ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 9c62b5a750a93f4f219109435edd51149c7f239b
parent 91eb67f586e45f2e72abd9410eeb110be9a6d5e3
Author: miksa <milutin@popovic.xyz>
Date:   Tue, 20 Jul 2021 18:26:10 +0200

working from the end to the start

Diffstat:
Msrc/thesis/back/packages.tex | 79++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-----
Msrc/thesis/back/title.tex | 4++--
Asrc/thesis/chapters/1 | 754+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Rsrc/thesis/front/acknowledgment.tex -> src/thesis/chapters/acknowledgment.tex | 0
Asrc/thesis/chapters/basics.tex | 325+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Rsrc/thesis/front/conclusion.tex -> src/thesis/chapters/conclusion.tex | 0
Asrc/thesis/chapters/diffgeo.tex | 49+++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/thesis/chapters/electroncg.tex | 755+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/thesis/chapters/heatkernel.tex | 373+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Rsrc/thesis/front/intro.tex -> src/thesis/chapters/intro.tex | 0
Asrc/thesis/chapters/main_sec.tex | 1+
Dsrc/thesis/front/main_sec.tex | 2--
Msrc/thesis/main.pdf | 0
Msrc/thesis/main.tex | 21+++++++++++++++++----
Rsrc/thesis/uni.bib -> src/thesis/thesis.bib | 0
15 files changed, 2350 insertions(+), 13 deletions(-)

diff --git a/src/thesis/back/packages.tex b/src/thesis/back/packages.tex @@ -1,9 +1,12 @@ -\usepackage[utf8]{inputenc} % für direkte Eingabe von ß, ö, ä +\usepackage[utf8]{inputenc} +\usepackage{mathptmx} + %\usepackage{ngerman} % Sprachanpassung Deutsch -\usepackage{graphicx} % Graphikeinbindung -\usepackage{geometry} % Seitenränder -\geometry{a4paper,left=25mm,right=20mm, top=10mm, bottom=20mm} +\usepackage{graphicx} +\usepackage{geometry} +%\geometry{a4paper,left=25mm,right=25mm, top=20mm, bottom=30mm} +\geometry{a4paper, top=15mm} \usepackage{subcaption} \usepackage[shortlabels]{enumitem} @@ -21,6 +24,72 @@ %\usepackage[parfill]{parskip} \usepackage[backend=biber, sorting=none]{biblatex} -\addbibresource{uni.bib} +\addbibresource{thesis.bib} + +\numberwithin{equation}{section} \usepackage{lipsum} + + +% new commands just untill done rewriting stuff +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} + +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + +\newcounter{exercise} + +\renewcommand*\theexercise{Exercise~\arabic{exercise}} + +\makeatletter +\mdfdefinestyle{exercisestyle}{% + outerlinewidth=1em,% + outerlinecolor=white,% + leftmargin=-1em,% + rightmargin=-1em,% + middlelinewidth=1.2pt,% + roundcorner=5pt,% + linecolor=black,% + backgroundcolor=blue!5, + innertopmargin=1.2\baselineskip, + skipabove={\dimexpr0.5\baselineskip+\topskip\relax}, + skipbelow={-1em}, + needspace=3\baselineskip, + frametitlefont=\sffamily\bfseries, + settings={\global\stepcounter{exercise}}, + singleextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};},% + firstextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};}, +} +\makeatother + +\newenvironment{MyExercise}% +{\begin{mdframed}[style=exercisestyle]}{\end{mdframed}} + +\theoremstyle{definition} +\newtheorem{definition}{Definition} + +\theoremstyle{definition} +\newtheorem{question}{Question} + +\theoremstyle{definition} +\newtheorem{example}{Example} + +\theoremstyle{theorem} +\newtheorem{theorem}{Theorem} + +\theoremstyle{theorem} +\newtheorem{lemma}{Lemma} + + +\theoremstyle{theorem} +\newtheorem{proposition}{Proposition} + +\newtheorem*{idea}{Proof Idea} diff --git a/src/thesis/back/title.tex b/src/thesis/back/title.tex @@ -2,7 +2,7 @@ \begin{center} \begin{figure} -\hspace{9.1cm} +\hspace{8.8cm} \includegraphics[width=8cm]{pics/uni_logo} \end{figure} \vspace*{2cm} @@ -34,7 +34,7 @@ { \fontsize{12}{0} \selectfont Vienna, July 2021}\\ -\vspace*{5.5cm} +\vspace*{3.5cm} \begin{tabular}{p{9cm}p{11.25cm}} \fontsize{12}{0} \selectfont degree programme code as it appears on / & diff --git a/src/thesis/chapters/1 b/src/thesis/chapters/1 @@ -0,0 +1,754 @@ +\subsection{Noncommutative Geometry of Electrodynamics} +\subsubsection{The