ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit b868322b01444266972b7aec8a69a92c57a81399
parent fed8832ba997fdca91d156fd6d92bcedf2fd0066
Author: miksa <milutin@popovic.xyz>
Date:   Wed,  3 Mar 2021 13:14:12 +0100

almost finished week3

Diffstat:
Mweek2.tex | 21++++++++++-----------
Aweek3.pdf | 0
Aweek3.tex | 196+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
3 files changed, 206 insertions(+), 11 deletions(-)

diff --git a/week2.tex b/week2.tex @@ -61,17 +61,17 @@ \end{definition} \begin{question} Does $/$ denote the complement, because one usually writes $\setminus$. - \url{https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)} + $/$ denotes the Qutotient \url{https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)} \end{question} -READ THE WIKI In other words the balanced tensor product forms only elements of -\begin{itemize} - \item $E$ that preserver the \textit{left} representation of $A$ and - \item $F$ that preserver the \textit{right} representation of $A$. -\end{itemize} -Which is the same saying: -\begin{align*} - E \otimes _A F = \left\{e a\otimes _A f = e \otimes _A a f: \;\;\; a \in A,\ e \in E,\ f \in F \right\} -\end{align*} +%In other words the balanced tensor product forms only elements of +%\begin{itemize} +% \item $E$ that preserver the \textit{left} representation of $A$ and +% \item $F$ that preserver the \textit{right} representation of $A$. +%\end{itemize} +%Which is the same saying: +%\begin{align*} +% E \otimes _A F = \left\{e a\otimes _A f = e \otimes _A a f: \;\;\; a \in A,\ e \in E,\ f \in F \right\} +%\end{align*} \begin{definition} Let $A$, $B$ be \textit{matrix algebras}. The \textit{Hilbert bimodule} for $(A, B)$ is given by @@ -358,5 +358,4 @@ We conclude that. a richer structure of morphism between matrix algebras. \end{itemize} - \end{document} diff --git a/week3.pdf b/week3.pdf Binary files differ. diff --git a/week3.tex b/week3.tex @@ -0,0 +1,196 @@ +\documentclass[a4paper]{article} + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} + +\usepackage{mathptmx} + +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{amsmath,amssymb} +\usepackage{amsthm} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} + +\theoremstyle{definition} +\newtheorem{definition}{Definition} + +\theoremstyle{definition} +\newtheorem{question}{Question} + +\theoremstyle{definition} +\newtheorem{example}{Example} + +\theoremstyle{theorem} +\newtheorem{theorem}{Theorem} + +\theoremstyle{theorem} +\newtheorem{exercise}{Exercise} + +\theoremstyle{theorem} +\newtheorem{lemma}{Lemma} + +\theoremstyle{definition} +\newtheorem{solution}{Solution} + +\newtheorem*{idea}{Proof Idea} + + +\title{Notes on \\ Noncommutative Geometry and Particle Physics} +\author{Popovic Milutin} +\date{Week 2: 26.02 - 4.03} + +\begin{document} + +\maketitle +\tableofcontents +\section{Excurse to Group Theory and Lie Groups} +\subsection{Groups and Representations} + \begin{definition} + A Group $G$ is a set with a binary operation on $G$ satisfying. + \begin{enumerate} + \item $f, g \in G$ we have $fg = h \in G$. + \item $f(gh) = (fg) h$ + \item $\exists\ e \in G\ \forall f\in G$ with $ef=fe=f$ + \item $\forall f \in G\ \exists\ f^{-1}\in G$ with $ff^{-1}=f^{-1}f=e$ + \end{enumerate} + \end{definition} + + \begin{definition} + A Representation of a Group $G$ is a mapping, $D$ of elements of $G$ onto a set of \textit{linear + operators} such that: + \begin{enumerate} + \item $D(e) = 1$, $1$ is the identity operator in the space on which linear operators act + \item $D(g_1)D(g_2) = D(g_1g_2)$, the mapping is linear in group the group operation + \end{enumerate} + \end{definition} + + Just by looking at symmetries of a Group we can find a nice representation, and if the group is finite we + can even find a matrix representation (Cheyley's Theorem). We all ready know a lot about linear algebra + which will then allow us to study these Groups very thoroughly and derive physical properties with + minimal information. + + +\subsection{Lie Groups} + Group elements now depend \textit{smoothly} on a set \textit{continuous parameters} $g(\alpha) \in G$. + We are looking at continuous symmetries, e.g. a Sphere in $\mathbb{R}^3$ can be rotated in any direction + without changing. The collection of rotations forms a Lie group because the group elements are smoothly + differentiable. + +\subsubsection{Generators} + We parameterize $g(\alpha)|_{\alpha=0} = e$ and we assume that near the identity element, the group + elements can be described by a finite set of elements $\alpha_a$ for $a = 1,..,N$. For a representation + $D$ of this group, linear operators need to be parametrized the same way: + \begin{align} + D(\alpha)|_{\alpha=0} = 1 + \end{align} + + Because of the smoothness and continuity we can Taylor expand a representation near the identity: + \begin{align} + D(\alpha) &= 