}; +% \node[draw, label=above:{$\textbf{n}_N$},circle, thick] at (3,0) {}; +% +% \draw[style=thick, -] (-1,-0.2) -- (1,-0.2); +% \draw[style=thick, -] (-1,0.2) -- (1,0.2); +% \path[style=thick, -] (-1,-0.2) edge[bend right=15] +% node[pos=0.5,below] {} (3,-0.2); +% \end{tikzpicture} +% \caption{Example} +%\end{figure} diff --git a/src/thesis/chapters/realncg.tex b/src/thesis/chapters/realncg.tex @@ -0,0 +1,329 @@ +%\subsection{Finite Real Noncommutative Spaces} +%\subsubsection{Finite Real Spectral Triples} +%Add on to finite real spectral triples a \textit{real structure}. The +%requirement is that $H$ is a $A$-$A$-bimodule (before only a $A$-left +%module). +%\newline +% +%For this we introduce a $\mathbb{Z}_2$-grading $\gamma$ with +%\begin{align} +% &\gamma ^* = \gamma \\ +% &\gamma ^2 = 1 \\ +% &\gamma D = - D \gamma\\ +% &\gamma a = a \gamma \;\;\;\; a\in A +%\end{align} +% +%\begin{definition} +% A \textit{finite real spectral triple} is given by a finite spectral +% triple $(A, H, D)$ and a anti-unitary operator $J:H\rightarrow H$ called +% the \textit{real structure}, such that +% \begin{align} +% a^\circ := J a^* J^{-1} +% \end{align} +% is a right representation of $A$ on $H$, that is $(ab)^\circ = b^\circ +% a^\circ$. With two requirements +% \begin{align} +% &[a, b^\circ] = 0\\ +% &[[D, a],b^\circ] = 0. +% \end{align} +% They are called the \textit{commutant property}, and mean that the left +% action of an element in $A$ and $\Omega _D^1(A)$ commutes with the right +% action on $A$. +%\end{definition} +%\begin{definition} +% The $KO$-dimension of a real spectral triple is determined by the sings +% $\epsilon, \epsilon ' ,\epsilon '' \in \{-1, 1\}$ appearing in +% \begin{align} +% &J^2 = \epsilon \\ +% &JD = \epsilon \ DJ\\ +% &J\gamma = \epsilon '' \gamma J. +% \end{align} +%\end{definition} +%\begin{table}[h!] +% \centering +% \caption{$KO$-dimension $k$ modulo $8$ of a real spectral triple} +% \begin{tabular}{ c | c c c c c c c c} +% \hline +% $k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ +% \hline +% $\epsilon$ & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ +% $\epsilon '$ & 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\ +% $\epsilon ''$ & 1 & & -1 & & 1 & & -1 & \\ +% \hline +% \end{tabular} +%\end{table} +% +% +%\begin{definition} +%An opposite-algebra $A^\circ$ of a $A$ is defined to be equal to $A$ as a +%vector space with the opposite product +%\begin{align} +% &a\circ b := ba\\ +% &\Rightarrow a^\circ = Ja^* J^{-1} \;\;\; \text{defines the left +% representation of $A^\circ$ on $H$} +%\end{align} +%\end{definition} +% +% +%\begin{example} +% Matrix algebra $M_N(\mathbb{C})$ acting on $H=M_N(\mathbb{C})$ by left +% matrix multiplication with the Hilbert Schmidt inner product. +% \begin{align} +% \langle a , b \rangle = \text{Tr}(a^* b) +% \end{align} +% Then we define $\gamma (a) = a$ and $J(a) = a^*$ with $a\in H$. +% Since $D$ mus be odd with respect to $\gamma$ it vanishes identically. +%\end{example} +% +%\begin{definition} +% We call $\xi \in H$ \textbf{cyclic vector} in $A$ if: +% \begin{align} +% A\xi := { a\xi:\;\; a\in A} = H +% \end{align} +% +% We call $\xi \in H$ \textbf{separating vector} in $A$ if: +% \begin{align} +% a\xi = 0\;\; \Rightarrow \;\; a=0;\;\;\; a\in A +% \end{align} +%\end{definition} +% +%%\begin{MyExercise} +%% \textbf{ +%% In the previous example, show that the right action on $M_N(\mathbb{C})$ +%% on $H = M_N(\mathbb{C})$ as defined by $a \mapsto a^\circ$ +%% is given by right matrix multiplication. +%%}\newline +%% +%% \begin{align} +%% a^\circ \xi = J a^* J^{-1}\xi = Ja^* \xi^* = J\xi a=\xi^* a +%% \end{align} +%%\end{MyExercise} +%%\begin{MyExercise} +%% \textbf{ +%% Let $A= \bigoplus _i M_{n_i}(\mathbb{C})$, represented on $H = \bigoplus_i \mathbb{C}^{n_i} +%% \otimes \mathbb{C}^{m_i}$, meaning that the irreducible representation $\textbf{n}_i$ has +%% multiplicity $m_i$. +%% \begin{enumerate} +%% \item Show that the commutant $A'$ of $A$ is $A'\simeq \bigoplus_i M_{m_i} (\mathbb{C})$. As a consequence show $A'' \simeq A$. +%% \item Show that if $\xi$ is a separating vector for $A$ than it is cyclic for $A'$. +%% \end{enumerate} +%% } +%% +%% +%% \begin{enumerate} +%% \item We know the multiplicity space is $V_i = \mathbb{C}^{m_i}$. We know that +%% for $T\in H$ and +%% $a\in A'$ to work we need $aT=Ta$ by laws of matrix multiplication we need +%% $A' \simeq \oplus _i M_{m_i}(\mathbb{C})$ for this to work since $H = \bigoplus_i +%% \mathbb{C}^{n_i} +%% \otimes \mathbb{C}^{m_i}$ +%% +%% \item Suppose $\xi$ is cyclic for $A$ then $A'\xi = \{0\}$. Under the action of $A$ we +%% then have $A'A\xi = AA' \xi = 0 \Rightarrow A' = 0$.\\ +%% Suppose now $\xi$ is separating for $A'$, we have $A'\xi = \{0\}$. We can define a +%% projection in $A'$, $A\xi = P'$. With this projection we have $(1-P')\xi = 0 +%% \Rightarrow 1-P' = 0 \Rightarrow A\xi = H$. +%% \end{enumerate} +%%\end{MyExercise} +%%\begin{MyExercise} +%% \textbf{ Suppose $(A, H, D = 0)$ is a finite spectral triple such that $H$ possesses a +%% cyclic and separating vector for $A$. +%% \begin{enumerate} +%% \item Show that the formula $S(a \xi) = a* \xi$ defines a anti-linear operator\\ +%% $S: H \rightarrow H$. +%% \item Show that $S$ is invertible +%% \item Let $J: H \rightarrow H$ be the operator in $S = J \Delta ^{1/2}$ with +%% $\Delta = S^*S$. Show that $J$ is anti-unitary +%% \end{enumerate} +%% } +%% +%% +%% \begin{enumerate} +%% \item By composition $S(a\xi) = a*\xi$ this is literally anti-linearity. Does this mean +%% $S\xi = \xi$? +%% \item Let $\xi \in H$ be cyclic then: $S(A\xi) = A^*\xi = A\xi = H$. The same has to work +%% for $S^{-1}$ if not then $\xi$ wouldn't exist. $S^{-1}(A^*\xi) = S^{-1}(H) = H$. +%% \item Since $S$ is bijective then $\Delta ^{1/2}$ and $J$ need to be bijective. +%% We also have $J = S \Delta^{-1/2}$ and $\Delta^* = \Delta$\\ +%% Now let $\xi _1 , \xi _2 \in H$ \begin{align} +%% <J \xi _1 , J \xi _2 > &= < J^*J\xi_1 , \xi_2>^* =\\ +%% &= <(\Delta ^{-1/2})^* S^* S \Delta ^{-1/2} \xi_1, \xi_2>^* = \\ +%% &= <(\Delta^{-1/2})^* \Delta \Delta^{-1/2} \xi_1, \xi_2>^* =\\ +%% &= <\Delta^{-1/2} \Delta^{1/2}\Delta^{1/2} \Delta^{-1/2} \xi_1, \xi_2>^* =\\ +%% &= <\xi _1, \xi_2>^* = <\xi_2 , \xi_1>. +%% \end{align} +%% \end{enumerate} +%%\end{MyExercise} +%\subsubsection{Morphisms Between Finite Real Spectral Triples} +%Extend unitary equivalence of finite spectral triples to real ones (with $J$ +%and $\gamma$) +% +%\begin{definition} +% We call two finite real spectral triples $(A_1, H_1 ,D_1 ; J_1 , \gamma +% _1)$ and $(A_2, H_2, D_2; J_2, \gamma _2)$ unitarily equivalent if $A_1 = +% A_2$ and if there exists a unitary operator $U: H_1 \rightarrow H_2$ such +% that +% \begin{align} +% &U\pi_1(a) U^* = \pi _2(a)\\ +% &UD_1U^*=D_2\\ +% &U\gamma _1 U^* = \gamma _2\\ +% &UJ_1 U^* = J_2 +% \end{align} +%\end{definition} +%\begin{definition} +% Let $E$ be a $B$-$A$ bimodule. The \textit{conjugate Module} $E^\circ$ is +% given by the $A$-$B$-bimodule. +% \begin{align} +% E^\circ = \{\bar{e} : e\in E\} +% \end{align} +% with +% \begin{align} +% a \cdot \bar{e} \cdot b = b^* \bar{e} a^* \;\;\;\; \forall a\in A, b \in +% B +% \end{align} +%\end{definition} +%$E^\circ$ is not a Hilbert bimodule for $(A, B)$ because it doesn't have a +%natural $B$-valued inner product. But there is a $A$-valued inner product on +%the left $A$-module $E^\circ$ with +%\begin{align} +% \langle \bar{e}_1, \bar{e}_2 \rangle = \langle e_2 , e_1 \rangle +% \;\;\;\; e_1, e_2 \in E +%\end{align} +%and linearity in $A$: +%\begin{align} +% \langle a \bar{e}_1, \bar{e}_2 \rangle = a \langle \bar{e}_1, \bar{e}_2 +% \rangle \;\;\;\; \forall a \in A. +%\end{align} +% +%%\begin{MyExercise} +%% \textbf{Show that $E^\circ$ is a Hilbert bimodule $(B^{\circ}, A^{\circ})$ +%% }\newline +%% +%% +%% Straightforward show properties of the Hilbert bimodule and its $B^{\circ}$ +%% valued inner product. Let $\bar{e}_1, \bar{e}_2 \in E^{\circ}$ and $a^\circ \in A, +%% b^\circ \in B$. \\ +%% \begin{align} +%% <\bar{e}_1, a^\circ \bar{e}_2> &= <\bar{e}_1, Ja^*J^{-1} \bar{e}_2>=\\ +%% &= <\bar{e}_1 , J a^* e_2> = \\ +%% &= <J^{-1} e_1, a^* e_2> =\\ +%% & = <a^* e_1, e_2>= <J^{-1}(a^\circ)^* J e_1, e_2> = \\ +%% & = <J^{-1} (a^\circ)^* \bar{e}_1, e_2> =\\ +%% & = <(a^\circ)^* \bar{e}_1 , \bar{e}_2>. +%% \end{align} +%% +%% Next $<\bar{e}_1, \bar{e}_2 b^\circ> = <\bar{e}_1, \bar{e_2}> b^\circ$. +%% \begin{align} +%% <\bar{e}_1, \bar{e}_2 b^\circ> &= <\bar{e}_1, \bar{e}_2 Jb^*J^{-1}> =\\ +%% &= <\bar{e}_1, \bar{e_2}> Jb^*J^{-1} = \\ +%% &= <\bar{e}_1, \bar{e}_2> b^\circ. +%% \end{align} +%% Then: +%% \begin{align} +%% (<\bar{e}_1, \bar{e}_2)>_{E^\circ})^* &= (<e_2, e_1>_E)^* =\\ +%% &= <e_1, e_2>_E^* = <\bar{e}_2, \bar{e}_2>_{E^\circ} +%% \end{align} +%% And of course $<\bar{e}, \bar{e}> = <e, e> \geq 0$ +%%\end{MyExercise} +% +%\subsubsection{Construction of a Finite Real Spectral Triple from a Finite +%Real Spectral Triple} +%Given a Hilbert bimodule $E$ for $(B, A)$ we construct a spectral triple +%$(B, H', D'; J', \gamma ')$ from $(A, H, D; J, \gamma)$ +% +%For the $H'$ we make a $\mathbb{C}$-valued inner product on $H'$ by combining +%the $A$ valued inner product on $E$ and $E^\circ$ with the +%$\mathbb{C}$-valued inner product on $H$. +%\begin{align} +% H' := E\otimes _A H \otimes _A E^\circ +%\end{align} +% +%Then the action of $B$ on $H'$ is: +%\begin{align} +% b(e_2 \otimes \xi \otimes \bar{e}_2 ) = (be_1) \otimes \xi \otimes +% \bar{e}_2 +%\end{align} +%The right action of $B$ on $H'$ defined by action on the right component +%$E^\circ$ +%\begin{align} +% J'(e_1 \otimes \xi \otimes \bar{e}_2) = e_2 \otimes J \xi \otimes +% \bar{e}_1 +%\end{align} +%with $b^\circ = J' b^* (J')^{-1}$, $b^* \in B$ action on $H'$. +%\newline +% +% +%\newpage +%%\begin{MyExercise} +%% \textbf{ Let $\nabla : E \Rightarrow E \otimes _A \Omega _d^1 (A)$ be a right connection on $E$ +%% consider the following anti-linear map: +%% \begin{align} +%% \tau : E \otimes_A \Omega _D^1 (A) &\rightarrow \Omega _D^1 (A) \otimes_A E^\circ\\ +%% e \otimes \omega &\mapsto -\omega ^* \otimes \bar{e} +%% \end{align} +%% Show that the map $\bar{\nabla} : E^\circ \rightarrow \Omega _D^1(A) \otimes E^\circ$ +%% with $\bar{\nabla}(\bar{e}) = \tau \circ \nabla(e)$ is a left connection, that means +%% show that it satisfied the left Leibniz rule: +%% \begin{equation} +%% \bar{\nabla}(a\bar{e}) = [D, a] \otimes \bar{e} + a \bar{\nabla}(\bar{e}) +%% \end{equation} +%% } +%% +%% Hagime: +%% \begin{align} +%% &\text{For one:}\\ +%% &\tau \circ \nabla(ae) = \bar{\nabla}(a\bar{e}) = \bar{\nabla}(a^* \bar{e})\\ +%% &\text{For two:}\\ +%% &\tau \circ \nabla(ae) = \tau(\nabla(e)a) + \tau \circ(e \otimes d(a))=\\ +%% &=a^*\bar{\nabla}(\bar{e}) - d(a)^* \otimes \bar{e}. \\ +%% &= a^*\bar{\nabla}(\bar{e}) + d(a^*) \otimes \bar{e}. +%% \end{align} +%%\end{MyExercise} +%Then the connections +%\begin{align} +% &\nabla: E \rightarrow E\otimes _A \Omega _D ^1(A) \\ +% &\bar{\nabla}:E^\circ \rightarrow \Omega _D^1(A) \otimes _A E^\circ +%\end{align} +%give us the Dirac operator on $H' = E \otimes _A H \otimes _A E^\circ$ +%\begin{align} +% D'(e_1 \otimes \xi \otimes \bar{e}_2) = (\nabla e_1) \xi \otimes +% \bar{e_2}+ e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes +% \xi(\bar{\nabla}\bar{e}_2) +%\end{align} +% +%And the right action of $\omega \in \Omega _D ^1(A)$ on $\xi \in H$ is +%defined by +%\begin{align} +% \xi \mapsto \epsilon' J \omega ^* J^{-1}\xi +%\end{align} +% +%Finally for the grading +%\begin{align} +% \gamma ' = 1 \otimes \gamma \otimes 1 +%\end{align} +% +%\begin{theorem} +% Suppose $(A, H, D; J, \gamma)$ is a finite spectral triple of +% $KO$-dimension $k$, let $\nabla$ be like above satisfying the +% compatibility condition (like with finite spectral triples). +% +% Then $(B, H',D'; J', \gamma')$ is a finite spectral triple of +% $KO$-Dimension $k$. ($H', D', J', \gamma'$ like above) +%\end{theorem} +% +%\begin{proof} +% The only thing left is to check if the $KO$-dimension is preserved, +% for this we check if the $\epsilon$'s are the same. +% \begin{align} +% &(J')^2 = 1 \otimes J^2 \otimes 1 = \epsilon\\ +% &J' \gamma '= \epsilon ''\gamma'J' +% \end{align} +% and for $\epsilon '$ +% \begin{align} +% J'D'(e_1 \otimes \xi \otimes \bar{e}_2)&=J'((\nabla e_1) \xi \otimes +% \bar{e_2} + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau +% \nabla e_2))\\ +% &= \epsilon' D'(e_2 \otimes J\xi \otimes \bar{e}_2)\\ +% &= \epsilon' D'J'(e_1 \otimes \xi \bar{e}_2) +% \end{align} +%\end{proof} diff --git a/src/thesis/main.aux b/src/thesis/main.aux @@ -1,83 +0,0 @@ -\relax -\providecommand\hyper@newdestlabel[2]{} -\providecommand\zref@newlabel[2]{} -\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} -\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined -\global\let\oldcontentsline\contentsline -\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} -\global\let\oldnewlabel\newlabel -\gdef\newlabel#1#2{\newlabelxx{#1}#2} -\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} -\AtEndDocument{\ifx\hyper@anchor\@undefined -\let\contentsline\oldcontentsline -\let\newlabel\oldnewlabel -\fi} -\fi} -\global\let\hyper@last\relax -\gdef\HyperFirstAtBeginDocument#1{#1} -\providecommand\HyField@AuxAddToFields[1]{} -\providecommand\HyField@AuxAddToCoFields[2]{} -\@writefile{toc}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax } -\@writefile{lof}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax } -\@writefile{lot}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax } -\abx@aux@refcontext{none/global//global/global} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}{section.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Main Section}{2}{section.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Noncommutative Geometric Spaces}{2}{subsection.2.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.1.1}$*$-Algebra}{2}{subsubsection.2.1.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.1.2}Finite Discrete Space}{3}{subsubsection.2.1.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.1.3}Matrix Algebras}{4}{subsubsection.2.1.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.1.4}Finite Inner Product Spaces and Representations}{4}{subsubsection.2.1.4}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.1.5}Algebraic Modules}{6}{subsubsection.2.1.5}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Heat Kernel Expansion}{6}{subsection.2.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.1}The Heat Kernel}{6}{subsubsection.2.2.1}\protected@file@percent } -\newlabel{eq:standard}{{2.18}{6}{The Heat Kernel}{equation.2.18}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.2}Spectral Functions}{7}{subsubsection.2.2.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.3}General Formulae}{7}{subsubsection.2.2.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.4}Heat Kernel Coefficients}{8}{subsubsection.2.2.4}\protected@file@percent } -\newlabel{eq:var1}{{2.34}{8}{Heat Kernel Coefficients}{equation.2.34}{}} -\newlabel{eq:var2}{{2.35}{8}{Heat Kernel Coefficients}{equation.2.35}{}} -\newlabel{eq:var3}{{2.36}{8}{Heat Kernel Coefficients}{equation.2.36}{}} -\abx@aux@cite{heatkernel} -\abx@aux@segm{0}{0}{heatkernel} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Almost-commutative Manifold}{10}{subsection.2.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.1}Two-Point Space}{10}{subsubsection.2.3.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.2}Product Space}{11}{subsubsection.2.3.2}\protected@file@percent } -\newlabel{eq:commutator inequality}{{2.61}{11}{Product Space}{equation.2.61}{}} -\abx@aux@cite{ncgwalter} -\abx@aux@segm{0}{0}{ncgwalter} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.3}$U(1)$ Gauge Group}{12}{subsubsection.2.3.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Noncommutative Geometry of Electrodynamics}{14}{subsection.2.4}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.4.1}The Finite Space}{14}{subsubsection.2.4.1}\protected@file@percent } -\newlabel{eq:leftrightrepr}{{2.95}{15}{The Finite Space}{equation.2.95}{}} -\newlabel{eq:fedfail}{{2.96}{15}{The Finite Space}{equation.2.96}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.4.2}A noncommutative Finite Dirac Operator}{16}{subsubsection.2.4.2}\protected@file@percent } -\newlabel{eq:feddirac}{{2.97}{16}{A noncommutative Finite Dirac Operator}{equation.2.97}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.4.3}Almost commutative Manifold of Electrodynamics}{16}{subsubsection.2.4.3}\protected@file@percent } -\newlabel{eq:almost commutative manifold}{{2.99}{16}{Almost commutative Manifold of Electrodynamics}{equation.2.99}{}} -\newlabel{field}{{2.102}{16}{Almost commutative Manifold of Electrodynamics}{equation.2.102}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.4.4}Spectral Action}{17}{subsubsection.2.4.4}\protected@file@percent } -\newlabel{def:fermionic action}{{10}{17}{}{definition.10}{}} -\newlabel{lagr}{{2.112}{18}{}{equation.2.112}{}} -\newlabel{eq:trheatkernel}{{2.115}{18}{Spectral Action}{equation.2.115}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.4.5}Fermionic Action}{19}{subsubsection.2.4.5}\protected@file@percent } -\newlabel{eq:fermionic1}{{2.131}{19}{Fermionic Action}{equation.2.131}{}} -\newlabel{eq:fermionic2}{{2.132}{19}{Fermionic Action}{equation.2.132}{}} -\newlabel{eq:fermionic3}{{2.133}{19}{Fermionic Action}{equation.2.133}{}} -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Conclusion}{20}{section.3}\protected@file@percent } -\abx@aux@cite{electrodynamics} -\abx@aux@segm{0}{0}{electrodynamics} -\abx@aux@cite{ncgwalter} -\abx@aux@segm{0}{0}{ncgwalter} -\abx@aux@cite{liealgebra} -\abx@aux@segm{0}{0}{liealgebra} -\abx@aux@cite{ncg4pages} -\abx@aux@segm{0}{0}{ncg4pages} -\abx@aux@cite{ncgshort} -\abx@aux@segm{0}{0}{ncgshort} -\abx@aux@cite{heatkernel} -\abx@aux@segm{0}{0}{heatkernel} -\abx@aux@read@bbl@mdfivesum{nohash} -\abx@aux@read@bblrerun -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}Acknowledgment}{21}{section.4}\protected@file@percent } -\gdef \@abspage@last{22} diff --git a/src/thesis/main.bcf b/src/thesis/main.bcf @@ -1,2372 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<bcf:controlfile version="3.7" bltxversion="3.16" xmlns:bcf="https://sourceforge.net/projects/biblatex"> - <!-- BIBER OPTIONS --> - <bcf:options component="biber" type="global"> - <bcf:option type="singlevalued"> - <bcf:key>output_encoding</bcf:key> - <bcf:value>utf8</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>input_encoding</bcf:key> - <bcf:value>utf8</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>debug</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>mincrossrefs</bcf:key> - <bcf:value>2</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>minxrefs</bcf:key> - <bcf:value>2</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>sortcase</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>sortupper</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - </bcf:options> - <!-- BIBLATEX OPTIONS --> - <!