Two-Point Space} +One of the basics forms of a noncommutative space is the the two point space $X +:= \{x, y\}$, it can be represented by the following spectral triple +\begin{align} + F_x := (C(X) = \mathbb{C}^2, H_F, D_F; J_F, \gamma _f). +\end{align} +There are three properties of $F_x$ that stand out, first of all the action of +$C(X)$ on $H_F$ is faithful for $dim(H_F) \geq 2$. Thus we can make a simple +choice for the Hilbertspace, $H_F = \mathbb{C}^2$. Furthermore $\gamma_F$ is +the $\mathbb{Z}_2$ grading, which allows us to decompose $H_F$ into +\begin{align} + H_F = H_F^+ \otimes H_F^- = \mathbb{C} \otimes \mathbb{C}, +\end{align} +where +\begin{align} + H_F^\pm = \{\psi \in H_F |\; \gamma_F\psi = \pm \psi\}, +\end{align} +are two eigenspaces. And lastly the Dirac operator $D_F$ lets us +interchange between $H_F^\pm$, +\begin{align} + D_F = + \begin{pmatrix}0 & t \\ \bar{t} & 0\end{pmatrix}, \;\;\;\;\; + \text{with} \;\; t\in\mathbb{C}. +\end{align} + + The Two-Point space $F_x$ can only have a real structure if the Dirac + operator vanishes, i.e. $D_F = 0$, in that case we have KO-dimension of 0, + 2 or 6. + + To elaborate on this, we know that there are two diagram representations of + $F_x$ at $\underbrace{\mathbb{C} \oplus \mathbb{C}}_{C(X)}$ on + $\underbrace{\mathbb{C} \oplus\mathbb{C}}_{H_F}$, which are: + \begin{figure}[h!] \centering + \begin{tikzpicture}[ + dot/.style = {draw, circle, inner sep=0.06cm}, + no/.style = {}, + ] + \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d) at (2, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (2,0) [] {}; + \node[dot](d0) at (1,-1) [] {}; + + \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b2) at (6, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d2) at (8, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (7,0) [] {}; + \node[dot](d0) at (8,-1) [] {}; + \end{tikzpicture} + \end{figure}\newline +If the Two-Point space $F_x$ would be a real spectral triple then $D_F$ can +only go vertically or horizontally. This would mean that $D_F$ vanishes. + +The diagram on the left has KO-dimension 2 and 6, the diagram on the +right has KO-dimension 0 and 4. Yet KO-dimension 4 is not ruled out because +$dim(H_F^\pm) = 1$ (see Lemma 3.8 Book), which ultimately means $J_F^2 = -1$ is +not allowed. +\subsubsection{The product Space} +By Extending the Two-Point space with a four dimensional Riemannian spin +manifold, we get an almost commutative manifold $M\times F_x$, given by +\begin{align} + M\times F_x = (C^\infty(M), \mathbb{C}^2), L^2(S)\otimes \mathbb{C}^2, + D_M\otimes 1 ; J_M\otimes J_F, \gamma_M \otimes \gamma_F), +\end{align} +where +\begin{align} + C^\infty(M, \mathbb{C}^2) \simeq C^\infty(M) \oplus C^\infty(M). +\end{align} +According to Gelfand duality the algebra $C^\infty(M, \mathbb{C}^2)$ of the +spectral triple corresponds to the space +\begin{align} + N:= M\otimes X \simeq M\sqcup X +\end{align} +Keep in mind that we still need to find an appropriate real structure on the +Riemannian spin manifold, $J_M$. +\newline +The total Hilbertspace can be decomposed into $H = L^2(S) \oplus L^2(S)$, such +that for +\newline +$\underbrace{a,b\in C^\infty(M)}_{(a, b) \in C^\infty(N)}$ +and $\underbrace{\psi, \phi \in L^2(S)}_{(\psi, \phi) \in H}$ we have +\begin{align} + (a, b)(\psi, \phi) = (a\psi, b\phi) +\end{align} +Along with the decomposition of the total Hilbertspace we can consider a +distance formula on $M\times F_x$ with +\begin{align}\label{eq:commutator inequality} + d_{D_F}(x,y) = \sup\left\{ |a(x) - a(y)|:a\in A_F, ||[D_F, a]|| \leq + 1 \right\}. +\end{align} +To calculate the distance between two points on the Two-Point space $X= \{x, +y\}$, between $x$ and $y$, we consider an $a \in \mathbb{C}^2 = C(X)$, which is +specified by two complex numbers $a(x)$ and $a(y)$. Then we simplify the +commutator inequality in \ref{eq:commutator inequality} +\begin{align} + &||[D_F , a]|| = ||(a(y) - a(x))\begin{pmatrix}0 &t\\\bar{t} &0 + \end{pmatrix}|| \leq 1,\\ + &\Rightarrow |a(y) - a(x)|\leq \frac{1}{|t|}, +\end{align} +and the supremum gives us the distance +\begin{align} + d_{D_F} (x,y) = \frac{1}{|t|}. +\end{align} +Note that if there exists $J_M$ (real structure) $\Rightarrow t=0$ then +$d_{D_F}(x,y) \rightarrow \infty$! +\newline + +Now let $p \in M$, then take two points on $N=M\times X$, $(p, x)$ and +$(p,y)$ and $a \in C^\infty(N)$ is determined by $a_x(p):=a(p, x)$ and +$a_y(p):=a(p, y)$. The distance between these two points is then +\begin{align} + d_{D_F\otimes 1}(n_1, n_2) = \sup \left\{ |a(n_1) - a(n_2)|: a\in + A, ||[D\otimes 1, a]||\right\} +\end{align} +\textbf{Remark}: If $n_1 = (p,x)$ and $n_2 = (q, x)$ for $p,q \in M$ then +\begin{align} + d_{D_M \otimes 1} (n_1, n_2) = |a_x(p) - a_x(q)| \;\;\; a_x\in + C^\infty(M) \;\; \text{with} \;\; ||[D\otimes 1, a_x]|| \leq 1 +\end{align} +The distance turns to the geodestic distance formula +\begin{align} + d_{D_M\otimes1}(n_1, n_2) = d_g(p, q) +\end{align} + +However if $n_1 = (p, x)$ and $n_2 = (q, y)$ then the two conditions are +$||[D_M, a_x]|| \leq 1$ and $||[D_M, a_y|| \leq 1$. They have no +restriction which results in the distance being infinite! And $N = +M\times X$ is given by two disjoint copies of M which are separated by +infinite distance + +\textbf{Note}: distance is only finite if $[D_F, a] \neq 1$. The +commutator +generates a scalar field say $\phi$ and the finiteness of the distance is +related to the existence of scalar fields. +\subsubsection{$U(1)$ Gauge Group} +Here we determine the Gauge theory corresponding to the almost +commutative +Manifold $M\times F_x$. + +\textbf{Gauge Group of a Spectral Triple}: +\begin{align} + \mathfrak{B}(A, H; J) := \{ U = uJuJ^{-1} | u\in U(A)\} +\end{align} +\begin{definition} + A *-automorphism of a *-algebra $A$ is a linear invertible + map + \begin{align} + &\alpha:A \rightarrow A\;\;\; \text{with}\\ + \nonumber\\ + &\alpha(ab) = \alpha(a)\alpha(b)\\ + &\alpha(a)^* = \alpha(a^*) + \end{align} + The \textbf{Group of automorphisms of the *-Algebra $A$} is + $(A)$.\newline + The automorphism $\alpha$ is called \textbf{inner} if + \begin{align} + \alpha(a) = u a u^* \;\;\; \text{for} \;\; U(A) + \end{align} + where $U(A)$ is + \begin{align} + U(A) = \{ u\in A|\;\; uu^* = u^*u=1\} \;\;\; + \text{(unitary)} + \end{align} +\end{definition} +The Gauge group is given by the quotient $U(A)/U(A_J)$. +We want a nontrivial Gauge group so we need to choose $U(A_J) \neq +U(A)$ which is the same as $U((A_F)_{J_F}) \neq +U(A_F)$. +We consider $F_x$ to be +\begin{align} + F_x := \left(\mathbb{C}^2,\mathbb{C}^2, D_F =\begin{pmatrix} + 0&0\\0&0\end{pmatrix}; J_f =\begin{pmatrix} + 0&C\\C&0\end{pmatrix}, + \gamma_F = \begin{pmatrix}1&0\\0&-1\end{pmatrix}\right). +\end{align} +Here $C$ is the complex conjugation, and $F_X$ is a real even finite + spectral triple (space) with $KO-dim=6$ + +\begin{proposition} + The Gauge group $\mathfrak{B}(F)$ of the two point space is given by + $U(1)$. +\end{proposition} +\begin{proof} + Note that $U(A_F) = U(1) \times U(1)$. We need to show that + $U(\mathcal{A}_F) + \cap U(A_F)_{J_F}) \simeq U(1)$, such that $\mathfrak{B}(F) + \simeq U(1)$.\newline + + So for $a \in \mathbb{C}^2$ to be in $(A_F)_{J_F}$ it has + to satisfy $J_F a^* J_F = a$. + \begin{align} + J_F a^* J^{-1} = + \begin{pmatrix}0&C\\C&0\end{pmatrix} + \begin{pmatrix}\bar{a}_1&0\\0&\bar{a}_2\end{pmatrix} + \begin{pmatrix}0&C\\C&0\end{pmatrix} + = + \begin{pmatrix}a_2&0\\0&a_1\end{pmatrix} + \end{align} + Which is only the case if $a_1 = a_2$. So we have + $(A_F)_{J_F} \simeq \mathbb{C}$, whose unitary elements + from $U(1)$ are contained in the diagonal subgroup of + $U(\mathcal{A}_F)$. +\end{proof} + +Now we need to find the exact from of the field $B_\mu$ to calculate the +spectral action of a spectral triple. Since $(A_F)_{J_F} \simeq +\mathbb{C}$ we find that $\mathfrak{h}(F) = \mathfrak{u}((A_F)_{J_F}) +\simeq i\mathbb{R}$. Where $\mathfrak{h}(F)$ is the Lie Algebra on $F$ +and $\mathfrak{u}((A_F)_{J_F})$ is the Lie algebra of the unitary group +$(A_F)_{J_F}$.