1 + id\alpha_a X_a + \cdots && \\ + \text{with}&\;\; X_a = -i \frac{\partial D(\alpha)}{\partial \alpha_a}\bigg\arrowvert _{\alpha=0} + && \text{\footnote{Einstein Summation Convention, summation over repeated indices}} + \end{align} + + We call $X_a$ the \textit{generators of the group}. + \begin{itemize} + \item If the parametrization is \textit{parsimonious}\footnote{parsimonious - + All parameters are needed to distinguish between group elements} then all + of $X_a$ will be independent. + + \item If the representation is unitary then $X_a$ will be \textit{hermitian}, because of the + $i$ in the definition. + + \item Sophus Lie showed how to derive generators without representations. + \end{itemize} + + Now let us go in some fixed infinitesimal direction from the identity. + \begin{align} + D(d\alpha) = 1+ id\alpha _a X_a + \end{align} + Because of the group property of closure with respect to the group operation we can raise $D(d\alpha)$ + to a large power and still get a group element. + \begin{align} + D(\alpha) = \lim_{k\rightarrow \infty}(1+i\frac{\alpha_a X_a}{k})^k = e^{i\alpha_a X_a} + \end{align} + This is called the \textit{exponential parameterization}. Looking at the expression we see that + group elements can be expressed in terms of generators, and generators form a vector space. + They are often referred to any element in the real linear space spanned by $X_a's$. + +\subsubsection{Lie Algebras} + Let us consider a parameter family of group elements created by one generator $X_a$: + \begin{align} + U(\lambda) = e^{i\lambda \alpha _a X_a} + \end{align} + We know for that for the same generator the group multiplication is linear meaning: + \begin{align} + U(\lambda _1)U(\lambda _2) = U(\lambda_1 + \lambda_2) + \end{align} + But if we multiply elements generated by two different generators the general case is + \begin{align} + e^{i\alpha_a X_a} e^{i\beta_b X_b} \neq e^{i (\alpha _a + \beta_b) X_a} + \end{align} + Yet because the exponentials are a representation of a group, and a group has closure under + group operation we know the above needs to be true for some $\delta _a$ + \begin{align} + e^{i\alpha_a X_a} e^{i\beta_b X_b} = e^{i \delta _a X_a} + \end{align} + To further examine the exponent we rewrite the expression and Taylor expand $ln(1+K)$ + to the second of $K = e^{i\alpha_a X_a} e^{i\beta_b X_b} -1$ + \begin{align*} + i\delta _a X_a =& ln(1 + K) = K - \frac{K^2}{2} + \cdots \\ + \text{and}\;\;\; K =&\ e^{i\alpha_a X_a} e^{i\beta_b X_b} -1 \\ + =&\ (1 + i\alpha _a X_a - \frac{1}{2}(\alpha _a X_a)^2 + \cdots) \\ + \cdot&\ (1 + i\beta _b X_b - \frac{1}{2}(\beta _b X_b)^2 + \cdots) -1 \\ + =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\ + -&\ \frac{1}{2}(\alpha _a X_a)^2 - \frac{1}{2}(\beta _b X_b)^2 + \cdots + \end{align*} + So: + \begin{align*} + i\delta _a X_a =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\ + -&\ \frac{1}{2}(\alpha _a X_a)^2 - \frac{1}{2}(\beta _b X_b)^2 \\ + +&\ \frac{1}{2}(\ai\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b)^2 \\ + =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\ + -&\ \frac{1}{2}(\alpha _a X_a)^2 - \frac{1}{2}(\beta _b X_b)^2 \\ + +&\ \frac{1}{2}(\alpha _a X_a)^2 + \frac{1}{2}(\beta _b X_b)^2 \\ + +& \frac{1}{2}\alpha _a X_a \beta _b X_b + \frac{1}{2}\beta _b X_b \alpha _a X_a + \end{align*} + Because $X$'s are linear operators $\alpha _a X_a \beta _b X_b \neq \beta _b X_b \alpha _a X_a$. + These generators form an \textit{algebra under commutation} and we get + \begin{align*} + i\delta _a X_a =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\ + -&\ \frac{1}{2}[\alpha _a X_a, \beta _b X_b] + \cdots + \end{align*} + Thus rewriting the equation gives us + \begin{align*} + [\alpha _a X_a, \beta _b X_b] = -2i(\delta _c -\alpha _c -\beta _c) X_c \cdots \equiv i\gamma _c X_c + \end{align*} + Because this is true for all $\alpha$ and $\beta$, and considering the group closure, there exists some + \textit{real} $f_{abc}$ called the \textit{structure constant} satisfying. + \begin{equation} + \gamma _c = \alpha _a \beta _b f_{abc} + \end{equation} + Which is the same as. + \begin{equation} + [X_a, X_b] = i f_{abc} X_c + \end{equation} + This is called the \textit{Lie algebra of a group} + \newline + \newline + So $f$ is antisymmetric because $[A, B] = -[B, A]$, which means $f_{abc} = -f_{bac}$. + \newline + And $\delta$ can now be written as + \begin{equation} + \delta _a = \alpha _a + \beta _a - \frac{1}{2} \gamma _a \cdots + \end{equation} + Just by following the properties of Lie Groups (dependence on parameters and smoothness) in a fixed + direction near die identity to find physical statements. E.g. + $[\hat{r}_i, \hat{p}_j] = i \hslash \delta _{ij}$ tells us that we can't know the position + and the momentum of a particle exactly at a given time. + + + + +\end{document}