-- GLOBAL --> - <bcf:options component="biblatex" type="global"> - <bcf:option type="singlevalued"> - <bcf:key>alphaothers</bcf:key> - <bcf:value>+</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>labelalpha</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="multivalued"> - <bcf:key>labelnamespec</bcf:key> - <bcf:value order="1">shortauthor</bcf:value> - <bcf:value order="2">author</bcf:value> - <bcf:value order="3">shorteditor</bcf:value> - <bcf:value order="4">editor</bcf:value> - <bcf:value order="5">translator</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>labeltitle</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="multivalued"> - <bcf:key>labeltitlespec</bcf:key> - <bcf:value order="1">shorttitle</bcf:value> - <bcf:value order="2">title</bcf:value> - <bcf:value order="3">maintitle</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>labeltitleyear</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>labeldateparts</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="multivalued"> - <bcf:key>labeldatespec</bcf:key> - <bcf:value order="1" type="field">date</bcf:value> - <bcf:value order="2" type="field">year</bcf:value> - <bcf:value order="3" type="field">eventdate</bcf:value> - <bcf:value order="4" type="field">origdate</bcf:value> - <bcf:value order="5" type="field">urldate</bcf:value> - <bcf:value order="6" type="string">nodate</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>julian</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>gregorianstart</bcf:key> - <bcf:value>1582-10-15</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>maxalphanames</bcf:key> - <bcf:value>3</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>maxbibnames</bcf:key> - <bcf:value>3</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>maxcitenames</bcf:key> - <bcf:value>3</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>maxsortnames</bcf:key> - <bcf:value>3</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>maxitems</bcf:key> - <bcf:value>3</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>minalphanames</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>minbibnames</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>mincitenames</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>minsortnames</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>minitems</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>nohashothers</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>noroman</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>nosortothers</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>singletitle</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>skipbib</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>skipbiblist</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>skiplab</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>sortalphaothers</bcf:key> - <bcf:value>+</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>sortlocale</bcf:key> - <bcf:value>english</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>sortingtemplatename</bcf:key> - <bcf:value>none</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>sortsets</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniquelist</bcf:key> - <bcf:value>false</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniquename</bcf:key> - <bcf:value>false</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniqueprimaryauthor</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniquetitle</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniquebaretitle</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniquework</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useprefix</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useafterword</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useannotator</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useauthor</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usebookauthor</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usecommentator</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useeditor</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useeditora</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useeditorb</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useeditorc</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useforeword</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useholder</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useintroduction</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usenamea</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usenameb</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usenamec</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usetranslator</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useshortauthor</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useshorteditor</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - </bcf:options> - <!-- online --> - <bcf:options component="biblatex" type="online"> - <bcf:option type="singlevalued"> - <bcf:key>labelalpha</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="multivalued"> - <bcf:key>labelnamespec</bcf:key> - <bcf:value order="1">shortauthor</bcf:value> - <bcf:value order="2">author</bcf:value> - <bcf:value order="3">shorteditor</bcf:value> - <bcf:value order="4">editor</bcf:value> - <bcf:value order="5">translator</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>labeltitle</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="multivalued"> - <bcf:key>labeltitlespec</bcf:key> - <bcf:value order="1">shorttitle</bcf:value> - <bcf:value order="2">title</bcf:value> - <bcf:value order="3">maintitle</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>labeltitleyear</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>labeldateparts</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="multivalued"> - <bcf:key>labeldatespec</bcf:key> - <bcf:value order="1" type="field">date</bcf:value> - <bcf:value order="2" type="field">year</bcf:value> - <bcf:value order="3" type="field">eventdate</bcf:value> - <bcf:value order="4" type="field">origdate</bcf:value> - <bcf:value order="5" type="field">urldate</bcf:value> - <bcf:value order="6" type="string">nodate</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>maxalphanames</bcf:key> - <bcf:value>3</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>maxbibnames</bcf:key> - <bcf:value>3</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>maxcitenames</bcf:key> - <bcf:value>3</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>maxsortnames</bcf:key> - <bcf:value>3</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>maxitems</bcf:key> - <bcf:value>3</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>minalphanames</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>minbibnames</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>mincitenames</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>minsortnames</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>minitems</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>nohashothers</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>noroman</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>nosortothers</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>singletitle</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>skipbib</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>skiplab</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>skipbiblist</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniquelist</bcf:key> - <bcf:value>false</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniquename</bcf:key> - <bcf:value>false</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniqueprimaryauthor</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniquetitle</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniquebaretitle</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>uniquework</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useprefix</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useafterword</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useannotator</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useauthor</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usebookauthor</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usecommentator</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useeditor</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useeditora</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useeditorb</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useeditorc</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useforeword</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useholder</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useintroduction</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usenamea</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usenameb</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usenamec</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>usetranslator</bcf:key> - <bcf:value>0</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useshortauthor</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - <bcf:option type="singlevalued"> - <bcf:key>useshorteditor</bcf:key> - <bcf:value>1</bcf:value> - </bcf:option> - </bcf:options> - <!-- BIBLATEX OPTION SCOPE --> - <bcf:optionscope type="GLOBAL"> - <bcf:option datatype="xml">datamodel</bcf:option> - <bcf:option datatype="xml">labelalphanametemplate</bcf:option> - <bcf:option datatype="xml">labelalphatemplate</bcf:option> - <bcf:option datatype="xml">inheritance</bcf:option> - <bcf:option datatype="xml">translit</bcf:option> - <bcf:option datatype="xml">uniquenametemplate</bcf:option> - <bcf:option datatype="xml">sortingnamekeytemplate</bcf:option> - <bcf:option datatype="xml">sortingtemplate</bcf:option> - <bcf:option datatype="xml">extradatespec</bcf:option> - <bcf:option datatype="xml">labelnamespec</bcf:option> - <bcf:option datatype="xml">labeltitlespec</bcf:option> - <bcf:option datatype="xml">labeldatespec</bcf:option> - <bcf:option datatype="string">controlversion</bcf:option> - <bcf:option datatype="string">alphaothers</bcf:option> - <bcf:option datatype="string">sortalphaothers</bcf:option> - <bcf:option datatype="string">presort</bcf:option> - <bcf:option datatype="string">texencoding</bcf:option> - <bcf:option datatype="string">bibencoding</bcf:option> - <bcf:option datatype="string">sortingtemplatename</bcf:option> - <bcf:option datatype="string">sortlocale</bcf:option> - <bcf:option datatype="string">language</bcf:option> - <bcf:option datatype="string">autolang</bcf:option> - <bcf:option datatype="string">langhook</bcf:option> - <bcf:option datatype="string">indexing</bcf:option> - <bcf:option datatype="string">hyperref</bcf:option> - <bcf:option datatype="string">backrefsetstyle</bcf:option> - <bcf:option datatype="string">block</bcf:option> - <bcf:option datatype="string">pagetracker</bcf:option> - <bcf:option datatype="string">citecounter</bcf:option> - <bcf:option datatype="string">citetracker</bcf:option> - <bcf:option datatype="string">ibidtracker</bcf:option> - <bcf:option datatype="string">idemtracker</bcf:option> - <bcf:option datatype="string">opcittracker</bcf:option> - <bcf:option datatype="string">loccittracker</bcf:option> - <bcf:option datatype="string">labeldate</bcf:option> - <bcf:option datatype="string">labeltime</bcf:option> - <bcf:option datatype="string">dateera</bcf:option> - <bcf:option datatype="string">date</bcf:option> - <bcf:option datatype="string">time</bcf:option> - <bcf:option datatype="string">eventdate</bcf:option> - <bcf:option datatype="string">eventtime</bcf:option> - <bcf:option datatype="string">origdate</bcf:option> - <bcf:option datatype="string">origtime</bcf:option> - <bcf:option datatype="string">urldate</bcf:option> - <bcf:option datatype="string">urltime</bcf:option> - <bcf:option datatype="string">alldatesusetime</bcf:option> - <bcf:option datatype="string">alldates</bcf:option> - <bcf:option datatype="string">alltimes</bcf:option> - <bcf:option datatype="string">gregorianstart</bcf:option> - <bcf:option datatype="string">autocite</bcf:option> - <bcf:option datatype="string">notetype</bcf:option> - <bcf:option datatype="string">uniquelist</bcf:option> - <bcf:option datatype="string">uniquename</bcf:option> - <bcf:option datatype="string">refsection</bcf:option> - <bcf:option datatype="string">refsegment</bcf:option> - <bcf:option datatype="string">citereset</bcf:option> - <bcf:option datatype="string">sortlos</bcf:option> - <bcf:option datatype="string">babel</bcf:option> - <bcf:option datatype="string">datelabel</bcf:option> - <bcf:option datatype="string">backrefstyle</bcf:option> - <bcf:option datatype="string">arxiv</bcf:option> - <bcf:option datatype="boolean">familyinits</bcf:option> - <bcf:option datatype="boolean">giveninits</bcf:option> - <bcf:option datatype="boolean">prefixinits</bcf:option> - <bcf:option datatype="boolean">suffixinits</bcf:option> - <bcf:option datatype="boolean">useafterword</bcf:option> - <bcf:option datatype="boolean">useannotator</bcf:option> - <bcf:option datatype="boolean">useauthor</bcf:option> - <bcf:option datatype="boolean">usebookauthor</bcf:option> - <bcf:option datatype="boolean">usecommentator</bcf:option> - <bcf:option datatype="boolean">useeditor</bcf:option> - <bcf:option datatype="boolean">useeditora</bcf:option> - <bcf:option datatype="boolean">useeditorb</bcf:option> - <bcf:option datatype="boolean">useeditorc</bcf:option> - <bcf:option datatype="boolean">useforeword</bcf:option> - <bcf:option datatype="boolean">useholder</bcf:option> - <bcf:option datatype="boolean">useintroduction</bcf:option> - <bcf:option datatype="boolean">usenamea</bcf:option> - <bcf:option datatype="boolean">usenameb</bcf:option> - <bcf:option datatype="boolean">usenamec</bcf:option> - <bcf:option datatype="boolean">usetranslator</bcf:option> - <bcf:option datatype="boolean">useshortauthor</bcf:option> - <bcf:option datatype="boolean">useshorteditor</bcf:option> - <bcf:option datatype="boolean">debug</bcf:option> - <bcf:option datatype="boolean">loadfiles</bcf:option> - <bcf:option datatype="boolean">safeinputenc</bcf:option> - <bcf:option datatype="boolean">sortcase</bcf:option> - <bcf:option datatype="boolean">sortupper</bcf:option> - <bcf:option datatype="boolean">terseinits</bcf:option> - <bcf:option datatype="boolean">abbreviate</bcf:option> - <bcf:option datatype="boolean">dateabbrev</bcf:option> - <bcf:option datatype="boolean">clearlang</bcf:option> - <bcf:option datatype="boolean">sortcites</bcf:option> - <bcf:option datatype="boolean">sortsets</bcf:option> - <bcf:option datatype="boolean">backref</bcf:option> - <bcf:option datatype="boolean">backreffloats</bcf:option> - <bcf:option datatype="boolean">trackfloats</bcf:option> - <bcf:option datatype="boolean">parentracker</bcf:option> - <bcf:option datatype="boolean">labeldateusetime</bcf:option> - <bcf:option datatype="boolean">datecirca</bcf:option> - <bcf:option datatype="boolean">dateuncertain</bcf:option> - <bcf:option datatype="boolean">dateusetime</bcf:option> - <bcf:option datatype="boolean">eventdateusetime</bcf:option> - <bcf:option datatype="boolean">origdateusetime</bcf:option> - <bcf:option datatype="boolean">urldateusetime</bcf:option> - <bcf:option datatype="boolean">julian</bcf:option> - <bcf:option datatype="boolean">datezeros</bcf:option> - <bcf:option datatype="boolean">timezeros</bcf:option> - <bcf:option datatype="boolean">timezones</bcf:option> - <bcf:option datatype="boolean">seconds</bcf:option> - <bcf:option datatype="boolean">autopunct</bcf:option> - <bcf:option datatype="boolean">punctfont</bcf:option> - <bcf:option datatype="boolean">labelnumber</bcf:option> - <bcf:option datatype="boolean">labelalpha</bcf:option> - <bcf:option datatype="boolean">labeltitle</bcf:option> - <bcf:option datatype="boolean">labeltitleyear</bcf:option> - <bcf:option datatype="boolean">labeldateparts</bcf:option> - <bcf:option datatype="boolean">nohashothers</bcf:option> - <bcf:option datatype="boolean">nosortothers</bcf:option> - <bcf:option datatype="boolean">noroman</bcf:option> - <bcf:option datatype="boolean">singletitle</bcf:option> - <bcf:option datatype="boolean">uniquetitle</bcf:option> - <bcf:option datatype="boolean">uniquebaretitle</bcf:option> - <bcf:option datatype="boolean">uniquework</bcf:option> - <bcf:option datatype="boolean">uniqueprimaryauthor</bcf:option> - <bcf:option datatype="boolean">defernumbers</bcf:option> - <bcf:option datatype="boolean">locallabelwidth</bcf:option> - <bcf:option datatype="boolean">bibwarn</bcf:option> - <bcf:option datatype="boolean">useprefix</bcf:option> - <bcf:option datatype="boolean">skipbib</bcf:option> - <bcf:option datatype="boolean">skipbiblist</bcf:option> - <bcf:option datatype="boolean">skiplab</bcf:option> - <bcf:option datatype="boolean">dataonly</bcf:option> - <bcf:option datatype="boolean">defernums</bcf:option> - <bcf:option datatype="boolean">firstinits</bcf:option> - <bcf:option datatype="boolean">sortfirstinits</bcf:option> - <bcf:option datatype="boolean">sortgiveninits</bcf:option> - <bcf:option datatype="boolean">labelyear</bcf:option> - <bcf:option datatype="boolean">isbn</bcf:option> - <bcf:option datatype="boolean">url</bcf:option> - <bcf:option datatype="boolean">doi</bcf:option> - <bcf:option datatype="boolean">eprint</bcf:option> - <bcf:option datatype="boolean">related</bcf:option> - <bcf:option datatype="boolean">subentry</bcf:option> - <bcf:option datatype="boolean">bibtexcaseprotection</bcf:option> - <bcf:option datatype="integer">mincrossrefs</bcf:option> - <bcf:option datatype="integer">minxrefs</bcf:option> - <bcf:option datatype="integer">maxnames</bcf:option> - <bcf:option datatype="integer">minnames</bcf:option> - <bcf:option datatype="integer">maxbibnames</bcf:option> - <bcf:option datatype="integer">minbibnames</bcf:option> - <bcf:option datatype="integer">maxcitenames</bcf:option> - <bcf:option datatype="integer">mincitenames</bcf:option> - <bcf:option datatype="integer">maxsortnames</bcf:option> - <bcf:option datatype="integer">minsortnames</bcf:option> - <bcf:option datatype="integer">maxitems</bcf:option> - <bcf:option datatype="integer">minitems</bcf:option> - <bcf:option datatype="integer">maxalphanames</bcf:option> - <bcf:option datatype="integer">minalphanames</bcf:option> - <bcf:option datatype="integer">maxparens</bcf:option> - <bcf:option datatype="integer">dateeraauto</bcf:option> - </bcf:optionscope> - <bcf:optionscope type="ENTRYTYPE"> - <bcf:option datatype="string">alphaothers</bcf:option> - <bcf:option datatype="string">sortalphaothers</bcf:option> - <bcf:option datatype="string">presort</bcf:option> - <bcf:option datatype="string">indexing</bcf:option> - <bcf:option datatype="string">citetracker</bcf:option> - <bcf:option datatype="string">ibidtracker</bcf:option> - <bcf:option datatype="string">idemtracker</bcf:option> - <bcf:option datatype="string">opcittracker</bcf:option> - <bcf:option datatype="string">loccittracker</bcf:option> - <bcf:option datatype="string">uniquelist</bcf:option> - <bcf:option datatype="string">uniquename</bcf:option> - <bcf:option datatype="boolean">familyinits</bcf:option> - <bcf:option datatype="boolean">giveninits</bcf:option> - <bcf:option datatype="boolean">prefixinits</bcf:option> - <bcf:option datatype="boolean">suffixinits</bcf:option> - <bcf:option datatype="boolean">useafterword</bcf:option> - <bcf:option datatype="boolean">useannotator</bcf:option> - <bcf:option datatype="boolean">useauthor</bcf:option> - <bcf:option datatype="boolean">usebookauthor</bcf:option> - <bcf:option datatype="boolean">usecommentator</bcf:option> - <bcf:option datatype="boolean">useeditor</bcf:option> - <bcf:option datatype="boolean">useeditora</bcf:option> - <bcf:option datatype="boolean">useeditorb</bcf:option> - <bcf:option datatype="boolean">useeditorc</bcf:option> - <bcf:option datatype="boolean">useforeword</bcf:option> - <bcf:option datatype="boolean">useholder</bcf:option> - <bcf:option datatype="boolean">useintroduction</bcf:option> - <bcf:option datatype="boolean">usenamea</bcf:option> - <bcf:option datatype="boolean">usenameb</bcf:option> - <bcf:option datatype="boolean">usenamec</bcf:option> - <bcf:option datatype="boolean">usetranslator</bcf:option> - <bcf:option datatype="boolean">useshortauthor</bcf:option> - <bcf:option datatype="boolean">useshorteditor</bcf:option> - <bcf:option datatype="boolean">terseinits</bcf:option> - <bcf:option datatype="boolean">abbreviate</bcf:option> - <bcf:option datatype="boolean">dateabbrev</bcf:option> - <bcf:option datatype="boolean">clearlang</bcf:option> - <bcf:option datatype="boolean">labelnumber</bcf:option> - <bcf:option datatype="boolean">labelalpha</bcf:option> - <bcf:option datatype="boolean">labeltitle</bcf:option> - <bcf:option datatype="boolean">labeltitleyear</bcf:option> - <bcf:option datatype="boolean">labeldateparts</bcf:option> - <bcf:option datatype="boolean">nohashothers</bcf:option> - <bcf:option datatype="boolean">nosortothers</bcf:option> - <bcf:option datatype="boolean">noroman</bcf:option> - <bcf:option datatype="boolean">singletitle</bcf:option> - <bcf:option datatype="boolean">uniquetitle</bcf:option> - <bcf:option datatype="boolean">uniquebaretitle</bcf:option> - <bcf:option datatype="boolean">uniquework</bcf:option> - <bcf:option datatype="boolean">uniqueprimaryauthor</bcf:option> - <bcf:option datatype="boolean">useprefix</bcf:option> - <bcf:option datatype="boolean">skipbib</bcf:option> - <bcf:option datatype="boolean">skipbiblist</bcf:option> - <bcf:option datatype="boolean">skiplab</bcf:option> - <bcf:option datatype="boolean">dataonly</bcf:option> - <bcf:option datatype="boolean">skiplos</bcf:option> - <bcf:option datatype="boolean">labelyear</bcf:option> - <bcf:option datatype="boolean">isbn</bcf:option> - <bcf:option datatype="boolean">url</bcf:option> - <bcf:option datatype="boolean">doi</bcf:option> - <bcf:option datatype="boolean">eprint</bcf:option> - <bcf:option datatype="boolean">related</bcf:option> - <bcf:option datatype="boolean">subentry</bcf:option> - <bcf:option datatype="boolean">bibtexcaseprotection</bcf:option> - <bcf:option datatype="xml">labelalphatemplate</bcf:option> - <bcf:option datatype="xml">translit</bcf:option> - <bcf:option datatype="xml">sortexclusion</bcf:option> - <bcf:option datatype="xml">sortinclusion</bcf:option> - <bcf:option datatype="xml">labelnamespec</bcf:option> - <bcf:option datatype="xml">labeltitlespec</bcf:option> - <bcf:option datatype="xml">labeldatespec</bcf:option> - <bcf:option datatype="integer">maxnames</bcf:option> - <bcf:option datatype="integer">minnames</bcf:option> - <bcf:option datatype="integer">maxbibnames</bcf:option> - <bcf:option datatype="integer">minbibnames</bcf:option> - <bcf:option datatype="integer">maxcitenames</bcf:option> - <bcf:option datatype="integer">mincitenames</bcf:option> - <bcf:option datatype="integer">maxsortnames</bcf:option> - <bcf:option datatype="integer">minsortnames</bcf:option> - <bcf:option datatype="integer">maxitems</bcf:option> - <bcf:option datatype="integer">minitems</bcf:option> - <bcf:option datatype="integer">maxalphanames</bcf:option> - <bcf:option datatype="integer">minalphanames</bcf:option> - </bcf:optionscope> - <bcf:optionscope type="ENTRY"> - <bcf:option datatype="string">noinherit</bcf:option> - <bcf:option datatype="string" backendin="sortingnamekeytemplatename,uniquenametemplatename,labelalphanametemplatename">nametemplates</bcf:option> - <bcf:option datatype="string" backendout="1">labelalphanametemplatename</bcf:option> - <bcf:option