\newline + +An arbitrary hermitian field $A_\mu = -ia\partial _\mu b$ is given by +two +$U(1)$ Gauge fields $X_\mu^1, X_\mu^2 \in C^\infty(M, \mathbb{R})$. +However $A_\mu$ appears in combination $A_\mu - J_F A_\mu J_F^{-1}$: +\begin{align} + B_\mu = A_\mu - J_F A_\mu J_F^{-1} = + \begin{pmatrix}X_\mu^1&0\\0&X_\mu^2 \end{pmatrix} + - + \begin{pmatrix}X_\mu^2&0\\0&X_\mu^1 \end{pmatrix} + =: + \begin{pmatrix}Y_\mu&0\\0&-Y_\mu \end{pmatrix}= + Y_\mu \otimes \gamma _F +\end{align} +where $Y_\mu$ the $U(1)$ Gauge field is defined as +\begin{align} + Y_\mu := X_\mu^1 - X_\mu^2 \in C^\infty(M, \mathbb{R}) = C^\infty(M, + i\ u(1)). +\end{align} + +\begin{proposition} + The inner fluctuations of the almost-commutative manifold $M\times + F_x$ described above are parametrized by a $U(1)$-gauge field $Y_\mu$ + as + \begin{align} + D \mapsto D' = D + \gamma ^\mu Y_\mu \otimes \gamma_F + \end{align} + The action of the gauge group $\mathfrak{B}(M\times F_X) \simeq + C^\infty (M, U(1))$ on $D'$ is implemented by + \begin{align} + Y_\mu \mapsto Y_\mu - i\ u\partial_\mu u^*; \;\;\;\;\; (u\in + \mathfrak{B}(M\times F_X)). + \end{align} +\end{proposition} + +\subsection{Electrodynamics} +Now we use the almost commutative Manifold and the abelian gauge group +$U(1)$ to describe Electrodynamics. We arrive at a unified description of +gravity and electrodynamics although in the classical level. +\newline + +The almost commutative Manifold $M\times F_X$ describes a local gauge group +$U(1)$. The inner fluctuations of the Dirac operator describe $Y_\mu$ the +gauge field of $U(1)$. There arise two Problems: +\newline +(1): With $F_X$, $D_F$ must vanish, however this implies that the electrons +are massless (this we do not want) +\newline + +(2): The Euclidean action for a free Dirac field is +\begin{align} + S = - \int i \bar{\psi}(\gamma ^\mu\partial _\mu - m) \psi d^4x, +\end{align} +$\psi,\ \bar{\psi}$ must be considered as independent variables, which means +$S_F$ need two independent Dirac Spinors. We write $\{e, \bar{e}\}$ for the +ONB of $H_F$, where $\{e\}$ is the ONB of $H_F^+$ and $\{\bar{e}\}$ the ONB +of $H_F^-$ with the real structure this gives us the following relations +\begin{align} + J_F e &= \bar{e} \;\;\;\;\;\; J_F \bar{e} = e \\ + \gamma_F e &= e \;\;\;\;\;\; \gamma_F \bar{e} = \bar{e}. +\end{align} +The total Hilbertspace is $H = L^2(S) \otimes H_F$, with $\gamma _F$ we can +decompose $L^2(S) = L^2(S)^+ \oplus L^2(S)^-$, so with $\gamma = \gamma _M +\otimes \gamma _F$ we can obtain the positive eigenspace $H^+$ +\begin{align} + H^+ = L^2(S)^+ \otimes H_F^+ \oplus L^(S)^- \otimes H_F^-. +\end{align} +For a $\xi \i H^+$ we can write +\begin{align} + \xi = \psi _L \otimes e + \psi _R \otimes \bar{e} +\end{align} +where $\psi _L \in L^2(S)^+$ and $\psi _R \in L^2(S)^-$ are the two Wheyl +spinors. We denote that $\xi$ is only determined by one Dirac spinor $\psi := +\psi_L + \psi _R$, \textbf{but we require two independent spinors}. This is +too much restriction for $F_X$. +\subsubsection{The Finite Space} +Here we solve the two problems by enlarging(doubling) the Hilbertspace. This +is done by introducing multiplicities in Krajewski Diagrams which will also +allow us to choose a nonzero Dirac operator which will connect the two +vertices (next chapter). +\newline + +We start of with the same algebra $C^\infty(M, \mathbb{C}^2)$, corresponding +to space $N= M\times X \simeq M\sqcup M$. +\newline + +The Hilbertspace will describe four particles, +\begin{itemize} + \item left handed electrons + \item right handed positrons +\end{itemize} +Thus we have $\{ \underbrace{e_R, e_L}_{\text{left-handed}}, +\underbrace{\bar{e}_R, \bar{e}_L}_{\text{right-handed}}\}$ the ONB for $H_F +\mathbb{C}^4$. +\newline +Then with $J_F$ we interchange particles with antiparticles we have the +following properties +\begin{align} + &J_F e_R = \bar{e}_R \;\;\;\;\; &J_F e_L = \bar{e_L} \\ + &\gamma _F e_R = -e_R \;\;\;\;\; &\gamma_F e_L = e_L \\ + \text{and}& \nonumber \\ + &J_F^2 = 1 \;\;\;\;\; & J_F \gamma_F = - \gamma_F