datatype="string" backendout="1">uniquenametemplatename</bcf:option> - <bcf:option datatype="string" backendout="1">sortingnamekeytemplatename</bcf:option> - <bcf:option datatype="string">presort</bcf:option> - <bcf:option datatype="string" backendout="1">indexing</bcf:option> - <bcf:option datatype="string" backendout="1">citetracker</bcf:option> - <bcf:option datatype="string" backendout="1">ibidtracker</bcf:option> - <bcf:option datatype="string" backendout="1">idemtracker</bcf:option> - <bcf:option datatype="string" backendout="1">opcittracker</bcf:option> - <bcf:option datatype="string" backendout="1">loccittracker</bcf:option> - <bcf:option datatype="string">uniquelist</bcf:option> - <bcf:option datatype="string">uniquename</bcf:option> - <bcf:option datatype="boolean" backendout="1">familyinits</bcf:option> - <bcf:option datatype="boolean" backendout="1">giveninits</bcf:option> - <bcf:option datatype="boolean" backendout="1">prefixinits</bcf:option> - <bcf:option datatype="boolean" backendout="1">suffixinits</bcf:option> - <bcf:option datatype="boolean" backendout="1">useafterword</bcf:option> - <bcf:option datatype="boolean" backendout="1">useannotator</bcf:option> - <bcf:option datatype="boolean" backendout="1">useauthor</bcf:option> - <bcf:option datatype="boolean" backendout="1">usebookauthor</bcf:option> - <bcf:option datatype="boolean" backendout="1">usecommentator</bcf:option> - <bcf:option datatype="boolean" backendout="1">useeditor</bcf:option> - <bcf:option datatype="boolean" backendout="1">useeditora</bcf:option> - <bcf:option datatype="boolean" backendout="1">useeditorb</bcf:option> - <bcf:option datatype="boolean" backendout="1">useeditorc</bcf:option> - <bcf:option datatype="boolean" backendout="1">useforeword</bcf:option> - <bcf:option datatype="boolean" backendout="1">useholder</bcf:option> - <bcf:option datatype="boolean" backendout="1">useintroduction</bcf:option> - <bcf:option datatype="boolean" backendout="1">usenamea</bcf:option> - <bcf:option datatype="boolean" backendout="1">usenameb</bcf:option> - <bcf:option datatype="boolean" backendout="1">usenamec</bcf:option> - <bcf:option datatype="boolean" backendout="1">usetranslator</bcf:option> - <bcf:option datatype="boolean" backendout="1">useshortauthor</bcf:option> - <bcf:option datatype="boolean" backendout="1">useshorteditor</bcf:option> - <bcf:option datatype="boolean" backendout="1">terseinits</bcf:option> - <bcf:option datatype="boolean" backendout="1">abbreviate</bcf:option> - <bcf:option datatype="boolean" backendout="1">dateabbrev</bcf:option> - <bcf:option datatype="boolean" backendout="1">clearlang</bcf:option> - <bcf:option datatype="boolean" backendout="1">labelnumber</bcf:option> - <bcf:option datatype="boolean" backendout="1">labelalpha</bcf:option> - <bcf:option datatype="boolean" backendout="1">labeltitle</bcf:option> - <bcf:option datatype="boolean" backendout="1">labeltitleyear</bcf:option> - <bcf:option datatype="boolean" backendout="1">labeldateparts</bcf:option> - <bcf:option datatype="boolean">nohashothers</bcf:option> - <bcf:option datatype="boolean">nosortothers</bcf:option> - <bcf:option datatype="boolean">noroman</bcf:option> - <bcf:option datatype="boolean">singletitle</bcf:option> - <bcf:option datatype="boolean">uniquetitle</bcf:option> - <bcf:option datatype="boolean">uniquebaretitle</bcf:option> - <bcf:option datatype="boolean">uniquework</bcf:option> - <bcf:option datatype="boolean">uniqueprimaryauthor</bcf:option> - <bcf:option datatype="boolean" backendout="1">useprefix</bcf:option> - <bcf:option datatype="boolean" backendout="1">skipbib</bcf:option> - <bcf:option datatype="boolean" backendout="1">skipbiblist</bcf:option> - <bcf:option datatype="boolean" backendout="1">skiplab</bcf:option> - <bcf:option datatype="boolean" backendin="uniquename=false,uniquelist=false,skipbib=true,skipbiblist=true,skiplab=true">dataonly</bcf:option> - <bcf:option datatype="boolean" backendout="1">skiplos</bcf:option> - <bcf:option datatype="boolean" backendout="1">isbn</bcf:option> - <bcf:option datatype="boolean" backendout="1">url</bcf:option> - <bcf:option datatype="boolean" backendout="1">doi</bcf:option> - <bcf:option datatype="boolean" backendout="1">eprint</bcf:option> - <bcf:option datatype="boolean" backendout="1">related</bcf:option> - <bcf:option datatype="boolean" backendout="1">subentry</bcf:option> - <bcf:option datatype="boolean" backendout="1">bibtexcaseprotection</bcf:option> - <bcf:option datatype="integer" backendin="maxcitenames,maxbibnames,maxsortnames">maxnames</bcf:option> - <bcf:option datatype="integer" backendin="mincitenames,minbibnames,minsortnames">minnames</bcf:option> - <bcf:option datatype="integer" backendout="1">maxbibnames</bcf:option> - <bcf:option datatype="integer" backendout="1">minbibnames</bcf:option> - <bcf:option datatype="integer" backendout="1">maxcitenames</bcf:option> - <bcf:option datatype="integer" backendout="1">mincitenames</bcf:option> - <bcf:option datatype="integer" backendout="1">maxsortnames</bcf:option> - <bcf:option datatype="integer" backendout="1">minsortnames</bcf:option> - <bcf:option datatype="integer" backendout="1">maxitems</bcf:option> - <bcf:option datatype="integer" backendout="1">minitems</bcf:option> - <bcf:option datatype="integer" backendout="1">maxalphanames</bcf:option> - <bcf:option datatype="integer" backendout="1">minalphanames</bcf:option> - </bcf:optionscope> - <bcf:optionscope type="NAMELIST"> - <bcf:option datatype="string" backendin="sortingnamekeytemplatename,uniquenametemplatename,labelalphanametemplatename">nametemplates</bcf:option> - <bcf:option datatype="string" backendout="1">labelalphanametemplatename</bcf:option> - <bcf:option datatype="string" backendout="1">uniquenametemplatename</bcf:option> - <bcf:option datatype="string" backendout="1">sortingnamekeytemplatename</bcf:option> - <bcf:option datatype="string">uniquelist</bcf:option> - <bcf:option datatype="string">uniquename</bcf:option> - <bcf:option datatype="boolean" backendout="1">familyinits</bcf:option> - <bcf:option datatype="boolean" backendout="1">giveninits</bcf:option> - <bcf:option datatype="boolean" backendout="1">prefixinits</bcf:option> - <bcf:option datatype="boolean" backendout="1">suffixinits</bcf:option> - <bcf:option datatype="boolean" backendout="1">terseinits</bcf:option> - <bcf:option datatype="boolean">nohashothers</bcf:option> - <bcf:option datatype="boolean">nosortothers</bcf:option> - <bcf:option datatype="boolean" backendout="1">useprefix</bcf:option> - </bcf:optionscope> - <bcf:optionscope type="NAME"> - <bcf:option datatype="string" backendin="sortingnamekeytemplatename,uniquenametemplatename,labelalphanametemplatename">nametemplates</bcf:option> - <bcf:option datatype="string" backendout="1">labelalphanametemplatename</bcf:option> - <bcf:option datatype="string" backendout="1">uniquenametemplatename</bcf:option> - <bcf:option datatype="string" backendout="1">sortingnamekeytemplatename</bcf:option> - <bcf:option datatype="string">uniquename</bcf:option> - <bcf:option datatype="boolean" backendout="1">familyinits</bcf:option> - <bcf:option datatype="boolean" backendout="1">giveninits</bcf:option> - <bcf:option datatype="boolean" backendout="1">prefixinits</bcf:option> - <bcf:option datatype="boolean" backendout="1">suffixinits</bcf:option> - <bcf:option datatype="boolean" backendout="1">terseinits</bcf:option> - <bcf:option datatype="boolean" backendout="1">useprefix</bcf:option> - </bcf:optionscope> - <!-- DATAFIELDSETS --> - <bcf:datafieldset name="setnames"> - <bcf:member datatype="name" fieldtype="list"/> - </bcf:datafieldset> - <bcf:datafieldset name="settitles"> - <bcf:member field="title"/> - <bcf:member field="booktitle"/> - <bcf:member field="eventtitle"/> - <bcf:member field="issuetitle"/> - <bcf:member field="journaltitle"/> - <bcf:member field="maintitle"/> - <bcf:member field="origtitle"/> - </bcf:datafieldset> - <!-- SOURCEMAP --> - <bcf:sourcemap> - <bcf:maps datatype="bibtex" level="driver"> - <bcf:map> - <bcf:map_step map_field_set="day" map_null="1"/> - </bcf:map> - <bcf:map> - <bcf:map_step map_type_source="conference" map_type_target="inproceedings"/> - <bcf:map_step map_type_source="electronic" map_type_target="online"/> - <bcf:map_step map_type_source="www" map_type_target="online"/> - </bcf:map> - <bcf:map> - <bcf:map_step map_type_source="mastersthesis" map_type_target="thesis" map_final="1"/> - <bcf:map_step map_field_set="type" map_field_value="mathesis"/> - </bcf:map> - <bcf:map> - <bcf:map_step map_type_source="phdthesis" map_type_target="thesis" map_final="1"/> - <bcf:map_step map_field_set="type" map_field_value="phdthesis"/> - </bcf:map> - <bcf:map> - <bcf:map_step map_type_source="techreport" map_type_target="report" map_final="1"/> - <bcf:map_step map_field_set="type" map_field_value="techreport"/> - </bcf:map> - <bcf:map> - <bcf:map_step map_field_source="hyphenation" map_field_target="langid"/> - <bcf:map_step map_field_source="address" map_field_target="location"/> - <bcf:map_step map_field_source="school" map_field_target="institution"/> - <bcf:map_step map_field_source="annote" map_field_target="annotation"/> - <bcf:map_step map_field_source="archiveprefix" map_field_target="eprinttype"/> - <bcf:map_step map_field_source="journal" map_field_target="journaltitle"/> - <bcf:map_step map_field_source="primaryclass" map_field_target="eprintclass"/> - <bcf:map_step map_field_source="key" map_field_target="sortkey"/> - <bcf:map_step map_field_source="pdf" map_field_target="file"/> - </bcf:map> - </bcf:maps> - </bcf:sourcemap> - <!-- LABELALPHA NAME TEMPLATE --> - <bcf:labelalphanametemplate name="global"> - <bcf:namepart order="1" use="1" pre="1" substring_width="1" substring_compound="1">prefix</bcf:namepart> - <bcf:namepart order="2">family</bcf:namepart> - </bcf:labelalphanametemplate> - <!-- LABELALPHA TEMPLATE --> - <bcf:labelalphatemplate type="global"> - <bcf:labelelement order="1"> - <bcf:labelpart final="1">shorthand</bcf:labelpart> - <bcf:labelpart>label</bcf:labelpart> - <bcf:labelpart substring_width="3" substring_side="left" ifnames="1">labelname</bcf:labelpart> - <bcf:labelpart substring_width="1" substring_side="left">labelname</bcf:labelpart> - </bcf:labelelement> - <bcf:labelelement order="2"> - <bcf:labelpart substring_width="2" substring_side="right">year</bcf:labelpart> - </bcf:labelelement> - </bcf:labelalphatemplate> - <!-- EXTRADATE --> - <bcf:extradatespec> - <bcf:scope> - <bcf:field order="1">labelyear</bcf:field> - <bcf:field order="2">year</bcf:field> - </bcf:scope> - </bcf:extradatespec> - <!-- INHERITANCE --> - <bcf:inheritance> - <bcf:defaults inherit_all="true" override_target="false"> - </bcf:defaults> - <bcf:inherit> - <bcf:type_pair source="mvbook" target="inbook"/> - <bcf:type_pair source="mvbook" target="bookinbook"/> - <bcf:type_pair source="mvbook" target="suppbook"/> - <bcf:type_pair source="book" target="inbook"/> - <bcf:type_pair source="book" target="bookinbook"/> - <bcf:type_pair source="book" target="suppbook"/> - <bcf:field source="author" target="author"/> - <bcf:field source="author" target="bookauthor"/> - </bcf:inherit> - <bcf:inherit> - <bcf:type_pair source="mvbook" target="book"/> - <bcf:type_pair source="mvbook" target="inbook"/> - <bcf:type_pair source="mvbook" target="bookinbook"/> - <bcf:type_pair source="mvbook" target="suppbook"/> - <bcf:field source="title" target="maintitle"/> - <bcf:field source="subtitle" target="mainsubtitle"/> - <bcf:field source="titleaddon" target="maintitleaddon"/> - <bcf:field source="shorttitle" skip="true"/> - <bcf:field source="sorttitle" skip="true"/> - <bcf:field source="indextitle" skip="true"/> - <bcf:field source="indexsorttitle" skip="true"/> - </bcf:inherit> - <bcf:inherit> - <bcf:type_pair source="mvcollection" target="collection"/> - <bcf:type_pair source="mvcollection" target="reference"/> - <bcf:type_pair source="mvcollection" target="incollection"/> - <bcf:type_pair source="mvcollection" target="inreference"/> - <bcf:type_pair source="mvcollection" target="suppcollection"/> - <bcf:type_pair source="mvreference" target="collection"/> - <bcf:type_pair source="mvreference" target="reference"/> - <bcf:type_pair source="mvreference" target="incollection"/> - <bcf:type_pair source="mvreference" target="inreference"/> - <bcf:type_pair source="mvreference" target="suppcollection"/> - <bcf:field source="title" target="maintitle"/> - <bcf:field source="subtitle" target="mainsubtitle"/> - <bcf:field source="titleaddon" target="maintitleaddon"/> - <bcf:field source="shorttitle" skip="true"/> - <bcf:field source="sorttitle" skip="true"/> - <bcf:field source="indextitle" skip="true"/> - <bcf:field source="indexsorttitle" skip="true"/> - </bcf:inherit> - <bcf:inherit> - <bcf:type_pair source="mvproceedings" target="proceedings"/> - <bcf:type_pair source="mvproceedings" target="inproceedings"/> - <bcf:field source="title" target="maintitle"/> - <bcf:field source="subtitle" target="mainsubtitle"/> - <bcf:field source="titleaddon" target="maintitleaddon"/> - <bcf:field source="shorttitle" skip="true"/> - <bcf:field source="sorttitle" skip="true"/> - <bcf:field source="indextitle" skip="true"/> - <bcf:field source="indexsorttitle" skip="true"/> - </bcf:inherit> - <bcf:inherit> - <bcf:type_pair source="book" target="inbook"/> - <bcf:type_pair source="book" target="bookinbook"/> - <bcf:type_pair source="book" target="suppbook"/> - <bcf:field source="title" target="booktitle"/> - <bcf:field source="subtitle" target="booksubtitle"/> - <bcf:field source="titleaddon" target="booktitleaddon"/> - <bcf:field source="shorttitle" skip="true"/> - <bcf:field source="sorttitle" skip="true"/> - <bcf:field source="indextitle" skip="true"/> - <bcf:field source="indexsorttitle" skip="true"/> - </bcf:inherit> - <bcf:inherit> - <bcf:type_pair source="collection" target="incollection"/> - <bcf:type_pair source="collection" target="inreference"/> - <bcf:type_pair source="collection" target="suppcollection"/> - <bcf:type_pair source="reference" target="incollection"/> - <bcf:type_pair source="reference" target="inreference"/> - <bcf:type_pair source="reference" target="suppcollection"/> - <bcf:field source="title" target="booktitle"/> - <bcf:field source="subtitle" target="booksubtitle"/> - <bcf:field source="titleaddon" target="booktitleaddon"/> - <bcf:field source="shorttitle" skip="true"/> - <bcf:field source="sorttitle" skip="true"/> - <bcf:field source="indextitle" skip="true"/> - <bcf:field source="indexsorttitle" skip="true"/> - </bcf:inherit> - <bcf:inherit> - <bcf:type_pair source="proceedings" target="inproceedings"/> - <bcf:field source="title" target="booktitle"/> - <bcf:field source="subtitle" target="booksubtitle"/> - <bcf:field source="titleaddon" target="booktitleaddon"/> - <bcf:field source="shorttitle" skip="true"/> - <bcf:field source="sorttitle" skip="true"/> - <bcf:field source="indextitle" skip="true"/> - <bcf:field source="indexsorttitle" skip="true"/> - </bcf:inherit> - <bcf:inherit> - <bcf:type_pair source="periodical" target="article"/> - <bcf:type_pair source="periodical" target="suppperiodical"/> - <bcf:field source="title" target="journaltitle"/> - <bcf:field source="subtitle" target="journalsubtitle"/> - <bcf:field source="titleaddon" target="journaltitleaddon"/> - <bcf:field source="shorttitle" skip="true"/> - <bcf:field source="sorttitle" skip="true"/> - <bcf:field source="indextitle" skip="true"/> - <bcf:field source="indexsorttitle" skip="true"/> - </bcf:inherit> - <bcf:inherit> - <bcf:type_pair source="*" target="*"/> - <bcf:field source="ids" skip="true"/> - <bcf:field source="crossref" skip="true"/> - <bcf:field source="xref" skip="true"/> - <bcf:field source="entryset" skip="true"/> - <bcf:field source="entrysubtype" skip="true"/> - <bcf:field source="execute" skip="true"/> - <bcf:field source="label" skip="true"/> - <bcf:field source="options" skip="true"/> - <bcf:field source="presort" skip="true"/> - <bcf:field source="related" skip="true"/> - <bcf:field source="relatedoptions" skip="true"/> - <bcf:field source="relatedstring" skip="true"/> - <bcf:field source="relatedtype" skip="true"/> - <bcf:field source="shorthand" skip="true"/> - <bcf:field source="shorthandintro" skip="true"/> - <bcf:field source="sortkey" skip="true"/> - </bcf:inherit> - </bcf:inheritance> - <!-- UNIQUENAME TEMPLATES --> - <bcf:uniquenametemplate name="global"> - <bcf:namepart order="1" use="1" base="1">prefix</bcf:namepart> - <bcf:namepart order="2" base="1">family</bcf:namepart> - <bcf:namepart order="3">given</bcf:namepart> - </bcf:uniquenametemplate> - <!-- SORTING NAME KEY TEMPLATES --> - <bcf:sortingnamekeytemplate name="global"> - <bcf:keypart order="1"> - <bcf:part type="namepart" order="1" use="1">prefix</bcf:part> - <bcf:part type="namepart" order="2">family</bcf:part> - </bcf:keypart> - <bcf:keypart order="2"> - <bcf:part type="namepart" order="1">given</bcf:part> - </bcf:keypart> - <bcf:keypart order="3"> - <bcf:part type="namepart" order="1">suffix</bcf:part> - </bcf:keypart> - <bcf:keypart order="4"> - <bcf:part type="namepart" order="1" use="0">prefix</bcf:part> - </bcf:keypart> - </bcf:sortingnamekeytemplate> - <bcf:presort>mm</bcf:presort> - <!-- DATA MODEL --> - <bcf:datamodel> - <bcf:constants> - <bcf:constant type="list" name="gender">sf,sm,sn,pf,pm,pn,pp</bcf:constant> - <bcf:constant type="list" name="nameparts">family,given,prefix,suffix</bcf:constant> - <bcf:constant type="list" name="optiondatatypes">boolean,integer,string,xml</bcf:constant> - <bcf:constant type="list" name="multiscriptforms">default,transliteration,transcription,translation</bcf:constant> - </bcf:constants> - <bcf:entrytypes> - <bcf:entrytype>article</bcf:entrytype> - <bcf:entrytype>artwork</bcf:entrytype> - <bcf:entrytype>audio</bcf:entrytype> - <bcf:entrytype>bibnote</bcf:entrytype> - <bcf:entrytype>book</bcf:entrytype> - <bcf:entrytype>bookinbook</bcf:entrytype> - <bcf:entrytype>booklet</bcf:entrytype> - <bcf:entrytype>collection</bcf:entrytype> - <bcf:entrytype>commentary</bcf:entrytype> - <bcf:entrytype>customa</bcf:entrytype> - <bcf:entrytype>customb</bcf:entrytype> - <bcf:entrytype>customc</bcf:entrytype> - <bcf:entrytype>customd</bcf:entrytype> - <bcf:entrytype>custome</bcf:entrytype> - <bcf:entrytype>customf</bcf:entrytype> - <bcf:entrytype>dataset</bcf:entrytype> - <bcf:entrytype>inbook</bcf:entrytype> - <bcf:entrytype>incollection</bcf:entrytype> - <bcf:entrytype>inproceedings</bcf:entrytype> - <bcf:entrytype>inreference</bcf:entrytype> - <bcf:entrytype>image</bcf:entrytype> - <bcf:entrytype>jurisdiction</bcf:entrytype> - <bcf:entrytype>legal</bcf:entrytype> - <bcf:entrytype>legislation</bcf:entrytype> - <bcf:entrytype>letter</bcf:entrytype> - <bcf:entrytype>manual</bcf:entrytype> - <bcf:entrytype>misc</bcf:entrytype> - <bcf:entrytype>movie</bcf:entrytype> - <bcf:entrytype>music</bcf:entrytype> - <bcf:entrytype>mvcollection</bcf:entrytype> - <bcf:entrytype>mvreference</bcf:entrytype> - <bcf:entrytype>mvproceedings</bcf:entrytype> - <bcf:entrytype>mvbook</bcf:entrytype> - <bcf:entrytype>online</bcf:entrytype> - <bcf:entrytype>patent</bcf:entrytype> - <bcf:entrytype>performance</bcf:entrytype> - <bcf:entrytype>periodical</bcf:entrytype> - <bcf:entrytype>proceedings</bcf:entrytype> - <bcf:entrytype>reference</bcf:entrytype> - <bcf:entrytype>report</bcf:entrytype> - <bcf:entrytype>review</bcf:entrytype> - <bcf:entrytype>set</bcf:entrytype> - <bcf:entrytype>software</bcf:entrytype> - <bcf:entrytype>standard</bcf:entrytype> - <bcf:entrytype>suppbook</bcf:entrytype> - <bcf:entrytype>suppcollection</bcf:entrytype> - <bcf:entrytype>suppperiodical</bcf:entrytype> - <bcf:entrytype>thesis</bcf:entrytype> - <bcf:entrytype>unpublished</bcf:entrytype> - <bcf:entrytype>video</bcf:entrytype> - <bcf:entrytype skip_output="true">xdata</bcf:entrytype> - </bcf:entrytypes> - <bcf:fields> - <bcf:field fieldtype="field" datatype="integer">sortyear</bcf:field> - <bcf:field fieldtype="field" datatype="integer">volume</bcf:field> - <bcf:field fieldtype="field" datatype="integer">volumes</bcf:field> - <bcf:field fieldtype="field" datatype="literal">abstract</bcf:field> - <bcf:field fieldtype="field" datatype="literal">addendum</bcf:field> - <bcf:field fieldtype="field" datatype="literal">annotation</bcf:field> - <bcf:field fieldtype="field" datatype="literal">booksubtitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">booktitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">booktitleaddon</bcf:field> - <bcf:field fieldtype="field" datatype="literal">chapter</bcf:field> - <bcf:field fieldtype="field" datatype="literal">edition</bcf:field> - <bcf:field fieldtype="field" datatype="literal">eid</bcf:field> - <bcf:field fieldtype="field" datatype="literal">entrysubtype</bcf:field> - <bcf:field fieldtype="field" datatype="literal">eprintclass</bcf:field> - <bcf:field fieldtype="field" datatype="literal">eprinttype</bcf:field> - <bcf:field fieldtype="field" datatype="literal">eventtitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">eventtitleaddon</bcf:field> - <bcf:field fieldtype="field" datatype="literal">gender</bcf:field> - <bcf:field fieldtype="field" datatype="literal">howpublished</bcf:field> - <bcf:field fieldtype="field" datatype="literal">indexsorttitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">indextitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">isan</bcf:field> - <bcf:field fieldtype="field" datatype="literal">isbn</bcf:field> - <bcf:field fieldtype="field" datatype="literal">ismn</bcf:field> - <bcf:field fieldtype="field" datatype="literal">isrn</bcf:field> - <bcf:field fieldtype="field" datatype="literal">issn</bcf:field> - <bcf:field fieldtype="field" datatype="literal">issue</bcf:field> - <bcf:field fieldtype="field" datatype="literal">issuesubtitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">issuetitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">issuetitleaddon</bcf:field> - <bcf:field fieldtype="field" datatype="literal">iswc</bcf:field> - <bcf:field fieldtype="field" datatype="literal">journalsubtitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">journaltitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">journaltitleaddon</bcf:field> - <bcf:field fieldtype="field" datatype="literal">label</bcf:field> - <bcf:field fieldtype="field" datatype="literal">langid</bcf:field> - <bcf:field fieldtype="field" datatype="literal">langidopts</bcf:field> - <bcf:field fieldtype="field" datatype="literal">library</bcf:field> - <bcf:field fieldtype="field" datatype="literal">mainsubtitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">maintitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">maintitleaddon</bcf:field> - <bcf:field fieldtype="field" datatype="literal">nameaddon</bcf:field> - <bcf:field fieldtype="field" datatype="literal">note</bcf:field> - <bcf:field fieldtype="field" datatype="literal">number</bcf:field> - <bcf:field fieldtype="field" datatype="literal">origtitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">pagetotal</bcf:field> - <bcf:field fieldtype="field" datatype="literal">part</bcf:field> - <bcf:field fieldtype="field" datatype="literal">relatedstring</bcf:field> - <bcf:field fieldtype="field" datatype="literal">relatedtype</bcf:field> - <bcf:field fieldtype="field" datatype="literal">reprinttitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">series</bcf:field> - <bcf:field fieldtype="field" datatype="literal">shorthandintro</bcf:field> - <bcf:field fieldtype="field" datatype="literal">subtitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal">title</bcf:field> - <bcf:field fieldtype="field" datatype="literal">titleaddon</bcf:field> - <bcf:field fieldtype="field" datatype="literal">usera</bcf:field> - <bcf:field fieldtype="field" datatype="literal">userb</bcf:field> - <bcf:field fieldtype="field" datatype="literal">userc</bcf:field> - <bcf:field fieldtype="field" datatype="literal">userd</bcf:field> - <bcf:field fieldtype="field" datatype="literal">usere</bcf:field> - <bcf:field fieldtype="field" datatype="literal">userf</bcf:field> - <bcf:field fieldtype="field" datatype="literal">venue</bcf:field> - <bcf:field fieldtype="field" datatype="literal">version</bcf:field> - <bcf:field fieldtype="field" datatype="literal" label="true">shorthand</bcf:field> - <bcf:field fieldtype="field" datatype="literal" label="true">shortjournal</bcf:field> - <bcf:field fieldtype="field" datatype="literal" label="true">shortseries</bcf:field> - <bcf:field fieldtype="field" datatype="literal" label="true">shorttitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal" skip_output="true">sorttitle</bcf:field> - <bcf:field fieldtype="field" datatype="literal" skip_output="true">sortshorthand</bcf:field> - <bcf:field fieldtype="field" datatype="literal" skip_output="true">sortkey</bcf:field> - <bcf:field fieldtype="field" datatype="literal" skip_output="true">presort</bcf:field> - <bcf:field fieldtype="list" datatype="literal">institution</bcf:field> - <bcf:field fieldtype="list" datatype="literal">lista</bcf:field> - <bcf:field fieldtype="list" datatype="literal">listb</bcf:field> - <bcf:field fieldtype="list" datatype="literal">listc</bcf:field> - <bcf:field fieldtype="list" datatype="literal">listd</bcf:field> - <bcf:field fieldtype="list" datatype="literal">liste</bcf:field> - <bcf:field fieldtype="list" datatype="literal">listf</bcf:field> - <bcf:field fieldtype="list" datatype="literal">location</bcf:field> - <bcf:field fieldtype="list" datatype="literal">organization</bcf:field> - <bcf:field fieldtype="list" datatype="literal">origlocation</bcf:field> - <bcf:field fieldtype="list" datatype="literal">origpublisher</bcf:field> - <bcf:field fieldtype="list" datatype="literal">publisher</bcf:field> - <bcf:field fieldtype="list" datatype="name">afterword</bcf:field> - <bcf:field fieldtype="list" datatype="name">annotator</bcf:field> - <bcf:field fieldtype="list" datatype="name">author</bcf:field> - <bcf:field fieldtype="list" datatype="name">bookauthor</bcf:field> - <bcf:field fieldtype="list" datatype="name">commentator</bcf:field> - <bcf:field fieldtype="list" datatype="name">editor</bcf:field> - <bcf:field fieldtype="list" datatype="name">editora</bcf:field> - <bcf:field fieldtype="list" datatype="name">editorb</bcf:field> - <bcf:field fieldtype="list" datatype="name">editorc</bcf:field> - <bcf:field fieldtype="list" datatype="name">foreword</bcf:field> - <bcf:field fieldtype="list" datatype="name">holder</bcf:field> - <bcf:field fieldtype="list" datatype="name">introduction</bcf:field> - <bcf:field fieldtype="list" datatype="name">namea</bcf:field> - <bcf:field fieldtype="list" datatype="name">nameb</bcf:field> - <bcf:field fieldtype="list" datatype="name">namec</bcf:field> - <bcf:field fieldtype="list" datatype="name">translator</bcf:field> - <bcf:field fieldtype="list" datatype="name" label="true">shortauthor</bcf:field> - <bcf:field fieldtype="list" datatype="name" label="true">shorteditor</bcf:field> - <bcf:field fieldtype="list" datatype="name" skip_output="true">sortname</bcf:field> - <bcf:field fieldtype="field" datatype="key">authortype</bcf:field> - <bcf:field fieldtype="field" datatype="key">editoratype</bcf:field> - <bcf:field fieldtype="field" datatype="key">editorbtype</bcf:field> - <bcf:field fieldtype="field" datatype="key">editorctype</bcf:field> - <bcf:field fieldtype="field" datatype="key">editortype</bcf:field> - <bcf:field fieldtype="field" datatype="key">bookpagination</bcf:field> - <bcf:field fieldtype="field" datatype="key">nameatype</bcf:field> - <bcf:field fieldtype="field" datatype="key">namebtype</bcf:field> - <bcf:field fieldtype="field" datatype="key">namectype</bcf:field> - <bcf:field fieldtype="field" datatype="key">pagination</bcf:field> - <bcf:field fieldtype="field" datatype="key">pubstate</bcf:field> - <bcf:field fieldtype="field" datatype="key">type</bcf:field> - <bcf:field fieldtype="list" datatype="key">language</bcf:field> - <bcf:field fieldtype="list" datatype="key">origlanguage</bcf:field> - <bcf:field fieldtype="field" datatype="entrykey">crossref</bcf:field> - <bcf:field fieldtype="field" datatype="entrykey">xref</bcf:field> - <bcf:field fieldtype="field" datatype="date" skip_output="true">date</bcf:field> - <bcf:field fieldtype="field" datatype="datepart" nullok="true">endyear</bcf:field> - <bcf:field fieldtype="field" datatype="datepart" nullok="true">year</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">month</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">day</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">hour</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">minute</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">second</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">timezone</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">season</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">endmonth</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">endday</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">endhour</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">endminute</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">endsecond</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">endtimezone</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">endseason</bcf:field> - <bcf:field fieldtype="field" datatype="date" skip_output="true">eventdate</bcf:field> - <bcf:field fieldtype="field" datatype="datepart" nullok="true">eventendyear</bcf:field> - <bcf:field fieldtype="field" datatype="datepart" nullok="true">eventyear</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventmonth</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventday</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventhour</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventminute</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventsecond</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventtimezone</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventseason</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventendmonth</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventendday</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventendhour</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventendminute</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventendsecond</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventendtimezone</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">eventendseason</bcf:field> - <bcf:field fieldtype="field" datatype="date" skip_output="true">origdate</bcf:field> - <bcf:field fieldtype="field" datatype="datepart" nullok="true">origendyear</bcf:field> - <bcf:field fieldtype="field" datatype="datepart" nullok="true">origyear</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origmonth</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origday</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">orighour</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origminute</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origsecond</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origtimezone</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origseason</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origendmonth</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origendday</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origendhour</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origendminute</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origendsecond</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origendtimezone</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">origendseason</bcf:field> - <bcf:field fieldtype="field" datatype="date" skip_output="true">urldate</bcf:field> - <bcf:field fieldtype="field" datatype="datepart" nullok="true">urlendyear</bcf:field> - <bcf:field fieldtype="field" datatype="datepart" nullok="true">urlyear</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlmonth</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlday</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlhour</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlminute</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlsecond</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urltimezone</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlseason</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlendmonth</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlendday</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlendhour</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlendminute</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlendsecond</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlendtimezone</bcf:field> - <bcf:field fieldtype="field" datatype="datepart">urlendseason</bcf:field> - <bcf:field fieldtype="field" datatype="verbatim">doi</bcf:field> - <bcf:field fieldtype="field" datatype="verbatim">eprint</bcf:field> - <bcf:field fieldtype="field" datatype="verbatim">file</bcf:field> - <bcf:field fieldtype="field" datatype="verbatim">verba</bcf:field> - <bcf:field fieldtype="field" datatype="verbatim">verbb</bcf:field> - <bcf:field fieldtype="field" datatype="verbatim">verbc</bcf:field> - <bcf:field fieldtype="field" datatype="uri">url</bcf:field> - <bcf:field fieldtype="field" format="xsv" datatype="entrykey" skip_output="true">xdata</bcf:field> - <bcf:field fieldtype="field" format="xsv" datatype="entrykey" skip_output="true">ids</bcf:field> - <bcf:field fieldtype="field" format="xsv" datatype="entrykey" skip_output="true">entryset</bcf:field> - <bcf:field fieldtype="field" format="xsv" datatype="entrykey">related</bcf:field> - <bcf:field fieldtype="field" format="xsv" datatype="keyword">keywords</bcf:field> - <bcf:field fieldtype="field" format="xsv" datatype="option" skip_output="true">options</bcf:field> - <bcf:field fieldtype="field" format="xsv" datatype="option" skip_output="true">relatedoptions</bcf:field> - <bcf:field fieldtype="field" datatype="range">pages</bcf:field> - <bcf:field fieldtype="field" datatype="code">execute</bcf:field> - </bcf:fields> - <bcf:entryfields> - <bcf:field>abstract</bcf:field> - <bcf:field>annotation</bcf:field> - <bcf:field>authortype</bcf:field> - <bcf:field>bookpagination</bcf:field> - <bcf:field>crossref</bcf:field> - <bcf:field>day</bcf:field> - <bcf:field>doi</bcf:field> - <bcf:field>eprint</bcf:field> - <bcf:field>eprintclass</bcf:field> - <bcf:field>eprinttype</bcf:field> - <bcf:field>endday</bcf:field> - <bcf:field>endhour</bcf:field> - <bcf:field>endminute</bcf:field> - <bcf:field>endmonth</bcf:field> - <bcf:field>endseason</bcf:field> - <bcf:field>endsecond</bcf:field> - <bcf:field>endtimezone</bcf:field> - <bcf:field>endyear</bcf:field> - <bcf:field>entryset</bcf:field> - <bcf:field>entrysubtype</bcf:field> - <bcf:field>execute</bcf:field> - <bcf:field>file</bcf:field> - <bcf:field>gender</bcf:field> - <bcf:field>hour</bcf:field> - <bcf:field>ids</bcf:field> - <bcf:field>indextitle</bcf:field> - <bcf:field>indexsorttitle</bcf:field> - <bcf:field>isan</bcf:field> - <bcf:field>ismn</bcf:field> - <bcf:field>iswc</bcf:field> - <bcf:field>keywords</bcf:field> - <bcf:field>label</bcf:field> - <bcf:field>langid</bcf:field> - <bcf:field>langidopts</bcf:field> - <bcf:field>library</bcf:field> - <bcf:field>lista</bcf:field> - <bcf:field>listb</bcf:field> - <bcf:field>listc</bcf:field> - <bcf:field>listd</bcf:field> - <bcf:field>liste</bcf:field> - <bcf:field>listf</bcf:field> - <bcf:field>minute</bcf:field> - <bcf:field>month</bcf:field> - <bcf:field>namea</bcf:field> - <bcf:field>nameb</bcf:field> - <bcf:field>namec</bcf:field> - <bcf:field>nameatype</bcf:field> - <bcf:field>namebtype</bcf:field> - <bcf:field>namectype</bcf:field> - <bcf:field>nameaddon</bcf:field> - <bcf:field>options</bcf:field> - <bcf:field>origday</bcf:field> - <bcf:field>origendday</bcf:field> - <bcf:field>origendhour</bcf:field> - <bcf:field>origendminute</bcf:field> - <bcf:field>origendmonth</bcf:field> - <bcf:field>origendseason</bcf:field> - <bcf:field>origendsecond</bcf:field> - <bcf:field>origendtimezone</bcf:field> - <bcf:field>origendyear</bcf:field> - <bcf:field>orighour</bcf:field> - <bcf:field>origminute</bcf:field> - <bcf:field>origmonth</bcf:field> - <bcf:field>origseason</bcf:field> - <bcf:field>origsecond</bcf:field> - <bcf:field>origtimezone</bcf:field> - <bcf:field>origyear</bcf:field> - <bcf:field>origlocation</bcf:field> - <bcf:field>origpublisher</bcf:field> - <bcf:field>origtitle</bcf:field> - <bcf:field>pagination</bcf:field> - <bcf:field>presort</bcf:field> - <bcf:field>related</bcf:field> - <bcf:field>relatedoptions</bcf:field> - <bcf:field>relatedstring</bcf:field> - <bcf:field>relatedtype</bcf:field> - <bcf:field>season</bcf:field> - <bcf:field>second</bcf:field> - <bcf:field>shortauthor</bcf:field> - <bcf:field>shorteditor</bcf:field> - <bcf:field>shorthand</bcf:field> - <bcf:field>shorthandintro</bcf:field> - <bcf:field>shortjournal</bcf:field> - <bcf:field>shortseries</bcf:field> - <bcf:field>shorttitle</bcf:field> - <bcf:field>sortkey</bcf:field> - <bcf:field>sortname</bcf:field> - <bcf:field>sortshorthand</bcf:field> - <bcf:field>sorttitle</bcf:field> - <bcf:field>sortyear</bcf:field> - <bcf:field>timezone</bcf:field> - <bcf:field>url</bcf:field> - <bcf:field>urlday</bcf:field> - <bcf:field>urlendday</bcf:field> - <bcf:field>urlendhour</bcf:field> - <bcf:field>urlendminute</bcf:field> - <bcf:field>urlendmonth</bcf:field> - <bcf:field>urlendsecond</bcf:field> - <bcf:field>urlendtimezone</bcf:field> - <bcf:field>urlendyear</bcf:field> - <bcf:field>urlhour</bcf:field> - <bcf:field>urlminute</bcf:field> - <bcf:field>urlmonth</bcf:field> - <bcf:field>urlsecond</bcf:field> - <bcf:field>urltimezone</bcf:field> - <bcf:field>urlyear</bcf:field> - <bcf:field>usera</bcf:field> - <bcf:field>userb</bcf:field> - <bcf:field>userc</bcf:field> - <bcf:field>userd</bcf:field> - <bcf:field>usere</bcf:field> - <bcf:field>userf</bcf:field> - <bcf:field>verba</bcf:field> - <bcf:field>verbb</bcf:field> - <bcf:field>verbc</bcf:field> - <bcf:field>xdata</bcf:field> - <bcf:field>xref</bcf:field> - <bcf:field>year</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>set</bcf:entrytype> - <bcf:field>entryset</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>article</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>annotator</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>commentator</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editora</bcf:field> - <bcf:field>editorb</bcf:field> - <bcf:field>editorc</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>editoratype</bcf:field> - <bcf:field>editorbtype</bcf:field> - <bcf:field>editorctype</bcf:field> - <bcf:field>eid</bcf:field> - <bcf:field>issn</bcf:field> - <bcf:field>issue</bcf:field> - <bcf:field>issuetitle</bcf:field> - <bcf:field>issuesubtitle</bcf:field> - <bcf:field>issuetitleaddon</bcf:field> - <bcf:field>journalsubtitle</bcf:field> - <bcf:field>journaltitle</bcf:field> - <bcf:field>journaltitleaddon</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>origlanguage</bcf:field> - <bcf:field>pages</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>translator</bcf:field> - <bcf:field>version</bcf:field> - <bcf:field>volume</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>bibnote</bcf:entrytype> - <bcf:field>note</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>book</bcf:entrytype> - <bcf:field>author</bcf:field> - <bcf:field>addendum</bcf:field> - <bcf:field>afterword</bcf:field> - <bcf:field>annotator</bcf:field> - <bcf:field>chapter</bcf:field> - <bcf:field>commentator</bcf:field> - <bcf:field>edition</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editora</bcf:field> - <bcf:field>editorb</bcf:field> - <bcf:field>editorc</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>editoratype</bcf:field> - <bcf:field>editorbtype</bcf:field> - <bcf:field>editorctype</bcf:field> - <bcf:field>eid</bcf:field> - <bcf:field>foreword</bcf:field> - <bcf:field>introduction</bcf:field> - <bcf:field>isbn</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>maintitle</bcf:field> - <bcf:field>maintitleaddon</bcf:field> - <bcf:field>mainsubtitle</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>origlanguage</bcf:field> - <bcf:field>pages</bcf:field> - <bcf:field>pagetotal</bcf:field> - <bcf:field>part</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>translator</bcf:field> - <bcf:field>volume</bcf:field> - <bcf:field>volumes</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>mvbook</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>afterword</bcf:field> - <bcf:field>annotator</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>commentator</bcf:field> - <bcf:field>edition</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editora</bcf:field> - <bcf:field>editorb</bcf:field> - <bcf:field>editorc</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>editoratype</bcf:field> - <bcf:field>editorbtype</bcf:field> - <bcf:field>editorctype</bcf:field> - <bcf:field>foreword</bcf:field> - <bcf:field>introduction</bcf:field> - <bcf:field>isbn</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>origlanguage</bcf:field> - <bcf:field>pagetotal</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>translator</bcf:field> - <bcf:field>volume</bcf:field> - <bcf:field>volumes</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>inbook</bcf:entrytype> - <bcf:entrytype>bookinbook</bcf:entrytype> - <bcf:entrytype>suppbook</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>afterword</bcf:field> - <bcf:field>annotator</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>booktitle</bcf:field> - <bcf:field>bookauthor</bcf:field> - <bcf:field>booksubtitle</bcf:field> - <bcf:field>booktitleaddon</bcf:field> - <bcf:field>chapter</bcf:field> - <bcf:field>commentator</bcf:field> - <bcf:field>edition</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editora</bcf:field> - <bcf:field>editorb</bcf:field> - <bcf:field>editorc</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>editoratype</bcf:field> - <bcf:field>editorbtype</bcf:field> - <bcf:field>editorctype</bcf:field> - <bcf:field>eid</bcf:field> - <bcf:field>foreword</bcf:field> - <bcf:field>introduction</bcf:field> - <bcf:field>isbn</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>mainsubtitle</bcf:field> - <bcf:field>maintitle</bcf:field> - <bcf:field>maintitleaddon</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>origlanguage</bcf:field> - <bcf:field>part</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>pages</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>translator</bcf:field> - <bcf:field>volume</bcf:field> - <bcf:field>volumes</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>booklet</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>chapter</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>eid</bcf:field> - <bcf:field>howpublished</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>pages</bcf:field> - <bcf:field>pagetotal</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>type</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>collection</bcf:entrytype> - <bcf:entrytype>reference</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>afterword</bcf:field> - <bcf:field>annotator</bcf:field> - <bcf:field>chapter</bcf:field> - <bcf:field>commentator</bcf:field> - <bcf:field>edition</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editora</bcf:field> - <bcf:field>editorb</bcf:field> - <bcf:field>editorc</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>editoratype</bcf:field> - <bcf:field>editorbtype</bcf:field> - <bcf:field>editorctype</bcf:field> - <bcf:field>eid</bcf:field> - <bcf:field>foreword</bcf:field> - <bcf:field>introduction</bcf:field> - <bcf:field>isbn</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>mainsubtitle</bcf:field> - <bcf:field>maintitle</bcf:field> - <bcf:field>maintitleaddon</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>origlanguage</bcf:field> - <bcf:field>pages</bcf:field> - <bcf:field>pagetotal</bcf:field> - <bcf:field>part</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>translator</bcf:field> - <bcf:field>volume</bcf:field> - <bcf:field>volumes</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>mvcollection</bcf:entrytype> - <bcf:entrytype>mvreference</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>afterword</bcf:field> - <bcf:field>annotator</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>commentator</bcf:field> - <bcf:field>edition</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editora</bcf:field> - <bcf:field>editorb</bcf:field> - <bcf:field>editorc</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>editoratype</bcf:field> - <bcf:field>editorbtype</bcf:field> - <bcf:field>editorctype</bcf:field> - <bcf:field>foreword</bcf:field> - <bcf:field>introduction</bcf:field> - <bcf:field>isbn</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>origlanguage</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>translator</bcf:field> - <bcf:field>volume</bcf:field> - <bcf:field>volumes</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>incollection</bcf:entrytype> - <bcf:entrytype>suppcollection</bcf:entrytype> - <bcf:entrytype>inreference</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>afterword</bcf:field> - <bcf:field>annotator</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>booksubtitle</bcf:field> - <bcf:field>booktitle</bcf:field> - <bcf:field>booktitleaddon</bcf:field> - <bcf:field>chapter</bcf:field> - <bcf:field>commentator</bcf:field> - <bcf:field>edition</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editora</bcf:field> - <bcf:field>editorb</bcf:field> - <bcf:field>editorc</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>editoratype</bcf:field> - <bcf:field>editorbtype</bcf:field> - <bcf:field>editorctype</bcf:field> - <bcf:field>eid</bcf:field> - <bcf:field>foreword</bcf:field> - <bcf:field>introduction</bcf:field> - <bcf:field>isbn</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>mainsubtitle</bcf:field> - <bcf:field>maintitle</bcf:field> - <bcf:field>maintitleaddon</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>origlanguage</bcf:field> - <bcf:field>pages</bcf:field> - <bcf:field>part</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>translator</bcf:field> - <bcf:field>volume</bcf:field> - <bcf:field>volumes</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>dataset</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>edition</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>organization</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>type</bcf:field> - <bcf:field>version</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>manual</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>chapter</bcf:field> - <bcf:field>edition</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>eid</bcf:field> - <bcf:field>isbn</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>organization</bcf:field> - <bcf:field>pages</bcf:field> - <bcf:field>pagetotal</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>type</bcf:field> - <bcf:field>version</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>misc</bcf:entrytype> - <bcf:entrytype>software</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>howpublished</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>organization</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>type</bcf:field> - <bcf:field>version</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>online</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>organization</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>version</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>patent</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>holder</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>type</bcf:field> - <bcf:field>version</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>periodical</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editora</bcf:field> - <bcf:field>editorb</bcf:field> - <bcf:field>editorc</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>editoratype</bcf:field> - <bcf:field>editorbtype</bcf:field> - <bcf:field>editorctype</bcf:field> - <bcf:field>issn</bcf:field> - <bcf:field>issue</bcf:field> - <bcf:field>issuesubtitle</bcf:field> - <bcf:field>issuetitle</bcf:field> - <bcf:field>issuetitleaddon</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>season</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>volume</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>mvproceedings</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>eventday</bcf:field> - <bcf:field>eventendday</bcf:field> - <bcf:field>eventendhour</bcf:field> - <bcf:field>eventendminute</bcf:field> - <bcf:field>eventendmonth</bcf:field> - <bcf:field>eventendseason</bcf:field> - <bcf:field>eventendsecond</bcf:field> - <bcf:field>eventendtimezone</bcf:field> - <bcf:field>eventendyear</bcf:field> - <bcf:field>eventhour</bcf:field> - <bcf:field>eventminute</bcf:field> - <bcf:field>eventmonth</bcf:field> - <bcf:field>eventseason</bcf:field> - <bcf:field>eventsecond</bcf:field> - <bcf:field>eventtimezone</bcf:field> - <bcf:field>eventyear</bcf:field> - <bcf:field>eventtitle</bcf:field> - <bcf:field>eventtitleaddon</bcf:field> - <bcf:field>isbn</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>organization</bcf:field> - <bcf:field>pagetotal</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>venue</bcf:field> - <bcf:field>volumes</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>proceedings</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>chapter</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>eid</bcf:field> - <bcf:field>eventday</bcf:field> - <bcf:field>eventendday</bcf:field> - <bcf:field>eventendhour</bcf:field> - <bcf:field>eventendminute</bcf:field> - <bcf:field>eventendmonth</bcf:field> - <bcf:field>eventendseason</bcf:field> - <bcf:field>eventendsecond</bcf:field> - <bcf:field>eventendtimezone</bcf:field> - <bcf:field>eventendyear</bcf:field> - <bcf:field>eventhour</bcf:field> - <bcf:field>eventminute</bcf:field> - <bcf:field>eventmonth</bcf:field> - <bcf:field>eventseason</bcf:field> - <bcf:field>eventsecond</bcf:field> - <bcf:field>eventtimezone</bcf:field> - <bcf:field>eventyear</bcf:field> - <bcf:field>eventtitle</bcf:field> - <bcf:field>eventtitleaddon</bcf:field> - <bcf:field>isbn</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>mainsubtitle</bcf:field> - <bcf:field>maintitle</bcf:field> - <bcf:field>maintitleaddon</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>organization</bcf:field> - <bcf:field>pages</bcf:field> - <bcf:field>pagetotal</bcf:field> - <bcf:field>part</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>venue</bcf:field> - <bcf:field>volume</bcf:field> - <bcf:field>volumes</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>inproceedings</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>booksubtitle</bcf:field> - <bcf:field>booktitle</bcf:field> - <bcf:field>booktitleaddon</bcf:field> - <bcf:field>chapter</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editortype</bcf:field> - <bcf:field>eid</bcf:field> - <bcf:field>eventday</bcf:field> - <bcf:field>eventendday</bcf:field> - <bcf:field>eventendhour</bcf:field> - <bcf:field>eventendminute</bcf:field> - <bcf:field>eventendmonth</bcf:field> - <bcf:field>eventendseason</bcf:field> - <bcf:field>eventendsecond</bcf:field> - <bcf:field>eventendtimezone</bcf:field> - <bcf:field>eventendyear</bcf:field> - <bcf:field>eventhour</bcf:field> - <bcf:field>eventminute</bcf:field> - <bcf:field>eventmonth</bcf:field> - <bcf:field>eventseason</bcf:field> - <bcf:field>eventsecond</bcf:field> - <bcf:field>eventtimezone</bcf:field> - <bcf:field>eventyear</bcf:field> - <bcf:field>eventtitle</bcf:field> - <bcf:field>eventtitleaddon</bcf:field> - <bcf:field>isbn</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>mainsubtitle</bcf:field> - <bcf:field>maintitle</bcf:field> - <bcf:field>maintitleaddon</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>organization</bcf:field> - <bcf:field>pages</bcf:field> - <bcf:field>part</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>venue</bcf:field> - <bcf:field>volume</bcf:field> - <bcf:field>volumes</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>report</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>chapter</bcf:field> - <bcf:field>eid</bcf:field> - <bcf:field>institution</bcf:field> - <bcf:field>isrn</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>number</bcf:field> - <bcf:field>pages</bcf:field> - <bcf:field>pagetotal</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>type</bcf:field> - <bcf:field>version</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>thesis</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>chapter</bcf:field> - <bcf:field>eid</bcf:field> - <bcf:field>institution</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>pages</bcf:field> - <bcf:field>pagetotal</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>type</bcf:field> - </bcf:entryfields> - <bcf:entryfields> - <bcf:entrytype>unpublished</bcf:entrytype> - <bcf:field>addendum</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>eventday</bcf:field> - <bcf:field>eventendday</bcf:field> - <bcf:field>eventendhour</bcf:field> - <bcf:field>eventendminute</bcf:field> - <bcf:field>eventendmonth</bcf:field> - <bcf:field>eventendseason</bcf:field> - <bcf:field>eventendsecond</bcf:field> - <bcf:field>eventendtimezone</bcf:field> - <bcf:field>eventendyear</bcf:field> - <bcf:field>eventhour</bcf:field> - <bcf:field>eventminute</bcf:field> - <bcf:field>eventmonth</bcf:field> - <bcf:field>eventseason</bcf:field> - <bcf:field>eventsecond</bcf:field> - <bcf:field>eventtimezone</bcf:field> - <bcf:field>eventyear</bcf:field> - <bcf:field>eventtitle</bcf:field> - <bcf:field>eventtitleaddon</bcf:field> - <bcf:field>howpublished</bcf:field> - <bcf:field>language</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>pubstate</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>type</bcf:field> - <bcf:field>venue</bcf:field> - </bcf:entryfields> - <bcf:multiscriptfields> - <bcf:field>abstract</bcf:field> - <bcf:field>addendum</bcf:field> - <bcf:field>afterword</bcf:field> - <bcf:field>annotator</bcf:field> - <bcf:field>author</bcf:field> - <bcf:field>bookauthor</bcf:field> - <bcf:field>booksubtitle</bcf:field> - <bcf:field>booktitle</bcf:field> - <bcf:field>booktitleaddon</bcf:field> - <bcf:field>chapter</bcf:field> - <bcf:field>commentator</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>editora</bcf:field> - <bcf:field>editorb</bcf:field> - <bcf:field>editorc</bcf:field> - <bcf:field>foreword</bcf:field> - <bcf:field>holder</bcf:field> - <bcf:field>institution</bcf:field> - <bcf:field>introduction</bcf:field> - <bcf:field>issuesubtitle</bcf:field> - <bcf:field>issuetitle</bcf:field> - <bcf:field>issuetitleaddon</bcf:field> - <bcf:field>journalsubtitle</bcf:field> - <bcf:field>journaltitle</bcf:field> - <bcf:field>journaltitleaddon</bcf:field> - <bcf:field>location</bcf:field> - <bcf:field>mainsubtitle</bcf:field> - <bcf:field>maintitle</bcf:field> - <bcf:field>maintitleaddon</bcf:field> - <bcf:field>nameaddon</bcf:field> - <bcf:field>note</bcf:field> - <bcf:field>organization</bcf:field> - <bcf:field>origlanguage</bcf:field> - <bcf:field>origlocation</bcf:field> - <bcf:field>origpublisher</bcf:field> - <bcf:field>origtitle</bcf:field> - <bcf:field>part</bcf:field> - <bcf:field>publisher</bcf:field> - <bcf:field>relatedstring</bcf:field> - <bcf:field>series</bcf:field> - <bcf:field>shortauthor</bcf:field> - <bcf:field>shorteditor</bcf:field> - <bcf:field>shorthand</bcf:field> - <bcf:field>shortjournal</bcf:field> - <bcf:field>shortseries</bcf:field> - <bcf:field>shorttitle</bcf:field> - <bcf:field>sortname</bcf:field> - <bcf:field>sortshorthand</bcf:field> - <bcf:field>sorttitle</bcf:field> - <bcf:field>subtitle</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>titleaddon</bcf:field> - <bcf:field>translator</bcf:field> - <bcf:field>venue</bcf:field> - </bcf:multiscriptfields> - <bcf:constraints> - <bcf:entrytype>article</bcf:entrytype> - <bcf:entrytype>book</bcf:entrytype> - <bcf:entrytype>inbook</bcf:entrytype> - <bcf:entrytype>bookinbook</bcf:entrytype> - <bcf:entrytype>suppbook</bcf:entrytype> - <bcf:entrytype>booklet</bcf:entrytype> - <bcf:entrytype>collection</bcf:entrytype> - <bcf:entrytype>incollection</bcf:entrytype> - <bcf:entrytype>suppcollection</bcf:entrytype> - <bcf:entrytype>manual</bcf:entrytype> - <bcf:entrytype>misc</bcf:entrytype> - <bcf:entrytype>mvbook</bcf:entrytype> - <bcf:entrytype>mvcollection</bcf:entrytype> - <bcf:entrytype>online</bcf:entrytype> - <bcf:entrytype>patent</bcf:entrytype> - <bcf:entrytype>periodical</bcf:entrytype> - <bcf:entrytype>suppperiodical</bcf:entrytype> - <bcf:entrytype>proceedings</bcf:entrytype> - <bcf:entrytype>inproceedings</bcf:entrytype> - <bcf:entrytype>reference</bcf:entrytype> - <bcf:entrytype>inreference</bcf:entrytype> - <bcf:entrytype>report</bcf:entrytype> - <bcf:entrytype>set</bcf:entrytype> - <bcf:entrytype>thesis</bcf:entrytype> - <bcf:entrytype>unpublished</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:fieldxor> - <bcf:field>date</bcf:field> - <bcf:field>year</bcf:field> - </bcf:fieldxor> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>set</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>entryset</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>article</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>author</bcf:field> - <bcf:field>journaltitle</bcf:field> - <bcf:field>title</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>book</bcf:entrytype> - <bcf:entrytype>mvbook</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>author</bcf:field> - <bcf:field>title</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>inbook</bcf:entrytype> - <bcf:entrytype>bookinbook</bcf:entrytype> - <bcf:entrytype>suppbook</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>author</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>booktitle</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>booklet</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:fieldor> - <bcf:field>author</bcf:field> - <bcf:field>editor</bcf:field> - </bcf:fieldor> - <bcf:field>title</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>collection</bcf:entrytype> - <bcf:entrytype>reference</bcf:entrytype> - <bcf:entrytype>mvcollection</bcf:entrytype> - <bcf:entrytype>mvreference</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>editor</bcf:field> - <bcf:field>title</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>incollection</bcf:entrytype> - <bcf:entrytype>suppcollection</bcf:entrytype> - <bcf:entrytype>inreference</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>author</bcf:field> - <bcf:field>editor</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>booktitle</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>dataset</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>title</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>manual</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>title</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>misc</bcf:entrytype> - <bcf:entrytype>software</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>title</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>online</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>title</bcf:field> - <bcf:fieldor> - <bcf:field>url</bcf:field> - <bcf:field>doi</bcf:field> - <bcf:field>eprint</bcf:field> - </bcf:fieldor> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>patent</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>author</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>number</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>periodical</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>editor</bcf:field> - <bcf:field>title</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>proceedings</bcf:entrytype> - <bcf:entrytype>mvproceedings</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>title</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>inproceedings</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>author</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>booktitle</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>report</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>author</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>type</bcf:field> - <bcf:field>institution</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>thesis</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>author</bcf:field> - <bcf:field>title</bcf:field> - <bcf:field>type</bcf:field> - <bcf:field>institution</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:entrytype>unpublished</bcf:entrytype> - <bcf:constraint type="mandatory"> - <bcf:field>author</bcf:field> - <bcf:field>title</bcf:field> - </bcf:constraint> - </bcf:constraints> - <bcf:constraints> - <bcf:constraint type="data" datatype="isbn"> - <bcf:field>isbn</bcf:field> - </bcf:constraint> - <bcf:constraint type="data" datatype="issn"> - <bcf:field>issn</bcf:field> - </bcf:constraint> - <bcf:constraint type="data" datatype="ismn"> - <bcf:field>ismn</bcf:field> - </bcf:constraint> - <bcf:constraint type="data" datatype="pattern" pattern="(?:sf|sm|sn|pf|pm|pn|pp)"> - <bcf:field>gender</bcf:field> - </bcf:constraint> - </bcf:constraints> - </bcf:datamodel> - <!-- CITATION DATA --> - <!-- SECTION 0 --> - <bcf:bibdata section="0"> - <bcf:datasource type="file" datatype="bibtex" glob="false">thesis.bib</bcf:datasource> - </bcf:bibdata> - <bcf:section number="0"> - <bcf:citekey order="1">heatkernel</bcf:citekey> - <bcf:citekey order="2">ncgwalter</bcf:citekey> - <bcf:citekey order="3" nocite="1">electrodynamics</bcf:citekey> - <bcf:citekey order="4">ncgwalter</bcf:citekey> - <bcf:citekey order="5" nocite="1">liealgebra</bcf:citekey> - <bcf:citekey order="6" nocite="1">ncg4pages</bcf:citekey> - <bcf:citekey order="7" nocite="1">ncgshort</bcf:citekey> - <bcf:citekey order="8">heatkernel</bcf:citekey> - </bcf:section> - <!-- SORTING TEMPLATES --> - <bcf:sortingtemplate name="none"> - <bcf:sort order="1"> - <bcf:sortitem order="1">citeorder</bcf:sortitem> - </bcf:sort> - </bcf:sortingtemplate> - <!-- DATALISTS --> - <bcf:datalist section="0" - name="none/global//global/global" - type="entry" - sortingtemplatename="none" - sortingnamekeytemplatename="global" - labelprefix="" - uniquenametemplatename="global" - labelalphanametemplatename="global"> - </bcf:datalist> -</bcf:controlfile> diff --git a/src/thesis/main.log b/src/thesis/main.log @@ -1,1534 +0,0 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.22 (TeX Live 2021/Arch Linux) (preloaded format=pdflatex 2021.5.23) 26 JUL 2021 12:50 -entering extended mode - restricted \write18 enabled. - %&-line parsing enabled. -**main.tex -(./main.tex -LaTeX2e <2020-10-01> patch level 4 -L3 programming layer <2021-02-18> -(/usr/share/texmf-dist/tex/latex/base/article.cls -Document Class: article 2020/04/10 v1.4m Standard LaTeX document class -(/usr/share/texmf-dist/tex/latex/base/size12.clo -File: size12.clo 2020/04/10 v1.4m Standard LaTeX file (size option) -) -\c@part=\count179 -\c@section=\count180 -\c@subsection=\count181 -\c@subsubsection=\count182 -\c@paragraph=\count183 -\c@subparagraph=\count184 -\c@figure=\count185 -\c@table=\count186 -\abovecaptionskip=\skip47 -\belowcaptionskip=\skip48 -\bibindent=\dimen138 -) (./back/packages.tex -(/usr/share/texmf-dist/tex/latex/base/inputenc.sty -Package: inputenc 2020/08/01 v1.3d Input encoding file -\inpenc@prehook=\toks15 -\inpenc@posthook=\toks16 -) -(/usr/share/texmf-dist/tex/latex/psnfss/mathptmx.sty -Package: mathptmx 2020/03/25 PSNFSS-v9.3 Times w/ Math, improved (SPQR, WaS) -LaTeX Font Info: Redeclaring symbol font `operators' on input line 28. -LaTeX Font Info: Overwriting symbol font `operators' in version `normal' -(Font) OT1/cmr/m/n --> OT1/ztmcm/m/n on input line 28. -LaTeX Font Info: Overwriting symbol font `operators' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/ztmcm/m/n on input line 28. -LaTeX Font Info: Redeclaring symbol font `letters' on input line 29. -LaTeX Font Info: Overwriting symbol font `letters' in version `normal' -(Font) OML/cmm/m/it --> OML/ztmcm/m/it on input line 29. -LaTeX Font Info: Overwriting symbol font `letters' in version `bold' -(Font) OML/cmm/b/it --> OML/ztmcm/m/it on input line 29. -LaTeX Font Info: Redeclaring symbol font `symbols' on input line 30. -LaTeX Font Info: Overwriting symbol font `symbols' in version `normal' -(Font) OMS/cmsy/m/n --> OMS/ztmcm/m/n on input line 30. -LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' -(Font) OMS/cmsy/b/n --> OMS/ztmcm/m/n on input line 30. -LaTeX Font Info: Redeclaring symbol font `largesymbols' on input line 31. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal' -(Font) OMX/cmex/m/n --> OMX/ztmcm/m/n on input line 31. -LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' -(Font) OMX/cmex/m/n --> OMX/ztmcm/m/n on input line 31. -\symbold=\mathgroup4 -\symitalic=\mathgroup5 -LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 34. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' -(Font) OT1/cmr/bx/n --> OT1/ptm/bx/n on input line 34. -LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' -(Font) OT1/cmr/bx/n --> OT1/ptm/bx/n on input line 34. -LaTeX Font Info: Redeclaring math alphabet \mathit on input line 35. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' -(Font) OT1/cmr/m/it --> OT1/ptm/m/it on input line 35. -LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' -(Font) OT1/cmr/bx/it --> OT1/ptm/m/it on input line 35. -LaTeX Info: Redefining \hbar on input line 50. -) -(/usr/share/texmf-dist/tex/latex/graphics/graphicx.sty -Package: graphicx 2020/09/09 v1.2b Enhanced LaTeX Graphics (DPC,SPQR) - -(/usr/share/texmf-dist/tex/latex/graphics/keyval.sty -Package: keyval 2014/10/28 v1.15 key=value parser (DPC) -\KV@toks@=\toks17 -) -(/usr/share/texmf-dist/tex/latex/graphics/graphics.sty -Package: graphics 2020/08/30 v1.4c Standard LaTeX Graphics (DPC,SPQR) - -(/usr/share/texmf-dist/tex/latex/graphics/trig.sty -Package: trig 2016/01/03 v1.10 sin cos tan (DPC) -) -(/usr/share/texmf-dist/tex/latex/graphics-cfg/graphics.cfg -File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration -) -Package graphics Info: Driver file: pdftex.def on input line 105. - -(/usr/share/texmf-dist/tex/latex/graphics-def/pdftex.def -File: pdftex.def 2020/10/05 v1.2a Graphics/color driver for pdftex -)) -\Gin@req@height=\dimen139 -\Gin@req@width=\dimen140 -) -(/usr/share/texmf-dist/tex/latex/geometry/geometry.sty -Package: geometry 2020/01/02 v5.9 Page Geometry - -(/usr/share/texmf-dist/tex/generic/iftex/ifvtex.sty -Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead. - -(/usr/share/texmf-dist/tex/generic/iftex/iftex.sty -Package: iftex 2020/03/06 v1.0d TeX engine tests -)) -\Gm@cnth=\count187 -\Gm@cntv=\count188 -\c@Gm@tempcnt=\count189 -\Gm@bindingoffset=\dimen141 -\Gm@wd@mp=\dimen142 -\Gm@odd@mp=\dimen143 -\Gm@even@mp=\dimen144 -\Gm@layoutwidth=\dimen145 -\Gm@layoutheight=\dimen146 -\Gm@layouthoffset=\dimen147 -\Gm@layoutvoffset=\dimen148 -\Gm@dimlist=\toks18 -) -(/usr/share/texmf-dist/tex/latex/caption/subcaption.sty -Package: subcaption 2020/10/07 v1.3j Sub-captions (AR) - -(/usr/share/texmf-dist/tex/latex/caption/caption.sty -Package: caption 2020/10/26 v3.5g Customizing captions (AR) - -(/usr/share/texmf-dist/tex/latex/caption/caption3.sty -Package: caption3 2020/10/21 v2.2e caption3 kernel (AR) -\captionmargin=\dimen149 -\captionmargin@=\dimen150 -\captionwidth=\dimen151 -\caption@tempdima=\dimen152 -\caption@indent=\dimen153 -\caption@parindent=\dimen154 -\caption@hangindent=\dimen155 -Package caption Info: Standard document class detected. -) -\c@caption@flags=\count190 -\c@continuedfloat=\count191 -) -\c@subfigure=\count192 -\c@subtable=\count193 -) -(/usr/share/texmf-dist/tex/latex/enumitem/enumitem.sty -Package: enumitem 2019/06/20 v3.9 Customized lists -\labelindent=\skip49 -\enit@outerparindent=\dimen156 -\enit@toks=\toks19 -\enit@inbox=\box47 -\enit@count@id=\count194 -\enitdp@description=\count195 -) -(/usr/share/texmf-dist/tex/latex/amsfonts/amssymb.sty -Package: amssymb 2013/01/14 v3.01 AMS font symbols - -(/usr/share/texmf-dist/tex/latex/amsfonts/amsfonts.sty -Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support -\@emptytoks=\toks20 -\symAMSa=\mathgroup6 -\symAMSb=\mathgroup7 -LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' -(Font) U/euf/m/n --> U/euf/b/n on input line 106. -)) -(/usr/share/texmf-dist/tex/latex/amscls/amsthm.sty -Package: amsthm 2020/05/29 v2.20.6 -\thm@style=\toks21 -\thm@bodyfont=\toks22 -\thm@headfont=\toks23 -\thm@notefont=\toks24 -\thm@headpunct=\toks25 -\thm@preskip=\skip50 -\thm@postskip=\skip51 -\thm@headsep=\skip52 -\dth@everypar=\toks26 -) -(/usr/share/texmf-dist/tex/latex/mathtools/mathtools.sty -Package: mathtools 2021/03/18 v1.25 mathematical typesetting tools - -(/usr/share/texmf-dist/tex/latex/tools/calc.sty -Package: calc 2017/05/25 v4.3 Infix arithmetic (KKT,FJ) -\calc@Acount=\count196 -\calc@Bcount=\count197 -\calc@Adimen=\dimen157 -\calc@Bdimen=\dimen158 -\calc@Askip=\skip53 -\calc@Bskip=\skip54 -LaTeX Info: Redefining \setlength on input line 80. -LaTeX Info: Redefining \addtolength on input line 81. -\calc@Ccount=\count198 -\calc@Cskip=\skip55 -) -(/usr/share/texmf-dist/tex/latex/mathtools/mhsetup.sty -Package: mhsetup 2021/03/18 v1.4 programming setup (MH) -) -(/usr/share/texmf-dist/tex/latex/amsmath/amsmath.sty -Package: amsmath 2020/09/23 v2.17i AMS math features -\@mathmargin=\skip56 - -For additional information on amsmath, use the `?' option. -(/usr/share/texmf-dist/tex/latex/amsmath/amstext.sty -Package: amstext 2000/06/29 v2.01 AMS text - -(/usr/share/texmf-dist/tex/latex/amsmath/amsgen.sty -File: amsgen.sty 1999/11/30 v2.0 generic functions -\@emptytoks=\toks27 -\ex@=\dimen159 -)) -(/usr/share/texmf-dist/tex/latex/amsmath/amsbsy.sty -Package: amsbsy 1999/11/29 v1.2d Bold Symbols -\pmbraise@=\dimen160 -) -(/usr/share/texmf-dist/tex/latex/amsmath/amsopn.sty -Package: amsopn 2016/03/08 v2.02 operator names -) -\inf@bad=\count199 -LaTeX Info: Redefining \frac on input line 234. -\uproot@=\count266 -\leftroot@=\count267 -LaTeX Info: Redefining \overline on input line 399. -\classnum@=\count268 -\DOTSCASE@=\count269 -LaTeX Info: Redefining \ldots on input line 496. -LaTeX Info: Redefining \dots on input line 499. -LaTeX Info: Redefining \cdots on input line 620. -\Mathstrutbox@=\box48 -\strutbox@=\box49 -\big@size=\dimen161 -LaTeX Font Info: Redeclaring font encoding OML on input line 743. -LaTeX Font Info: Redeclaring font encoding OMS on input line 744. -\macc@depth=\count270 -\c@MaxMatrixCols=\count271 -\dotsspace@=\muskip16 -\c@parentequation=\count272 -\dspbrk@lvl=\count273 -\tag@help=\toks28 -\row@=\count274 -\column@=\count275 -\maxfields@=\count276 -\andhelp@=\toks29 -\eqnshift@=\dimen162 -\alignsep@=\dimen163 -\tagshift@=\dimen164 -\tagwidth@=\dimen165 -\totwidth@=\dimen166 -\lineht@=\dimen167 -\@envbody=\toks30 -\multlinegap=\skip57 -\multlinetaggap=\skip58 -\mathdisplay@stack=\toks31 -LaTeX Info: Redefining \[ on input line 2923. -LaTeX Info: Redefining \] on input line 2924. -) -LaTeX Info: Thecontrolsequence`\('isalreadyrobust on input line 130. -LaTeX Info: Thecontrolsequence`\)'isalreadyrobust on input line 130. -LaTeX Info: Thecontrolsequence`\['isalreadyrobust on input line 130. -LaTeX Info: Thecontrolsequence`\]'isalreadyrobust on input line 130. -\g_MT_multlinerow_int=\count277 -\l_MT_multwidth_dim=\dimen168 -\origjot=\skip59 -\l_MT_shortvdotswithinadjustabove_dim=\dimen169 -\l_MT_shortvdotswithinadjustbelow_dim=\dimen170 -\l_MT_above_intertext_sep=\dimen171 -\l_MT_below_intertext_sep=\dimen172 -\l_MT_above_shortintertext_sep=\dimen173 -\l_MT_below_shortintertext_sep=\dimen174 -\xmathstrut@box=\box50 -\xmathstrut@dim=\dimen175 -) -(/usr/share/texmf-dist/tex/latex/braket/braket.sty) -(/usr/share/texmf-dist/tex/latex/bbm-macros/bbm.sty -Package: bbm 1999/03/15 V 1.2 provides fonts for set symbols - TH -LaTeX Font Info: Overwriting math alphabet `\mathbbm' in version `bold' -(Font) U/bbm/m/n --> U/bbm/bx/n on input line 33. -LaTeX Font Info: Overwriting math alphabet `\mathbbmss' in version `bold' -(Font) U/bbmss/m/n --> U/bbmss/bx/n on input line 35. -) -(/usr/share/texmf-dist/tex/latex/float/float.sty -Package: float 2001/11/08 v1.3d Float enhancements (AL) -\c@float@type=\count278 -\float@exts=\toks32 -\float@box=\box51 -\@float@everytoks=\toks33 -\@floatcapt=\box52 -) -(/usr/share/texmf-dist/tex/latex/yhmath/yhmath.sty -Package: yhmath 2020/03/17 v1.6 -\symyhlargesymbols=\mathgroup8 -LaTeX Font Info: Redeclaring math accent \widetilde on input line 29. -LaTeX Font Info: Redeclaring math accent \widehat on input line 30. -LaTeX Font Info: Redeclaring math symbol \braceld on input line 48. -LaTeX Font Info: Redeclaring math symbol \bracerd on input line 49. -LaTeX Font Info: Redeclaring math symbol \bracelu on input line 50. -LaTeX Font Info: Redeclaring math symbol \braceru on input line 51. -LaTeX Font Info: Redeclaring math delimiter \lmoustache on input line 53. -LaTeX Font Info: Redeclaring math delimiter \rmoustache on input line 55. -LaTeX Font Info: Redeclaring math delimiter \arrowvert on input line 57. -LaTeX Font Info: Redeclaring math delimiter \Arrowvert on input line 59. -LaTeX Font Info: Redeclaring math delimiter \Vert on input line 61. -LaTeX Font Info: Redeclaring math delimiter \vert on input line 63. -LaTeX Font Info: Redeclaring math delimiter \uparrow on input line 65. -LaTeX Font Info: Redeclaring math delimiter \downarrow on input line 67. -LaTeX Font Info: Redeclaring math delimiter \updownarrow on input line 69. -LaTeX Font Info: Redeclaring math delimiter \Uparrow on input line 71. -LaTeX Font Info: Redeclaring math delimiter \Downarrow on input line 73. -LaTeX Font Info: Redeclaring math delimiter \Updownarrow on input line 75. -LaTeX Font Info: Redeclaring math delimiter \backslash on input line 79. -LaTeX Font Info: Redeclaring math delimiter \rangle on input line 81. -LaTeX Font Info: Redeclaring math delimiter \langle on input line 83. -LaTeX Font Info: Redeclaring math delimiter \rbrace on input line 85. -LaTeX Font Info: Redeclaring math delimiter \lbrace on input line 87. -LaTeX Font Info: Redeclaring math delimiter \rceil on input line 89. -LaTeX Font Info: Redeclaring math delimiter \lceil on input line 91. -LaTeX Font Info: Redeclaring math delimiter \rfloor on input line 93. -LaTeX Font Info: Redeclaring math delimiter \lfloor on input line 95. -LaTeX Font Info: Redeclaring math delimiter \lgroup on input line 97. -LaTeX Font Info: Redeclaring math delimiter \rgroup on input line 99. -LaTeX Font Info: Redeclaring math delimiter \bracevert on input line 101. -) -(/usr/share/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty -(/usr/share/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty -(/usr/share/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty -(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex -\pgfutil@everybye=\toks34 -\pgfutil@tempdima=\dimen176 -\pgfutil@tempdimb=\dimen177 - -(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.tex)) -(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def -\pgfutil@abb=\box53 -) -(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex -(/usr/share/texmf-dist/tex/generic/pgf/pgf.revision.tex) -Package: pgfrcs 2020/12/27 v3.1.8b (3.1.8b) -)) -Package: pgf 2020/12/27 v3.1.8b (3.1.8b) - -(/usr/share/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty -(/usr/share/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty -(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex -Package: pgfsys 2020/12/27 v3.1.8b (3.1.8b) - -(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex -\pgfkeys@pathtoks=\toks35 -\pgfkeys@temptoks=\toks36 - -(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfkeysfiltered.code.tex -\pgfkeys@tmptoks=\toks37 -)) -\pgf@x=\dimen178 -\pgf@y=\dimen179 -\pgf@xa=\dimen180 -\pgf@ya=\dimen181 -\pgf@xb=\dimen182 -\pgf@yb=\dimen183 -\pgf@xc=\dimen184 -\pgf@yc=\dimen185 -\pgf@xd=\dimen186 -\pgf@yd=\dimen187 -\w@pgf@writea=\write3 -\r@pgf@reada=\read2 -\c@pgf@counta=\count279 -\c@pgf@countb=\count280 -\c@pgf@countc=\count281 -\c@pgf@countd=\count282 -\t@pgf@toka=\toks38 -\t@pgf@tokb=\toks39 -\t@pgf@tokc=\toks40 -\pgf@sys@id@count=\count283 - -(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg -File: pgf.cfg 2020/12/27 v3.1.8b (3.1.8b) -) -Driver file for pgf: pgfsys-pdftex.def - -(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def -File: pgfsys-pdftex.def 2020/12/27 v3.1.8b (3.1.8b) - -(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def -File: pgfsys-common-pdf.def 2020/12/27 v3.1.8b (3.1.8b) -))) -(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex -File: pgfsyssoftpath.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgfsyssoftpath@smallbuffer@items=\count284 -\pgfsyssoftpath@bigbuffer@items=\count285 -) -(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex -File: pgfsysprotocol.code.tex 2020/12/27 v3.1.8b (3.1.8b) -)) -(/usr/share/texmf-dist/tex/latex/xcolor/xcolor.sty -Package: xcolor 2016/05/11 v2.12 LaTeX color extensions (UK) - -(/usr/share/texmf-dist/tex/latex/graphics-cfg/color.cfg -File: color.cfg 2016/01/02 v1.6 sample color configuration -) -Package xcolor Info: Driver file: pdftex.def on input line 225. -Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1348. -Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1352. -Package xcolor Info: Model `RGB' extended on input line 1364. -Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1366. -Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1367. -Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1368. -Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1369. -Package xcolor Info: Model `Gray' substituted by `gray' on input line 1370. -Package xcolor Info: Model `wave' substituted by `hsb' on input line 1371. -) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex -Package: pgfcore 2020/12/27 v3.1.8b (3.1.8b) - -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex) -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex -\pgfmath@dimen=\dimen188 -\pgfmath@count=\count286 -\pgfmath@box=\box54 -\pgfmath@toks=\toks41 -\pgfmath@stack@operand=\toks42 -\pgfmath@stack@operation=\toks43 -) -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex) -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code -.tex) -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex) -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.te -x) (/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex) -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex) -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex) -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics -.code.tex))) (/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex -\c@pgfmathroundto@lastzeros=\count287 -)) (/usr/share/texmf-dist/tex/generic/pgf/math/pgfint.code.tex) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex -File: pgfcorepoints.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgf@picminx=\dimen189 -\pgf@picmaxx=\dimen190 -\pgf@picminy=\dimen191 -\pgf@picmaxy=\dimen192 -\pgf@pathminx=\dimen193 -\pgf@pathmaxx=\dimen194 -\pgf@pathminy=\dimen195 -\pgf@pathmaxy=\dimen196 -\pgf@xx=\dimen197 -\pgf@xy=\dimen198 -\pgf@yx=\dimen199 -\pgf@yy=\dimen256 -\pgf@zx=\dimen257 -\pgf@zy=\dimen258 -) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex -File: pgfcorepathconstruct.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgf@path@lastx=\dimen259 -\pgf@path@lasty=\dimen260 -) (/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex -File: pgfcorepathusage.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgf@shorten@end@additional=\dimen261 -\pgf@shorten@start@additional=\dimen262 -) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex -File: pgfcorescopes.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgfpic=\box55 -\pgf@hbox=\box56 -\pgf@layerbox@main=\box57 -\pgf@picture@serial@count=\count288 -) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex -File: pgfcoregraphicstate.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgflinewidth=\dimen263 -) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.t -ex -File: pgfcoretransformations.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgf@pt@x=\dimen264 -\pgf@pt@y=\dimen265 -\pgf@pt@temp=\dimen266 -) (/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex -File: pgfcorequick.code.tex 2020/12/27 v3.1.8b (3.1.8b) -) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex -File: pgfcoreobjects.code.tex 2020/12/27 v3.1.8b (3.1.8b) -) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.te -x -File: pgfcorepathprocessing.code.tex 2020/12/27 v3.1.8b (3.1.8b) -) (/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex -File: pgfcorearrows.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgfarrowsep=\dimen267 -) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex -File: pgfcoreshade.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgf@max=\dimen268 -\pgf@sys@shading@range@num=\count289 -\pgf@shadingcount=\count290 -) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex -File: pgfcoreimage.code.tex 2020/12/27 v3.1.8b (3.1.8b) - -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex -File: pgfcoreexternal.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgfexternal@startupbox=\box58 -)) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex -File: pgfcorelayers.code.tex 2020/12/27 v3.1.8b (3.1.8b) -) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex -File: pgfcoretransparency.code.tex 2020/12/27 v3.1.8b (3.1.8b) -) (/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex -File: pgfcorepatterns.code.tex 2020/12/27 v3.1.8b (3.1.8b) -) -(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex -File: pgfcorerdf.code.tex 2020/12/27 v3.1.8b (3.1.8b) -))) -(/usr/share/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex -File: pgfmoduleshapes.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgfnodeparttextbox=\box59 -) -(/usr/share/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex -File: pgfmoduleplot.code.tex 2020/12/27 v3.1.8b (3.1.8b) -) -(/usr/share/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty -Package: pgfcomp-version-0-65 2020/12/27 v3.1.8b (3.1.8b) -\pgf@nodesepstart=\dimen269 -\pgf@nodesepend=\dimen270 -) -(/usr/share/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty -Package: pgfcomp-version-1-18 2020/12/27 v3.1.8b (3.1.8b) -)) -(/usr/share/texmf-dist/tex/latex/pgf/utilities/pgffor.sty -(/usr/share/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty -(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex)) -(/usr/share/texmf-dist/tex/latex/pgf/math/pgfmath.sty -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex)) -(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex -Package: pgffor 2020/12/27 v3.1.8b (3.1.8b) - -(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex) -\pgffor@iter=\dimen271 -\pgffor@skip=\dimen272 -\pgffor@stack=\toks44 -\pgffor@toks=\toks45 -)) -(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex -Package: tikz 2020/12/27 v3.1.8b (3.1.8b) - -(/usr/share/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.te -x -File: pgflibraryplothandlers.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgf@plot@mark@count=\count291 -\pgfplotmarksize=\dimen273 -) -\tikz@lastx=\dimen274 -\tikz@lasty=\dimen275 -\tikz@lastxsaved=\dimen276 -\tikz@lastysaved=\dimen277 -\tikz@lastmovetox=\dimen278 -\tikz@lastmovetoy=\dimen279 -\tikzleveldistance=\dimen280 -\tikzsiblingdistance=\dimen281 -\tikz@figbox=\box60 -\tikz@figbox@bg=\box61 -\tikz@tempbox=\box62 -\tikz@tempbox@bg=\box63 -\tikztreelevel=\count292 -\tikznumberofchildren=\count293 -\tikznumberofcurrentchild=\count294 -\tikz@fig@count=\count295 - (/usr/share/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex -File: pgfmodulematrix.code.tex 2020/12/27 v3.1.8b (3.1.8b) -\pgfmatrixcurrentrow=\count296 -\pgfmatrixcurrentcolumn=\count297 -\pgf@matrix@numberofcolumns=\count298 -) -\tikz@expandcount=\count299 - -(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrary -topaths.code.tex -File: tikzlibrarytopaths.code.tex 2020/12/27 v3.1.8b (3.1.8b) -))) -(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrary -calc.code.tex -File: tikzlibrarycalc.code.tex 2020/12/27 v3.1.8b (3.1.8b) -) -(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrary -decorations.markings.code.tex -(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrary -decorations.code.tex -(/usr/share/texmf-dist/tex/generic/pgf/modules/pgfmoduledecorations.code.tex -\pgfdecoratedcompleteddistance=\dimen282 -\pgfdecoratedremainingdistance=\dimen283 -\pgfdecoratedinputsegmentcompleteddistance=\dimen284 -\pgfdecoratedinputsegmentremainingdistance=\dimen285 -\pgf@decorate@distancetomove=\dimen286 -\pgf@decorate@repeatstate=\count300 -\pgfdecorationsegmentamplitude=\dimen287 -\pgfdecorationsegmentlength=\dimen288 -) -\tikz@lib@dec@box=\box64 -) -(/usr/share/texmf-dist/tex/generic/pgf/libraries/decorations/pgflibrarydecorati -ons.markings.code.tex)) (/usr/share/texmf-dist/tex/latex/hyperref/hyperref.sty -Package: hyperref 2021-02-27 v7.00k Hypertext links for LaTeX - -(/usr/share/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty -Package: ltxcmds 2020-05-10 v1.25 LaTeX kernel commands for general use (HO) -) -(/usr/share/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty -Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO -) - -(/usr/share/texmf-dist/tex/generic/infwarerr/infwarerr.sty -Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO) -) -Package pdftexcmds Info: \pdf@primitive is available. -Package pdftexcmds Info: \pdf@ifprimitive is available. -Package pdftexcmds Info: \pdfdraftmode found. -) -(/usr/share/texmf-dist/tex/generic/kvsetkeys/kvsetkeys.sty -Package: kvsetkeys 2019/12/15 v1.18 Key value parser (HO) -) -(/usr/share/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty -Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO) -) -(/usr/share/texmf-dist/tex/generic/pdfescape/pdfescape.sty -Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO) -) -(/usr/share/texmf-dist/tex/latex/hycolor/hycolor.sty -Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO) -) -(/usr/share/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty -Package: letltxmacro 2019/12/03 v1.6 Let assignment for LaTeX macros (HO) -) -(/usr/share/texmf-dist/tex/latex/auxhook/auxhook.sty -Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO) -) -(/usr/share/texmf-dist/tex/latex/kvoptions/kvoptions.sty -Package: kvoptions 2020-10-07 v3.14 Key value format for package options (HO) -) -\@linkdim=\dimen289 -\Hy@linkcounter=\count301 -\Hy@pagecounter=\count302 - -(/usr/share/texmf-dist/tex/latex/hyperref/pd1enc.def -File: pd1enc.def 2021-02-27 v7.00k Hyperref: PDFDocEncoding definition (HO) -Now handling font encoding PD1 ... -... no UTF-8 mapping file for font encoding PD1 -) -(/usr/share/texmf-dist/tex/latex/hyperref/hyperref-langpatches.def -File: hyperref-langpatches.def 2021-02-27 v7.00k Hyperref: patches for babel la -nguages -) -(/usr/share/texmf-dist/tex/generic/intcalc/intcalc.sty -Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO) -) -(/usr/share/texmf-dist/tex/generic/etexcmds/etexcmds.sty -Package: etexcmds 2019/12/15 v1.7 Avoid name clashes with e-TeX commands (HO) -) -\Hy@SavedSpaceFactor=\count303 - -(/usr/share/texmf-dist/tex/latex/hyperref/puenc.def -File: puenc.def 2021-02-27 v7.00k Hyperref: PDF Unicode definition (HO) -Now handling font encoding PU ... -... no UTF-8 mapping file for font encoding PU -) -Package hyperref Info: Option `colorlinks' set `true' on input line 4073. -Package hyperref Info: Option `naturalnames' set `true' on input line 4073. -Package hyperref Info: Option `plainpages' set `false' on input line 4073. -Package hyperref Info: Option `pdfpagelabels' set `true' on input line 4073. -Package hyperref Info: Hyper figures OFF on input line 4192. -Package hyperref Info: Link nesting OFF on input line 4197. -Package hyperref Info: Hyper index ON on input line 4200. -Package hyperref Info: Plain pages OFF on input line 4207. -Package hyperref Info: Backreferencing OFF on input line 4212. -Package hyperref Info: Implicit mode ON; LaTeX internals redefined. -Package hyperref Info: Bookmarks ON on input line 4445. -\c@Hy@tempcnt=\count304 - -(/usr/share/texmf-dist/tex/latex/url/url.sty -\Urlmuskip=\muskip17 -Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. -) -LaTeX Info: Redefining \url on input line 4804. -\XeTeXLinkMargin=\dimen290 - -(/usr/share/texmf-dist/tex/generic/bitset/bitset.sty -Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO) - -(/usr/share/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty -Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO -) -)) -\Fld@menulength=\count305 -\Field@Width=\dimen291 -\Fld@charsize=\dimen292 -Package hyperref Info: Hyper figures OFF on input line 6075. -Package hyperref Info: Link nesting OFF on input line 6080. -Package hyperref Info: Hyper index ON on input line 6083. -Package hyperref Info: backreferencing OFF on input line 6090. -Package hyperref Info: Link coloring ON on input line 6093. -Package hyperref Info: Link coloring with OCG OFF on input line 6100. -Package hyperref Info: PDF/A mode OFF on input line 6105. -LaTeX Info: Redefining \ref on input line 6145. -LaTeX Info: Redefining \pageref on input line 6149. - -(/usr/share/texmf-dist/tex/latex/base/atbegshi-ltx.sty -Package: atbegshi-ltx 2020/08/17 v1.0a Emulation of the original atbegshi packa -ge -with kernel methods -) -\Hy@abspage=\count306 -\c@Item=\count307 -\c@Hfootnote=\count308 -) -Package hyperref Info: Driver (autodetected): hpdftex. - -(/usr/share/texmf-dist/tex/latex/hyperref/hpdftex.def -File: hpdftex.def 2021-02-27 v7.00k Hyperref driver for pdfTeX - -(/usr/share/texmf-dist/tex/latex/base/atveryend-ltx.sty -Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atvery packag -e -with kernel methods -) -\Fld@listcount=\count309 -\c@bookmark@seq@number=\count310 - -(/usr/share/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty -Package: rerunfilecheck 2019/12/05 v1.9 Rerun checks for auxiliary files (HO) - -(/usr/share/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty -Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO) -) -Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 -86. -) -\Hy@SectionHShift=\skip60 -) -(/usr/share/texmf-dist/tex/latex/biblatex/biblatex.sty -Package: biblatex 2020/12/31 v3.16 programmable bibliographies (PK/MW) - -(/usr/share/texmf-dist/tex/latex/etoolbox/etoolbox.sty -Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW) -\etb@tempcnta=\count311 -) -(/usr/share/texmf-dist/tex/latex/logreq/logreq.sty -Package: logreq 2010/08/04 v1.0 xml request logger -\lrq@indent=\count312 - -(/usr/share/texmf-dist/tex/latex/logreq/logreq.def -File: logreq.def 2010/08/04 v1.0 logreq spec v1.0 -)) -(/usr/share/texmf-dist/tex/latex/base/ifthen.sty -Package: ifthen 2014/09/29 v1.1c Standard LaTeX ifthen package (DPC) -) -\c@tabx@nest=\count313 -\c@listtotal=\count314 -\c@listcount=\count315 -\c@liststart=\count316 -\c@liststop=\count317 -\c@citecount=\count318 -\c@citetotal=\count319 -\c@multicitecount=\count320 -\c@multicitetotal=\count321 -\c@instcount=\count322 -\c@maxnames=\count323 -\c@minnames=\count324 -\c@maxitems=\count325 -\c@minitems=\count326 -\c@citecounter=\count327 -\c@maxcitecounter=\count328 -\c@savedcitecounter=\count329 -\c@uniquelist=\count330 -\c@uniquename=\count331 -\c@refsection=\count332 -\c@refsegment=\count333 -\c@maxextratitle=\count334 -\c@maxextratitleyear=\count335 -\c@maxextraname=\count336 -\c@maxextradate=\count337 -\c@maxextraalpha=\count338 -\c@abbrvpenalty=\count339 -\c@highnamepenalty=\count340 -\c@lownamepenalty=\count341 -\c@maxparens=\count342 -\c@parenlevel=\count343 -\blx@tempcnta=\count344 -\blx@tempcntb=\count345 -\blx@tempcntc=\count346 -\blx@maxsection=\count347 -\blx@maxsegment@0=\count348 -\blx@notetype=\count349 -\blx@parenlevel@text=\count350 -\blx@parenlevel@foot=\count351 -\blx@sectionciteorder@0=\count352 -\blx@entrysetcounter=\count353 -\blx@biblioinstance=\count354 -\labelnumberwidth=\skip61 -\labelalphawidth=\skip62 -\biblabelsep=\skip63 -\bibitemsep=\skip64 -\bibnamesep=\skip65 -\bibinitsep=\skip66 -\bibparsep=\skip67 -\bibhang=\skip68 -\blx@bcfin=\read3 -\blx@bcfout=\write4 -\blx@langwohyphens=\language87 -\c@mincomprange=\count355 -\c@maxcomprange=\count356 -\c@mincompwidth=\count357 -Package biblatex Info: Trying to load biblatex default data model... -Package biblatex Info: ... file 'blx-dm.def' found. - -(/usr/share/texmf-dist/tex/latex/biblatex/blx-dm.def -File: blx-dm.def 2020/12/31 v3.16 biblatex localization (PK/MW) -) -Package biblatex Info: Trying to load biblatex custom data model... -Package biblatex Info: ... file 'biblatex-dm.cfg' not found. -\c@afterword=\count358 -\c@savedafterword=\count359 -\c@annotator=\count360 -\c@savedannotator=\count361 -\c@author=\count362 -\c@savedauthor=\count363 -\c@bookauthor=\count364 -\c@savedbookauthor=\count365 -\c@commentator=\count366 -\c@savedcommentator=\count367 -\c@editor=\count368 -\c@savededitor=\count369 -\c@editora=\count370 -\c@savededitora=\count371 -\c@editorb=\count372 -\c@savededitorb=\count373 -\c@editorc=\count374 -\c@savededitorc=\count375 -\c@foreword=\count376 -\c@savedforeword=\count377 -\c@holder=\count378 -\c@savedholder=\count379 -\c@introduction=\count380 -\c@savedintroduction=\count381 -\c@namea=\count382 -\c@savednamea=\count383 -\c@nameb=\count384 -\c@savednameb=\count385 -\c@namec=\count386 -\c@savednamec=\count387 -\c@translator=\count388 -\c@savedtranslator=\count389 -\c@shortauthor=\count390 -\c@savedshortauthor=\count391 -\c@shorteditor=\count392 -\c@savedshorteditor=\count393 -\c@labelname=\count394 -\c@savedlabelname=\count395 -\c@institution=\count396 -\c@savedinstitution=\count397 -\c@lista=\count398 -\c@savedlista=\count399 -\c@listb=\count400 -\c@savedlistb=\count401 -\c@listc=\count402 -\c@savedlistc=\count403 -\c@listd=\count404 -\c@savedlistd=\count405 -\c@liste=\count406 -\c@savedliste=\count407 -\c@listf=\count408 -\c@savedlistf=\count409 -\c@location=\count410 -\c@savedlocation=\count411 -\c@organization=\count412 -\c@savedorganization=\count413 -\c@origlocation=\count414 -\c@savedoriglocation=\count415 -\c@origpublisher=\count416 -\c@savedorigpublisher=\count417 -\c@publisher=\count418 -\c@savedpublisher=\count419 -\c@language=\count420 -\c@savedlanguage=\count421 -\c@origlanguage=\count422 -\c@savedoriglanguage=\count423 -\c@pageref=\count424 -\c@savedpageref=\count425 -\shorthandwidth=\skip69 -\shortjournalwidth=\skip70 -\shortserieswidth=\skip71 -\shorttitlewidth=\skip72 -\shortauthorwidth=\skip73 -\shorteditorwidth=\skip74 -\locallabelnumberwidth=\skip75 -\locallabelalphawidth=\skip76 -\localshorthandwidth=\skip77 -\localshortjournalwidth=\skip78 -\localshortserieswidth=\skip79 -\localshorttitlewidth=\skip80 -\localshortauthorwidth=\skip81 -\localshorteditorwidth=\skip82 -Package biblatex Info: Trying to load compatibility code... -Package biblatex Info: ... file 'blx-compat.def' found. - -(/usr/share/texmf-dist/tex/latex/biblatex/blx-compat.def -File: blx-compat.def 2020/12/31 v3.16 biblatex compatibility (PK/MW) -) -Package biblatex Info: Trying to load generic definitions... -Package biblatex Info: ... file 'biblatex.def' found. - -(/usr/share/texmf-dist/tex/latex/biblatex/biblatex.def -File: biblatex.def 2020/12/31 v3.16 biblatex compatibility (PK/MW) -\c@textcitecount=\count426 -\c@textcitetotal=\count427 -\c@textcitemaxnames=\count428 -\c@biburlbigbreakpenalty=\count429 -\c@biburlbreakpenalty=\count430 -\c@biburlnumpenalty=\count431 -\c@biburlucpenalty=\count432 -\c@biburllcpenalty=\count433 -\biburlbigskip=\muskip18 -\biburlnumskip=\muskip19 -\biburlucskip=\muskip20 -\biburllcskip=\muskip21 -\c@smartand=\count434 -) -Package biblatex Info: Trying to load bibliography style 'numeric'... -Package biblatex Info: ... file 'numeric.bbx' found. - -(/usr/share/texmf-dist/tex/latex/biblatex/bbx/numeric.bbx -File: numeric.bbx 2020/12/31 v3.16 biblatex bibliography style (PK/MW) -Package biblatex Info: Trying to load bibliography style 'standard'... -Package biblatex Info: ... file 'standard.bbx' found. - -(/usr/share/texmf-dist/tex/latex/biblatex/bbx/standard.bbx -File: standard.bbx 2020/12/31 v3.16 biblatex bibliography style (PK/MW) -\c@bbx:relatedcount=\count435 -\c@bbx:relatedtotal=\count436 -)) -Package biblatex Info: Trying to load citation style 'numeric'... -Package biblatex Info: ... file 'numeric.cbx' found. - -(/usr/share/texmf-dist/tex/latex/biblatex/cbx/numeric.cbx -File: numeric.cbx 2020/12/31 v3.16 biblatex citation style (PK/MW) -Package biblatex Info: Redefining '\cite'. -Package biblatex Info: Redefining '\parencite'. -Package biblatex Info: Redefining '\footcite'. -Package biblatex Info: Redefining '\footcitetext'. -Package biblatex Info: Redefining '\smartcite'. -Package biblatex Info: Redefining '\supercite'. -Package biblatex Info: Redefining '\textcite'. -Package biblatex Info: Redefining '\textcites'. -Package biblatex Info: Redefining '\cites'. -Package biblatex Info: Redefining '\parencites'. -Package biblatex Info: Redefining '\smartcites'. -) -Package biblatex Info: Trying to load configuration file... -Package biblatex Info: ... file 'biblatex.cfg' found. - -(/usr/share/texmf-dist/tex/latex/biblatex/biblatex.cfg -File: biblatex.cfg -)) -(/usr/share/texmf-dist/tex/latex/lipsum/lipsum.sty -(/usr/share/texmf-dist/tex/latex/l3kernel/expl3.sty -Package: expl3 2021-02-18 L3 programming layer (loader) - -(/usr/share/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def -File: l3backend-pdftex.def 2021-03-18 L3 backend support: PDF output (pdfTeX) -\l__color_backend_stack_int=\count437 -\l__pdf_internal_box=\box65 -)) -(/usr/share/texmf-dist/tex/latex/l3packages/xparse/xparse.sty -(/usr/share/texmf-dist/tex/latex/l3packages/xparse/xparse-2020-10-01.sty -(/usr/share/texmf-dist/tex/latex/l3packages/xparse/xparse-generic.tex))) -Package: lipsum 2021-03-03 v2.3 150 paragraphs of Lorem Ipsum dummy text - -(/usr/share/texmf-dist/tex/latex/lipsum/lipsum.ltd.tex -File: lipsum.ltd.tex 2021-03-03 v2.3 The Lorem ipsum dummy text -)) -(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrary -patterns.code.tex -File: tikzlibrarypatterns.code.tex 2020/12/27 v3.1.8b (3.1.8b) - -(/usr/share/texmf-dist/tex/generic/pgf/libraries/pgflibrarypatterns.code.tex -File: pgflibrarypatterns.code.tex 2020/12/27 v3.1.8b (3.1.8b) -)) -(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrary -decorations.pathmorphing.code.tex -(/usr/share/texmf-dist/tex/generic/pgf/libraries/decorations/pgflibrarydecorati -ons.pathmorphing.code.tex)) -(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrary -positioning.code.tex -File: tikzlibrarypositioning.code.tex 2020/12/27 v3.1.8b (3.1.8b) -) (/usr/share/texmf-dist/tex/latex/mdframed/mdframed.sty -Package: mdframed 2013/07/01 1.9b: mdframed - -(/usr/share/texmf-dist/tex/latex/zref/zref-abspage.sty -Package: zref-abspage 2020-07-03 v2.32 Module abspage for zref (HO) - -(/usr/share/texmf-dist/tex/latex/zref/zref-base.sty -Package: zref-base 2020-07-03 v2.32 Module base for zref (HO) -Package zref Info: New property list: main on input line 764. -Package zref Info: New property: default on input line 765. -Package zref Info: New property: page on input line 766. -) -\c@abspage=\count438 -Package zref Info: New property: abspage on input line 66. -) -(/usr/share/texmf-dist/tex/latex/needspace/needspace.sty -Package: needspace 2010/09/12 v1.3d reserve vertical space -) -\mdf@templength=\skip83 -\c@mdf@globalstyle@cnt=\count439 -\mdf@skipabove@length=\skip84 -\mdf@skipbelow@length=\skip85 -\mdf@leftmargin@length=\skip86 -\mdf@rightmargin@length=\skip87 -\mdf@innerleftmargin@length=\skip88 -\mdf@innerrightmargin@length=\skip89 -\mdf@innertopmargin@length=\skip90 -\mdf@innerbottommargin@length=\skip91 -\mdf@splittopskip@length=\skip92 -\mdf@splitbottomskip@length=\skip93 -\mdf@outermargin@length=\skip94 -\mdf@innermargin@length=\skip95 -\mdf@linewidth@length=\skip96 -\mdf@innerlinewidth@length=\skip97 -\mdf@middlelinewidth@length=\skip98 -\mdf@outerlinewidth@length=\skip99 -\mdf@roundcorner@length=\skip100 -\mdf@footenotedistance@length=\skip101 -\mdf@userdefinedwidth@length=\skip102 -\mdf@needspace@length=\skip103 -\mdf@frametitleaboveskip@length=\skip104 -\mdf@frametitlebelowskip@length=\skip105 -\mdf@frametitlerulewidth@length=\skip106 -\mdf@frametitleleftmargin@length=\skip107 -\mdf@frametitlerightmargin@length=\skip108 -\mdf@shadowsize@length=\skip109 -\mdf@extratopheight@length=\skip110 -\mdf@subtitleabovelinewidth@length=\skip111 -\mdf@subtitlebelowlinewidth@length=\skip112 -\mdf@subtitleaboveskip@length=\skip113 -\mdf@subtitlebelowskip@length=\skip114 -\mdf@subtitleinneraboveskip@length=\skip115 -\mdf@subtitleinnerbelowskip@length=\skip116 -\mdf@subsubtitleabovelinewidth@length=\skip117 -\mdf@subsubtitlebelowlinewidth@length=\skip118 -\mdf@subsubtitleaboveskip@length=\skip119 -\mdf@subsubtitlebelowskip@length=\skip120 -\mdf@subsubtitleinneraboveskip@length=\skip121 -\mdf@subsubtitleinnerbelowskip@length=\skip122 - -(/usr/share/texmf-dist/tex/latex/mdframed/md-frame-1.mdf -File: md-frame-1.mdf 2013/07/01\ 1.9b: md-frame-1 -) -\mdf@frametitlebox=\box66 -\mdf@footnotebox=\box67 -\mdf@splitbox@one=\box68 -\mdf@splitbox@two=\box69 -\mdf@splitbox@save=\box70 -\mdfsplitboxwidth=\skip123 -\mdfsplitboxtotalwidth=\skip124 -\mdfsplitboxheight=\skip125 -\mdfsplitboxdepth=\skip126 -\mdfsplitboxtotalheight=\skip127 -\mdfframetitleboxwidth=\skip128 -\mdfframetitleboxtotalwidth=\skip129 -\mdfframetitleboxheight=\skip130 -\mdfframetitleboxdepth=\skip131 -\mdfframetitleboxtotalheight=\skip132 -\mdffootnoteboxwidth=\skip133 -\mdffootnoteboxtotalwidth=\skip134 -\mdffootnoteboxheight=\skip135 -\mdffootnoteboxdepth=\skip136 -\mdffootnoteboxtotalheight=\skip137 -\mdftotallinewidth=\skip138 -\mdfboundingboxwidth=\skip139 -\mdfboundingboxtotalwidth=\skip140 -\mdfboundingboxheight=\skip141 -\mdfboundingboxdepth=\skip142 -\mdfboundingboxtotalheight=\skip143 -\mdf@freevspace@length=\skip144 -\mdf@horizontalwidthofbox@length=\skip145 -\mdf@verticalmarginwhole@length=\skip146 -\mdf@horizontalspaceofbox=\skip147 -\mdfsubtitleheight=\skip148 -\mdfsubsubtitleheight=\skip149 -\c@mdfcountframes=\count440 - -****** mdframed patching \endmdf@trivlist - -****** -- success****** - -\mdf@envdepth=\count441 -\c@mdf@env@i=\count442 -\c@mdf@env@ii=\count443 -\c@mdf@zref@counter=\count444 -Package zref Info: New property: mdf@pagevalue on input line 895. -) -\c@exercise=\count445 -\c@definition=\count446 -\c@question=\count447 -\c@example=\count448 - - -Package amsthm Warning: Unknown theoremstyle `theorem' on input line 85. - -\c@theorem=\count449 - -Package amsthm Warning: Unknown theoremstyle `theorem' on input line 88. - -\c@lemma=\count450 - -Package amsthm Warning: Unknown theoremstyle `theorem' on input line 92. - -\c@proposition=\count451 -) -\@quotelevel=\count452 -\@quotereset=\count453 -LaTeX Font Info: Trying to load font information for OT1+ptm on input line 7 -. - (/usr/share/texmf-dist/tex/latex/psnfss/ot1ptm.fd -File: ot1ptm.fd 2001/06/04 font definitions for OT1/ptm. -) -No file main.aux. -\openout1 = `main.aux'. - -LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 7. -LaTeX Font Info: ... okay on input line 7. -LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 7. -LaTeX Font Info: ... okay on input line 7. -LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 7. -LaTeX Font Info: ... okay on input line 7. -LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 7. -LaTeX Font Info: ... okay on input line 7. -LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 7. -LaTeX Font Info: ... okay on input line 7. -LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 7. -LaTeX Font Info: ... okay on input line 7. -LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 7. -LaTeX Font Info: ... okay on input line 7. -LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 7. -LaTeX Font Info: ... okay on input line 7. -LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 7. -LaTeX Font Info: ... okay on input line 7. -(/usr/share/texmf-dist/tex/context/base/mkii/supp-pdf.mkii -[Loading MPS to PDF converter (version 2006.09.02).] -\scratchcounter=\count454 -\scratchdimen=\dimen293 -\scratchbox=\box71 -\nofMPsegments=\count455 -\nofMParguments=\count456 -\everyMPshowfont=\toks46 -\MPscratchCnt=\count457 -\MPscratchDim=\dimen294 -\MPnumerator=\count458 -\makeMPintoPDFobject=\count459 -\everyMPtoPDFconversion=\toks47 -) (/usr/share/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty -Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf -Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4 -85. - -(/usr/share/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg -File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv -e -)) -*geometry* driver: auto-detecting -*geometry* detected driver: pdftex -*geometry* verbose mode - [ preamble ] result: -* driver: pdftex -* paper: a4paper -* layout: <same size as paper> -* layoutoffset:(h,v)=(0.0pt,0.0pt) -* modes: -* h-part:(L,W,R)=(89.62709pt, 418.25368pt, 89.6271pt) -* v-part:(T,H,B)=(42.67912pt, 700.96107pt, 101.40665pt) -* \paperwidth=597.50787pt -* \paperheight=845.04684pt -* \textwidth=418.25368pt -* \textheight=700.96107pt -* \oddsidemargin=17.3571pt -* \evensidemargin=17.3571pt -* \topmargin=-66.59087pt -* \headheight=12.0pt -* \headsep=25.0pt -* \topskip=12.0pt -* \footskip=30.0pt -* \marginparwidth=44.0pt -* \marginparsep=10.0pt -* \columnsep=10.0pt -* \skip\footins=10.8pt plus 4.0pt minus 2.0pt -* \hoffset=0.0pt -* \voffset=0.0pt -* \mag=1000 -* \@twocolumnfalse -* \@twosidefalse -* \@mparswitchfalse -* \@reversemarginfalse -* (1in=72.27pt=25.4mm, 1cm=28.453pt) - -Package caption Info: Begin \AtBeginDocument code. -Package caption Info: float package is loaded. -Package caption Info: hyperref package is loaded. -Package caption Info: End \AtBeginDocument code. -Package hyperref Info: Link coloring ON on input line 7. -(/usr/share/texmf-dist/tex/latex/hyperref/nameref.sty -Package: nameref 2021-04-02 v2.47 Cross-referencing by name of section - -(/usr/share/texmf-dist/tex/latex/refcount/refcount.sty -Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO) -) -(/usr/share/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty -Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO) -) -\c@section@level=\count460 -) -LaTeX Info: Redefining \ref on input line 7. -LaTeX Info: Redefining \pageref on input line 7. -LaTeX Info: Redefining \nameref on input line 7. -\@outlinefile=\write5 -\openout5 = `main.out'. - -Package biblatex Info: Trying to load language 'english'... -Package biblatex Info: ... file 'english.lbx' found. - -(/usr/share/texmf-dist/tex/latex/biblatex/lbx/english.lbx -File: english.lbx 2020/12/31 v3.16 biblatex localization (PK/MW) -) -Package biblatex Info: Input encoding 'utf8' detected. -Package biblatex Info: Automatic encoding selection. -(biblatex) Assuming data encoding 'utf8'. -Package biblatex Info: Document encoding is UTF8 .... -Package biblatex Info: ... and expl3 -(biblatex) 2021-02-18 L3 programming layer (loader) -(biblatex) is new enough (at least 2020/04/06), -(biblatex) setting 'casechanger=expl3'. - -(/usr/share/texmf-dist/tex/latex/biblatex/blx-case-expl3.sty -Package: blx-case-expl3 2020/12/31 v3.16 expl3 case changing code for biblatex -) -\openout4 = `main.bcf'. - -Package biblatex Info: Trying to load bibliographic data... -Package biblatex Info: ... file 'main.bbl' not found. - -No file main.bbl. -Package biblatex Info: Reference section=0 on input line 7. -Package biblatex Info: Reference segment=0 on input line 7. -(./back/title.tex -<pics/uni_logo.png, id=7, 207.6558pt x 57.0933pt> -File: pics/uni_logo.png Graphic file (type png) -<use pics/uni_logo.png> -Package pdftex.def Info: pics/uni_logo.png used on input line 6. -(pdftex.def) Requested size: 227.62204pt x 62.58676pt. - -Overfull \hbox (62.03273pt too wide) in paragraph at lines 5--7 -[] [] - [] - -LaTeX Font Info: Trying to load font information for OT1+phv on input line 1 -0. -(/usr/share/texmf-dist/tex/latex/psnfss/ot1phv.fd -File: ot1phv.fd 2020/03/25 scalable font definitions for OT1/phv. -) -LaTeX Font Info: Calculating math sizes for size <18> on input line 39. -LaTeX Font Info: Trying to load font information for OT1+ztmcm on input line - 39. - -(/usr/share/texmf-dist/tex/latex/psnfss/ot1ztmcm.fd -File: ot1ztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OT1/ztmcm. -) -LaTeX Font Info: Trying to load font information for OML+ztmcm on input line - 39. - -(/usr/share/texmf-dist/tex/latex/psnfss/omlztmcm.fd -File: omlztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OML/ztmcm. -) -LaTeX Font Info: Trying to load font information for OMS+ztmcm on input line - 39. - -(/usr/share/texmf-dist/tex/latex/psnfss/omsztmcm.fd -File: omsztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OMS/ztmcm. -) -LaTeX Font Info: Trying to load font information for OMX+ztmcm on input line - 39. - -(/usr/share/texmf-dist/tex/latex/psnfss/omxztmcm.fd -File: omxztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OMX/ztmcm. -) -LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <18> not available -(Font) Font shape `OT1/ptm/b/n' tried instead on input line 39. -LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <13.3201> not available -(Font) Font shape `OT1/ptm/b/n' tried instead on input line 39. -LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <10.80011> not available -(Font) Font shape `OT1/ptm/b/n' tried instead on input line 39. -LaTeX Font Info: Trying to load font information for OMX+yhex on input line -39. - -(/usr/share/texmf-dist/tex/latex/yhmath/OMXyhex.fd -File: OMXyhex.fd -File: OMXyhex.fd 2013/07/03 v1.1 YH's humble contribution to TeX maths (NP) -) -Overfull \hbox (181.91461pt too wide) in paragraph at lines 39--55 - [][] - [] - -[1 - -{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map} <./pics/uni_logo.png>]) -\tf@toc=\write6 -\openout6 = `main.toc'. - -pdfTeX warning (ext4): destination with the same identifier (name{page.1}) has -been already used, duplicate ignored -<to be read again> - \relax -l.15 \newpage - [1] (./back/abstract.tex) (./chapters/intro.tex) -(./chapters/main_sec.tex) (./chapters/basics.tex -LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <12> not available -(Font) Font shape `OT1/ptm/b/n' tried instead on input line 2. -LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <9> not available -(Font) Font shape `OT1/ptm/b/n' tried instead on input line 2. -LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <7> not available -(Font) Font shape `OT1/ptm/b/n' tried instead on input line 2. - - -Package hyperref Warning: Token not allowed in a PDF string (Unicode): -(hyperref) removing `math shift' on input line 2. - - -Package hyperref Warning: Token not allowed in a PDF string (Unicode): -(hyperref) removing `math shift' on input line 2. - -LaTeX Font Info: Trying to load font information for TS1+ptm on input line 3 -2. -(/usr/share/texmf-dist/tex/latex/psnfss/ts1ptm.fd -File: ts1ptm.fd 2001/06/04 font definitions for TS1/ptm. -) [2] [3] [4] -LaTeX Font Info: Trying to load font information for U+bbm on input line 181 -. - -(/usr/share/texmf-dist/tex/latex/bbm-macros/ubbm.fd -File: ubbm.fd 1999/03/15 V 1.2 Font definition for bbm font - TH -) [5]) -(./chapters/heatkernel.tex - -LaTeX Warning: Reference `eq:standard' on page 6 undefined on input line 25. - -[6] [7] - -LaTeX Warning: Reference `eq:var1' on page 8 undefined on input line 210. - - -LaTeX Warning: Reference `eq:var1' on page 8 undefined on input line 215. - - -LaTeX Warning: Reference `eq:var2' on page 8 undefined on input line 215. - - -LaTeX Warning: Reference `eq:var3' on page 8 undefined on input line 217. - - -LaTeX Warning: Reference `eq:var1' on page 8 undefined on input line 221. - -[8] - -LaTeX Warning: Reference `eq:var3' on page 9 undefined on input line 236. - - -LaTeX Warning: Reference `eq:var2' on page 9 undefined on input line 256. - - -LaTeX Warning: Reference `eq:var3' on page 9 undefined on input line 268. - -[9] - -LaTeX Warning: Citation 'heatkernel' on page 10 undefined on input line 301. - -) (./chapters/twopointspace.tex [10] - -LaTeX Warning: Reference `eq:commutator inequality' on page 11 undefined on inp -ut line 90. - -[11] - -Package hyperref Warning: Token not allowed in a PDF string (Unicode): -(hyperref) removing `math shift' on input line 138. - - -Package hyperref Warning: Token not allowed in a PDF string (Unicode): -(hyperref) removing `math shift' on input line 138. - - -LaTeX Warning: Citation 'ncgwalter' on page 12 undefined on input line 146. - -[12] -Overfull \hbox (2.50433pt too wide) in paragraph at lines 210--213 -[]\OT1/ptm/m/n/12 An ar-bi-trary her-mi-tian field $\OML/ztmcm/m/it/12 A[] \OT1 -/ztmcm/m/n/12 = \OMS/ztmcm/m/n/12 ^^@\OML/ztmcm/m/it/12 ia@[]b$ \OT1/ptm/m/n/12 - is given by two $\OML/ztmcm/m/it/12 U\OT1/ztmcm/m/n/12 (1)$ \OT1/ptm/m/n/12 Ga -uge fields $\OML/ztmcm/m/it/12 X[]; X[] \OMS/ztmcm/m/n/12 2 - [] - -) (./chapters/electroncg.tex [13] -Overfull \hbox (4.58751pt too wide) in paragraph at lines 19--28 -\OT1/ptm/m/n/12 where $\OML/ztmcm/m/it/12 ; []$ \OT1/ptm/m/n/12 must be con-s -id-ered as in-de-pen-dent vari-ables, which means that the fermionic - [] - -[14] - -LaTeX Warning: Reference `eq:leftrightrepr' on page 15 undefined on input line -102. - -[15] - -LaTeX Warning: Reference `eq:fedfail' on page 16 undefined on input line 152. - - -LaTeX Warning: Reference `eq:feddirac' on page 16 undefined on input line 153. - -[16] -Overfull \hbox (6.36182pt too wide) in paragraph at lines 256--258 -[][]\OT1/ptm/b/n/12 Proposition 3. []\OT1/ptm/m/it/12 The spec-tral ac-tion of -the al-most com-mu-ta-tive man-i-fold $\OML/ztmcm/m/it/12 M$ \OT1/ptm/m/it/12 w -ith $[]\OT1/ztmcm/m/n/12 (\OML/ztmcm/m/it/12 M\OT1/ztmcm/m/n/12 ) = - [] - - -Overfull \hbox (50.34213pt too wide) in paragraph at lines 268--272 -\OT1/ptm/m/it/12 The La-grangian $\OMS/ztmcm/m/n/12 L[]$ \OT1/ptm/m/it/12 is of - the spec-tral triple, rep-re-sented by the fol-low-ing term $\OT1/ztmcm/m/n/12 - (\OML/ztmcm/m/it/12 C[]\OT1/ztmcm/m/n/12 (\OML/ztmcm/m/it/12 M\OT1/ztmcm/m/n/1 -2 )\OML/ztmcm/m/it/12 ; L[]\OT1/ztmcm/m/n/12 (\OML/ztmcm/m/it/12 S\OT1/ztmcm/m/ -n/12 )\OML/ztmcm/m/it/12 ; D[]\OT1/ztmcm/m/n/12 )$ - [] - -[17] [18] - -LaTeX Warning: Reference `eq:trheatkernel' on page 19 undefined on input line 3 -66. - - -LaTeX Warning: Reference `def:fermionic action' on page 19 undefined on input l -ine 371. - - -LaTeX Warning: Reference `eq:almost commutative manifold' on page 19 undefined -on input line 372. - - -LaTeX Warning: Reference `eq:fermionic1' on page 19 undefined on input line 406 -. - -[19] - -LaTeX Warning: Reference `eq:fermionic2' on page 20 undefined on input line 415 -. - - -LaTeX Warning: Reference `eq:fermionic3' on page 20 undefined on input line 424 -. - -) (./chapters/conclusion.tex) (./chapters/acknowledgment.tex) [20] -(./back/refs.tex - -LaTeX Warning: Citation 'electrodynamics' undefined on input line 1. - - -LaTeX Warning: Citation 'ncgwalter' undefined on input line 2. - - -LaTeX Warning: Citation 'liealgebra' undefined on input line 3. - - -LaTeX Warning: Citation 'ncg4pages' undefined on input line 4. - - -LaTeX Warning: Citation 'ncgshort' undefined on input line 5. - - -LaTeX Warning: Citation 'heatkernel' undefined on input line 6. - -) - -LaTeX Warning: Empty bibliography on input line 7. - -[21] (./main.aux) - -LaTeX Warning: There were undefined references. - - -LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right. - - -Package rerunfilecheck Warning: File `main.out' has changed. -(rerunfilecheck) Rerun to get outlines right -(rerunfilecheck) or use package `bookmark'. - -Package rerunfilecheck Info: Checksums for `main.out': -(rerunfilecheck) Before: <no file> -(rerunfilecheck) After: 55B02A850C5D24CAF976287B196FB8C5;4311. - -Package biblatex Warning: Please (re)run Biber on the file: -(biblatex) main -(biblatex) and rerun LaTeX afterwards. - -Package logreq Info: Writing requests to 'main.run.xml'. -\openout1 = `main.run.xml'. - - ) -Here is how much of TeX's memory you used: - 31611 strings out of 478994 - 590567 string characters out of 5864751 - 1402918 words of memory out of 5000000 - 48293 multiletter control sequences out of 15000+600000 - 463138 words of font info for 154 fonts, out of 8000000 for 9000 - 1141 hyphenation exceptions out of 8191 - 92i,17n,92p,737b,1131s stack positions out of 5000i,500n,10000p,200000b,80000s - </home/miksa/.texlive/texmf-var/fonts/pk/ljfour/public/bbm/bbm7.600pk> </hom -e/miksa/.texlive/texmf-var/fonts/pk/ljfour/public/bbm/bbm9.600pk> </home/miksa/ -.texlive/texmf-var/fonts/pk/ljfour/public/bbm/bbm12.600pk>{/usr/share/texmf-dis -t/fonts/enc/dvips/base/8r.enc}</usr/share/texmf-dist/fonts/type1/public/amsfont -s/cm/cmex10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pf -b></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/t -exmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/share/texmf-dist/font -s/type1/public/amsfonts/euler/eufm10.pfb></usr/share/texmf-dist/fonts/type1/pub -lic/amsfonts/symbols/msbm10.pfb></usr/share/texmf-dist/fonts/type1/public/rsfs/ -rsfs10.pfb></usr/share/texmf-dist/fonts/type1/urw/helvetic/uhvb8a.pfb></usr/sha -re/texmf-dist/fonts/type1/urw/helvetic/uhvr8a.pfb></usr/share/texmf-dist/fonts/ -type1/urw/symbol/usyr.pfb></usr/share/texmf-dist/fonts/type1/urw/symbol/usyr.pf -b></usr/share/texmf-dist/fonts/type1/urw/times/utmb8a.pfb></usr/share/texmf-dis -t/fonts/type1/urw/times/utmr8a.pfb></usr/share/texmf-dist/fonts/type1/urw/times -/utmri8a.pfb></usr/share/texmf-dist/fonts/type1/public/yhmath/yhcmex.pfb> -Output written on main.pdf (22 pages, 242612 bytes). -PDF statistics: - 413 PDF objects out of 1000 (max. 8388607) - 365 compressed objects within 4 object streams - 210 named destinations out of 1000 (max. 500000) - 18 words of extra memory for PDF output out of 10000 (max. 10000000) - diff --git a/src/thesis/main.out b/src/thesis/main.out @@ -1,25 +0,0 @@ -\BOOKMARK [1][-]{section.1}{\376\377\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{}% 1 -\BOOKMARK [1][-]{section.2}{\376\377\000M\000a\000i\000n\000\040\000S\000e\000c\000t\000i\000o\000n}{}% 2 -\BOOKMARK [2][-]{subsection.2.1}{\376\377\000N\000o\000n\000c\000o\000m\000m\000u\000t\000a\000t\000i\000v\000e\000\040\000G\000e\000o\000m\000e\000t\000r\000i\000c\000\040\000S\000p\000a\000c\000e\000s}{section.2}% 3 -\BOOKMARK [3][-]{subsubsection.2.1.1}{\376\377\000*\000-\000A\000l\000g\000e\000b\000r\000a}{subsection.2.1}% 4 -\BOOKMARK [3][-]{subsubsection.2.1.2}{\376\377\000F\000i\000n\000i\000t\000e\000\040\000D\000i\000s\000c\000r\000e\000t\000e\000\040\000S\000p\000a\000c\000e}{subsection.2.1}% 5 -\BOOKMARK [3][-]{subsubsection.2.1.3}{\376\377\000M\000a\000t\000r\000i\000x\000\040\000A\000l\000g\000e\000b\000r\000a\000s}{subsection.2.1}% 6 -\BOOKMARK [3][-]{subsubsection.2.1.4}{\376\377\000F\000i\000n\000i\000t\000e\000\040\000I\000n\000n\000e\000r\000\040\000P\000r\000o\000d\000u\000c\000t\000\040\000S\000p\000a\000c\000e\000s\000\040\000a\000n\000d\000\040\000R\000e\000p\000r\000e\000s\000e\000n\000t\000a\000t\000i\000o\000n\000s}{subsection.2.1}% 7 -\BOOKMARK [3][-]{subsubsection.2.1.5}{\376\377\000A\000l\000g\000e\000b\000r\000a\000i\000c\000\040\000M\000o\000d\000u\000l\000e\000s}{subsection.2.1}% 8 -\BOOKMARK [2][-]{subsection.2.2}{\376\377\000H\000e\000a\000t\000\040\000K\000e\000r\000n\000e\000l\000\040\000E\000x\000p\000a\000n\000s\000i\000o\000n}{section.2}% 9 -\BOOKMARK [3][-]{subsubsection.2.2.1}{\376\377\000T\000h\000e\000\040\000H\000e\000a\000t\000\040\000K\000e\000r\000n\000e\000l}{subsection.2.2}% 10 -\BOOKMARK [3][-]{subsubsection.2.2.2}{\376\377\000S\000p\000e\000c\000t\000r\000a\000l\000\040\000F\000u\000n\000c\000t\000i\000o\000n\000s}{subsection.2.2}% 11 -\BOOKMARK [3][-]{subsubsection.2.2.3}{\376\377\000G\000e\000n\000e\000r\000a\000l\000\040\000F\000o\000r\000m\000u\000l\000a\000e}{subsection.2.2}% 12 -\BOOKMARK [3][-]{subsubsection.2.2.4}{\376\377\000H\000e\000a\000t\000\040\000K\000e\000r\000n\000e\000l\000\040\000C\000o\000e\000f\000f\000i\000c\000i\000e\000n\000t\000s}{subsection.2.2}% 13 -\BOOKMARK [2][-]{subsection.2.3}{\376\377\000A\000l\000m\000o\000s\000t\000-\000c\000o\000m\000m\000u\000t\000a\000t\000i\000v\000e\000\040\000M\000a\000n\000i\000f\000o\000l\000d}{section.2}% 14 -\BOOKMARK [3][-]{subsubsection.2.3.1}{\376\377\000T\000w\000o\000-\000P\000o\000i\000n\000t\000\040\000S\000p\000a\000c\000e}{subsection.2.3}% 15 -\BOOKMARK [3][-]{subsubsection.2.3.2}{\376\377\000P\000r\000o\000d\000u\000c\000t\000\040\000S\000p\000a\000c\000e}{subsection.2.3}% 16 -\BOOKMARK [3][-]{subsubsection.2.3.3}{\376\377\000U\000\050\0001\000\051\000\040\000G\000a\000u\000g\000e\000\040\000G\000r\000o\000u\000p}{subsection.2.3}% 17 -\BOOKMARK [2][-]{subsection.2.4}{\376\377\000N\000o\000n\000c\000o\000m\000m\000u\000t\000a\000t\000i\000v\000e\000\040\000G\000e\000o\000m\000e\000t\000r\000y\000\040\000o\000f\000\040\000E\000l\000e\000c\000t\000r\000o\000d\000y\000n\000a\000m\000i\000c\000s}{section.2}% 18 -\BOOKMARK [3][-]{subsubsection.2.4.1}{\376\377\000T\000h\000e\000\040\000F\000i\000n\000i\000t\000e\000\040\000S\000p\000a\000c\000e}{subsection.2.4}% 19 -\BOOKMARK [3][-]{subsubsection.2.4.2}{\376\377\000A\000\040\000n\000o\000n\000c\000o\000m\000m\000u\000t\000a\000t\000i\000v\000e\000\040\000F\000i\000n\000i\000t\000e\000\040\000D\000i\000r\000a\000c\000\040\000O\000p\000e\000r\000a\000t\000o\000r}{subsection.2.4}% 20 -\BOOKMARK [3][-]{subsubsection.2.4.3}{\376\377\000A\000l\000m\000o\000s\000t\000\040\000c\000o\000m\000m\000u\000t\000a\000t\000i\000v\000e\000\040\000M\000a\000n\000i\000f\000o\000l\000d\000\040\000o\000f\000\040\000E\000l\000e\000c\000t\000r\000o\000d\000y\000n\000a\000m\000i\000c\000s}{subsection.2.4}% 21 -\BOOKMARK [3][-]{subsubsection.2.4.4}{\376\377\000S\000p\000e\000c\000t\000r\000a\000l\000\040\000A\000c\000t\000i\000o\000n}{subsection.2.4}% 22 -\BOOKMARK [3][-]{subsubsection.2.4.5}{\376\377\000F\000e\000r\000m\000i\000o\000n\000i\000c\000\040\000A\000c\000t\000i\000o\000n}{subsection.2.4}% 23 -\BOOKMARK [1][-]{section.3}{\376\377\000C\000o\000n\000c\000l\000u\000s\000i\000o\000n}{}% 24 -\BOOKMARK [1][-]{section.4}{\376\377\000A\000c\000k\000n\000o\000w\000l\000e\000d\000g\000m\000e\000n\000t}{}% 25 diff --git a/src/thesis/main.pdf b/src/thesis/main.pdf Binary files differ. diff --git a/src/thesis/main.run.xml b/src/thesis/main.run.xml @@ -1,85 +0,0 @@ -<?xml version="1.0" standalone="yes"?> -<!-- logreq request file --> -<!-- logreq version 1.0 / dtd version 1.0 --> -<!-- Do not edit this file! --> -<!DOCTYPE requests [ - <!ELEMENT requests (internal | external)*> - <!ELEMENT internal (generic, (provides | requires)*)> - <!ELEMENT external (generic, cmdline?, input?, output?, (provides | requires)*)> - <!ELEMENT cmdline (binary, (option | infile | outfile)*)> - <!ELEMENT input (file)+> - <!ELEMENT output (file)+> - <!ELEMENT provides (file)+> - <!ELEMENT requires (file)+> - <!ELEMENT generic (#PCDATA)> - <!ELEMENT binary (#PCDATA)> - <!ELEMENT option (#PCDATA)> - <!ELEMENT infile (#PCDATA)> - <!ELEMENT outfile (#PCDATA)> - <!ELEMENT file (#PCDATA)> - <!ATTLIST requests - version CDATA #REQUIRED - > - <!ATTLIST internal - package CDATA #REQUIRED - priority (9) #REQUIRED - active (0 | 1) #REQUIRED - > - <!ATTLIST external - package CDATA #REQUIRED - priority (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8) #REQUIRED - active (0 | 1) #REQUIRED - > - <!ATTLIST provides - type (static | dynamic | editable) #REQUIRED - > - <!ATTLIST requires - type (static | dynamic | editable) #REQUIRED - > - <!ATTLIST file - type CDATA #IMPLIED - > -]> -<requests version="1.0"> - <internal package="biblatex" priority="9" active="1"> - <generic>latex</generic> - <provides type="dynamic"> - <file>main.bcf</file> - </provides> - <requires type="dynamic"> - <file>main.bbl</file> - </requires> - <requires type="static"> - <file>blx-dm.def</file> - <file>blx-compat.def</file> - <file>biblatex.def</file> - <file>standard.bbx</file> - <file>numeric.bbx</file> - <file>numeric.cbx</file> - <file>biblatex.cfg</file> - <file>english.lbx</file> - </requires> - </internal> - <external package="biblatex" priority="5" active="1"> - <generic>biber</generic> - <cmdline> - <binary>biber</binary> - <infile>main</infile> - </cmdline> - <input> - <file>main.bcf</file> - </input> - <output> - <file>main.bbl</file> - </output> - <provides type="dynamic"> - <file>main.bbl</file> - </provides> - <requires type="dynamic"> - <file>main.bcf</file> - </requires> - <requires type="editable"> - <file>thesis.bib</file> - </requires> - </external> -</requests> diff --git a/src/thesis/main.tex b/src/thesis/main.tex @@ -24,7 +24,11 @@ \input{chapters/main_sec} -\input{chapters/basics} +%\input{chapters/basics} + +\input{chapters/finitencg} + +%\input{chapters/realncg} %\input{chapters/heatkernel} % diff --git a/src/thesis/main.toc b/src/thesis/main.toc @@ -1,51 +0,0 @@ -\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax -\defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {1}Introduction}{2}{section.1}% -\defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {2}Main Section}{2}{section.2}% -\defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {2.1}Noncommutative Geometric Spaces}{2}{subsection.2.1}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.1.1}$*$-Algebra}{2}{subsubsection.2.1.1}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.1.2}Finite Discrete Space}{3}{subsubsection.2.1.2}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.1.3}Matrix Algebras}{4}{subsubsection.2.1.3}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.1.4}Finite Inner Product Spaces and Representations}{4}{subsubsection.2.1.4}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.1.5}Algebraic Modules}{6}{subsubsection.2.1.5}% -\defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {2.2}Heat Kernel Expansion}{6}{subsection.2.2}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.2.1}The Heat Kernel}{6}{subsubsection.2.2.1}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.2.2}Spectral Functions}{7}{subsubsection.2.2.2}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.2.3}General Formulae}{7}{subsubsection.2.2.3}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.2.4}Heat Kernel Coefficients}{8}{subsubsection.2.2.4}% -\defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {2.3}Almost-commutative Manifold}{10}{subsection.2.3}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.3.1}Two-Point Space}{10}{subsubsection.2.3.1}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.3.2}Product Space}{11}{subsubsection.2.3.2}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.3.3}$U(1)$ Gauge Group}{12}{subsubsection.2.3.3}% -\defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {2.4}Noncommutative Geometry of Electrodynamics}{14}{subsection.2.4}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.4.1}The Finite Space}{14}{subsubsection.2.4.1}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.4.2}A noncommutative Finite Dirac Operator}{16}{subsubsection.2.4.2}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.4.3}Almost commutative Manifold of Electrodynamics}{16}{subsubsection.2.4.3}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.4.4}Spectral Action}{17}{subsubsection.2.4.4}% -\defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {2.4.5}Fermionic Action}{19}{subsubsection.2.4.5}% -\defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {3}Conclusion}{20}{section.3}% -\defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {4}Acknowledgment}{21}{section.4}%