J_F +\end{align} +This corresponds to KO-dim$= 6$. Then $\gamma_F$ allows us to can decompose +$H$ +\begin{align} + H_F = \underbrace{H_F^+}_{\text{ONB } \{e_L, \bar{e}_L\}} + \oplus \underbrace{H_F^-}_{\text{ONB } \{e_R, \bar{e}_R\}}. +\end{align} +Alternatively we can decompose $H$ into the eigenspace of particles and their +antiparticles (electrons and positrons) which we will use going further. +\begin{align} + H_F = \underbrace{H_{e}}_{\text{ONB } \{e_L, e_R\}} \oplus + \underbrace{H_{\bar{e}}}_{\text{ONB } \{\bar{e}_L, \bar{e}_R\}} +\end{align} +Now the action of $a \in A = \mathbb{C}^2$ on $H$ with respect to the ONB +$\{e_L, e_R, \bar{e}_L, \bar{e}_R\}$ is represented by +\begin{align} + a = + \begin{pmatrix}a_1 & a_2 \end{pmatrix} \mapsto + \begin{pmatrix} + a_1 &0 &0 &0\\ + 0&a_1 &0 &0\\ + 0 &0 &a_2 &0\\ + 0 &0 &0 &a_2\\ + \end{pmatrix} +\end{align} +Do note that this action commutes wit the grading and that +$[a, b^\circ] = 0$ with $b:= J_F b^*J_F$ because both the left and the right +action is given by diagonal matrices. +\begin{proposition} + The data + \begin{align} + \left( \mathbb{C}^2, \mathbb{C}^2, D_F=0; J_F = + \begin{pmatrix} + 0 & C \\ C &0 + \end{pmatrix}, + \gamma _F = + \begin{pmatrix} + 1 & 0 \\ 0 &-1 + \end{pmatrix} + \right) + \end{align} + defines a real even spectral triple of KO-dimension 6. +\end{proposition} +This spectral triple can be represented in the following Krajewski diagram, +with two nodes of multiplicity two + \begin{figure}[h!] \centering + \begin{tikzpicture}[ + dot/.style = {draw, circle, inner sep=0.06cm}, + bigdot/.style = {draw, circle, inner sep=0.09cm}, + no/.style = {}, + ] + \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c) at (0.5, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d) at (1.5, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (1.5,0) [] {}; + \node[dot](d0) at (0.5,-1) [] {}; + \node[bigdot](d0) at (1.5,0) [] {}; + \node[bigdot](d0) at (0.5,-1) [] {}; + \end{tikzpicture} + \end{figure} +\subsubsection{A noncommutative Finite Dirac Operator} +Add a non-zero Dirac Operator to $F_{ED}$. From the Krajewski Diagram, we see +that edges only exist between the multiple vertices. So we construct a Dirac +operator mapping between the two vertices. +\begin{align}\label{dirac} + D_F = + \begin{pmatrix} + 0 & d & 0 & 0 \\ + \bar{d} & 0 & 0 & 0 \\ + 0 & 0 & 0 & \bar{d} \\ + 0 & 0 & d & 0 + \end{pmatrix} +\end{align} +We can now consider the finite space $F_{ED}$. +\begin{align} + F_{ED} := (\mathbb{C}^2, \mathbb{C}^4, D_F; J_F, \gamma_F) +\end{align} +where $J_F$ and $\gamma_F$ like before, $D_F$ like above. +\subsubsection{The almost-commutative Manifold} +The almost commutative manifold $M\times F_{ED}$ has KO-dim$=2$, it is the +following spectral triple +\begin{align} + M\times F_{ED} := \left(C^\infty(M,\mathbb{C}^2),\ L^2(S)\otimes + \mathbb{C}^4,\ + D_M\otimes 1 +\gamma _M \otimes D_F;\; J_M\otimes J_F,\ \gamma_M\otimes + \gamma _F\right) +\end{align} + +The algebra decomposition is like before +\begin{align} + C^\infty(M, \mathbb{C}^2) = C^\infty (M) \oplus C^\infty (M) +\end{align} + +The Hilbertspace decomposition is +\begin{align} + H = (L^2(S) \otimes H_e ) \oplus (L^2(S) \otimes H_{\bar{e}}). +\end{align} +Here we have the one component of the algebra acting on $L^2(S) \otimes H_e$, +and the other one acting on $L^2(S) \otimes H_{\bar{e}}$ +\newline + +The derivation of the gauge theory is the same for $F_{ED}$ as for $F_X$, we +have $\mathfrak{B}(F) \simeq U(1)$ and for $B_\mu = A_\mu - J_F A_\mu +J_F^{-1}$ +\begin{align} \label{field} + B_\mu = + \begin{pmatrix} + Y_\mu & 0 & 0 & 0 \\ + 0 & Y_\mu& 0 & 0 \\ + 0 & 0 & Y_\mu& 0 \\ + 0 & 0 & 0 & Y_\mu + \end{pmatrix} \;\;\;\;\;\ \text{for} \;\;\ Y_\mu (x) \in \mathbb{R}. +\end{align} +We have one single $U(1)$ gauge field $Y_\mu$, carrying the action of the +gauge group +\begin{align} + \text{$\mathfrak{B}$}(M\times F_{ED}) \simeq C^\infty(M, U(1)) +\end{align} + +Our space $N = M\times X \simeq M\sqcup M$ consists of two compies of $M$. +If $D_F = 0$ we have infinite distance between the two copies. Now we have $D_F$ +nonzero but $[D_F, a] = 0$ $\forall a \in A$ which still yields infinite +distance. +\begin{question} + What does this imply (physically, mathematically)? Why can we continue + even thought we have infinite distance between the same manifold? What do + we get if we fix this? +\end{question} +\subsubsection{The Spectral Action} +Here we calculate the Lagrangian of the almost commutative Manifold $M\times +F_{ED}$, which corresponds to the Lagrangian of Electrodynamics on a curved +background Manifold (+ gravitational Lagrangian). It consists of the spectral +action $S_b$ (bosonic) and of the fermionic action $S_f$. + +The simples spectral action of a spectral triple $(A, H, D)$ is given by the +trace of some function of $D$, we also allow inner fluctuations of the Dirac +operator $D_\omega = D + \omega + \varepsilon' J\omega J^{-1}$ where $\omega = +\omega ^* \in \Omega_D^1(A)$. +\begin{definition} + Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a suitable function + \textbf{positive and even}. The spectral action is then + \begin{align} + S_b [\omega] := \text{Tr}f(\frac{D_\omega}{\Lambda}) + \end{align} + where $\Lambda$ is a real cutoff parameter. The minimal condition on $f$ + is that $f(\frac{D_\omega}{\Lambda})$ is a traclass operator, which mean + that it should be compact operator with well defined finite trace + independent of the basis. The subscript $b$ of $S_b$ refers to bosonic, + because in physical applications $\omega$ will describe bosonic fields. + + Furthermore there is a topological spectral action, defined with the + grading $\gamma$ + \begin{align} + S_{\text{top}}[\omega] := \text{Tr}(\gamma\ + f(\frac{D_\omega}{\Lambda})). + \end{align} +\end{definition} +\begin{definition} + The fermionic action is defined by + \begin{align} + S_f[\omega, \psi] = (J\tilde{\psi}, D_\omega \tilde{\psi}) + \end{align} + with $\tilde{\psi} \in H_{cl}^+ := \{\tilde{\psi}: \psi \in H^+\}$. + $H_{cl}^+$ is the set of Grassmann variables in $H$ in the +1-eigenspace + of the grading $\gamma$. +\end{definition} +The grasmann variables are a set of Basis vectors of a vector space, they +form a unital algebra over a vector field say $V$ where the generators are anti commuting, that is for +$\theta _i, \theta _j$ some Grassmann variables we have +\begin{align} + &\theta _i \theta _j = -\theta _j \theta _i \\ + &\theta _i x = x\theta _j \;\;\;\; x\in V \\ + &(\theta_i)^2 = 0 \;\;\; (\theta _i \theta _i = -\theta _i \theta _i) +\end{align} +\begin{proposition} + The spectral action of the almost commutative manifold $M$ with $\dim(M) + =4$ with a fluctuated Dirac operator is. + \begin{align} + \text{Tr}(f\frac{D_\omega}{\Lambda}) \sim \int_M \mathcal{L}(g_{\mu\nu}, + B_\mu, \Phi) \sqrt{g}\ d^4x + O(\Lambda^{-1}) + \end{align} + with + \begin{align} + \mathcal{L}(g_{\mu\nu}, B_\mu, \Phi) = + N\mathcal{L}_M(g_{\mu\nu}) + \mathcal{L}_B(B_\mu)+ + \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi) + \end{align} + where $N=4$ and $\mathcal{L}_M$ is the Lagrangian of the spectral triple + $(C^\infty(M) , L^2(S), D_M)$ + \begin{align}\label{lagr} + \mathcal{L}_M(g_{\mu\nu}) := \frac{f_4 \Lambda ^4}{2\pi^2} - + \frac{f_2 \Lambda^2}{24\pi ^2}s - \frac{f(0)}{320\pi^2} C_{\mu\nu + \varrho \sigma}C^{\mu\nu \varrho \sigma}. + \end{align} + Here $C^{\mu\nu \varrho \sigma}$ is defined in terms of the Riemannian + curvature tensor $R_{\mu\nu \varrho \sigma}$ and the Ricci tensor + $R_{\nu\sigma} = g^{\mu\varrho} R_{\mu\nu \varrho\sigma}$. + + + Furthermore $\mathcal{L}_B$ describes the kinetic term of the gauge field + \begin{align} + \mathcal{L}_B(B_\mu) := \frac{f(0)}{24\pi^2} + \text{Tr}(F_{\mu\nu}F^{\mu\nu}). + \end{align} + Last $\mathcal{L}_\phi$ is the scalar-field Lagrangian with a boundary + term. + \begin{align} + \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi) := + &-\frac{2f_2\Lambda^2}{4\pi^2}\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2} + \text{Tr}(\Phi^4) + \frac{f(0)}{24\pi^2} \Delta(\text{Tr}(\Phi^2))\\ + &+ \frac{f(0)}{48\pi^2}s\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2}\text{Tr}((D_\mu \Phi)(D^\mu \Phi)). + \end{align} +\end{proposition} +\begin{proof} + the dimension of our manifold $m$ is $\dim(m) = \text{tr}(id) =4 $. let us + take a $x \in m$, we have an asymtotic expansion of + $\text{tr}(f(\frac{d_\omega}{\lambda}))$ as $\lambda \rightarrow \infty$ + \begin{align} + \text{tr}(f(\frac{d_\omega}{\lambda})) \simeq& \ 2f_4 \lambda ^4 + a_0(d_\omega ^2)+ 2f_2\lambda^2 a_2(d_\omega^2) \\&+ f(0) a_4(d_\omega^4) + +o(\lambda^{-1}). + \end{align} + note that the heat kernel coefficients are zero for uneven $k$, + furthermore they are dependent on the fluctuated dirac operator + $d_\omega$. we can rewrite the heat kernel coefficients in terms of $d_m$, + for the first two we note that $n:= \text{tr}\mathbbm{1_{h_f}})$ + \begin{align} + a_0(d_\omega^2) &= na_0(d_m^2)\\ + a_2(d_\omega^2 &= na_2(d_m^2) - \frac{1}{4\pi^2}\int_m + \text{tr}(\phi^2)\sqrt{g}d^4x + \end{align} + for $a_4$ we need to extend in terms of coefficients of $f$, look week9.pdf + for the standard version, + \begin{align} + &\frac{1}{360}\text{tr}(60sf)= -\frac{1}{6}s(ns + 4 + \text{tr}(\phi^2))\\ + \nonumber\\ + &f^2 = \frac{1}{16}s^2\otimes 1 + 1\otimes \phi^4 - \frac{1}{4} + \gamma^\mu\gamma^\nu \gamma^\varrho\gamma^\sigma f_{\mu\nu}f^{\mu\nu}+\\ + &\;\;\;\;\;\;\;+\gamma^\mu\gamma^\nu\otimes(d_\mu\phi)(d_\nu + \phi)+\frac{1}{2}s\otimes \phi^2 + \ \text{traceless terms}\\ + \nonumber\\ + &\frac{1}{360}\text{tr}(180f^2) = \frac{1}{8}s^2n + 2\text{tr}(\phi^4) + + \text{tr}(f_{\mu\nu}f^{\mu\nu}) +\\ + &\;\;\;\;\;\;\;+2\text{tr}((d_\mu\phi)(d^\mu\phi)) + + s\text{tr}(\phi^2)\\ + \nonumber\\ + &\frac{1}{360}\text{tr}(-60\delta f)= + \frac{1}{6}\delta(ns+4\text{tr}(\phi^2)). + \end{align} + now for the cross terms of $\omega_{\mu\nu}^e\omega^{e\mu\nu}$ the trace + vanishes because of the anti-symmetric properties of the riemannian + curvature tensor + \begin{align} + \omega_{\mu\nu}^e\omega^{e\mu\nu} = \omega_{\mu\nu}^s\omega^{s\mu\nu} + \otimes 1 - 1\otimes f_{\mu\nu}f^{\mu\nu} + 2i\omega_{\mu\nu}^s + \otimes f^{\mu\nu} + \end{align} + the trace of the cross term vanishes because + \begin{align} + \text{tr}(\omega^{s}_{\mu\nu} = \frac{1}{4} + r_{\mu\nu\varrho\sigma}\text{tr}(\gamma^\mu\gamma^\nu) = \frac{1}{4} + r_{\mu\nu\varrho\sigma}g^{\mu\nu} =0 + \end{align} + and the trace of the whole term is + \begin{align} + \frac{1}{360}\text{tr}(30\omega^e_{\mu\nu}\omega^{e\mu\nu}) = + \frac{n}{24}r_{\mu\nu\varrho\sigma}r^{\mu\nu\varrho\sigma} + -\frac{1}{3}\text{tr}(f_{\mu\nu}f^{\mu\nu}). + \end{align} + plugging the results into $a_4$ and simplifying we can write + \begin{align} + a_4(x, d_\omega^4) &= na_4(x, d_m^2) + \frac{1}{4\pi^2}\bigg(\frac{1}{12} s + \text{tr}(\phi^2) + \frac{1}{2}\text{tr}(\phi^4) \\ + &+ \frac{1}{4} + \text{tr}((d_\mu\phi)(d^\mu \phi)) + \frac{1}{6} + \delta\text{tr}(\phi^2) + \frac{1}{6} + \text{tr}(f_{\mu\nu}f^{\mu\nu})\bigg) + \end{align} + the only thing left is to plug in the heat kernel coefficients into the + heat kernel expansion above. +\end{proof} + +Here on we go and calculate the spectral action of $M\times F_{ED}$ +\begin{proposition} + The Spectral action of $M\times F_{ED}$ is + \begin{align} + \text{Tr}(f\frac{D_\omega}{\Lambda}) \sim \int_M \mathcal{L}(g_{\mu\nu}, + Y_\mu) \sqrt{g}\ d^4x + O(\Lambda^{-1}) + \end{align} + where the Lagrangian is + \begin{align} + \mathcal{L}(g_{\mu\nu}, Y_\mu) = + 4\mathcal{L}_M(g_{\mu\nu})+ + \mathcal{L}_Y(Y_\mu)+ + \mathcal{L}_\phi(g_{\mu\nu}, d) + \end{align} + here the $d$ in $\mathcal{L}_\phi$ is from $D_F$ in equation + \ref{dirac}. The Lagrangian $\mathcal{L}_M$ is like in equation + \ref{lagr}. The Lagrangian $\mathcal{L}_Y$ is the kinetic term of the + $U(1)$ gauge field $Y_\mu$ + \begin{align} + \mathcal{L}_Y(Y_\mu):= \frac{f(0)}{6\pi^2} + Y_{\mu\nu}Y^{\mu\nu}\;\;\;\;\;\;\;\;\text{with}\;\;\; Y_{\mu\nu} = + \partial_\mu Y_\nu - + \partial_\nu Y_\mu. + \end{align} + Then there is $\mathcal{L}_\phi$, which has two constant terms + (disregarding the boundary term) that add up to the Cosmological Constant + and a term that for the Einstein-Hilbert action + \begin{align} + \mathcal{L}_\phi(g_{\mu\nu}, d) := \frac{2f_2 \Lambda ^2}{\pi^2} + |d|^2 + \frac{f(0)}{2\pi^2} |d|^4 + \frac{f(0)}{12\pi ^2} s |d|^2. + \end{align} +\end{proposition} +\begin{proof} + The Trace of $\mathbb{C}^4$ (the Hilbertspace) gives $N=4$. With $B_\mu$ + like in equation \ref{field} we have $\text{Tr}(F_{\mu\nu} + F^{\mu\nu})=4Y_{\mu\nu}Y^{\mu\nu}$. This provides $\mathcal{L}_Y$. + Furthermore we have $\Phi^2 = D_F^2 = |d|^2$ and $\mathcal{L}_\phi$ only + give numerical contributions to the cosmological constant and the + Einstein-Hilbert action. + + The proof is relying itself on just plugging the terms into the previous + proposition, for which I didn't write the proof for. +\end{proof} + + +\subsection{fermionic action} +a quick reminder with what we are dealing with, the fermionic action is defined +in the following way. +\begin{definition} + the fermionic action is defined by + \begin{align} + s_f[\omega, \psi] = (j\tilde{\psi}, d_\omega \tilde{\psi}) + \end{align} + with $\tilde{\psi} \in h_{cl}^+ := \{\tilde{\psi}: \psi \in h^+\}$. + $h_{cl}^+$ is the set of grassmann variables in $h$ in the +1-eigenspace + of the grading $\gamma$. +\end{definition} + +the almostcommutative manifold we are dealing with is the following +\begin{align} + &m\times f_{ed} := \left(c^\infty(m,\mathbb{c}^2),\ l^2(s)\otimes + \mathbb{c}^4,\ + d_m\otimes 1 +\gamma _m \otimes d_f;\; j_m\otimes j_f,\ \gamma_m\otimes + \gamma _f\right).\\ + \nonumber\\ + &\text{where:} \nonumber \\ + &c^\infty(m,\mathbb{c}^2) = c^\infty(m) \otimes c^\infty(m) + &\mathcal{h} = \mathcal{h}^+ \otimes \mathcal{h}^-\\ + &\mathcal{h} = l^2(s)^+ \otimes h_f^+ \oplus l^2(s)^- \otimes h_f^-. +\end{align} +where $h_f$ is separated into the particle-anitparticle states with onb $\{e_r, +e_l, \bar{e}_r, \bar{e}_l\}$. the onb of $h_f^+$ is $\{e_l, \bar{e}_r\}$ and +for $h_f^-$ we have $\{e_r, \bar{e}_l\}$. furthermore we can decompose a spinor +$\psi \in l^2(s)$ for each of the eigenspaces $h_f^\pm$, $\psi = \psi_r +\psi_l$. thus we can write for an arbitrary $\psi \in \mathcal{h}^+$ +\begin{align} + \psi = \chi_r \otimes e_r + \chi_l \otimes e_l + \psi_l \otimes \bar{e}_r + \psi_r \otimes \bar{e}_l +\end{align} +for $\chi_l, \psi_l \in l^2(s)^+$ and $\chi_r, \psi_r \in l^2(s)^-$. +\begin{proposition} + we can define the action of the fermionic art of $m\times f_{ed}$ in the + following way + \begin{align} + s_f = -i\big(j_m\tilde{\chi}, \gamma(\nabla^s_\mu - i\gamma_\mu) + \tilde{\psi}\big) + \big(s_m\tilde{\chi}_l, \bar{d}\tilde{\psi}_l\big) - + \big(j_m\tilde{\chi}_r, d \tilde{\psi}_r\big) + \end{align} +\end{proposition} +\begin{proof} + we take the fluctuated dirac operator + \begin{align} + d_\omega = d_m \otimes i + \gamma^\mu \otimes b_\mu + \gamma_m \otimes + d_f + \end{align} +\end{proof} +the fermionic action is $s_f = (j\tilde{\xi}, d_\omega\tilde{\xi})$ for a $\xi +\in \mathcal{h}^+$, we can begin to calculate (note that we add the constant +$\frac{1}{2}$ to the action) +\begin{align} + \frac{1}{2}(j\tilde{\xi}, d_\omega\tilde{\xi}) =&\\ + &+\frac{1}{2}(j\tilde{\xi}, (d_m \otimes i)\tilde{\xi})\label{eq:1}\\ + &+\frac{1}{2}(j\tilde{\xi}, (\gamma^\mu \otimes b_\mu) + \tilde{\xi})\label{eq:2}\\ + &+\frac{1}{2}(j\tilde{\xi}, (\gamma_m\otimes + d_f)\tilde{\xi})\label{eq:3}. +\end{align} +for equation \ref{eq:1} we calculate +\begin{align} + \frac{1}{2}(j\tilde{\xi}, (d_m\otimes 1)\tilde{\xi}) &= + \frac{1}{2}(j_m\tilde{\chi}_r,d_m\tilde{\psi}_l)+ + \frac{1}{2}(j_m\tilde{\chi}_l,d_m\tilde{\psi}_r)+ + \\&+\frac{1}{2}(j_m\tilde{\psi}_l,d_m\tilde{\psi}_r)+ + \frac{1}{2}(j_m\tilde{\chi}_r,d_m\tilde{\chi}_l)\\ + &= (j_m\tilde{\chi},d_m\tilde{\chi}). +\end{align} +for equation \ref{eq:2} we have +\begin{align} + \frac{1}{2}(j\tilde{\xi}, (\gamma^\mu \otimes b_\mu)\tilde{\xi})&= + -\frac{1}{2}(j_m\tilde{\chi}_r, \gamma^\mu y_\mu\tilde{\psi}_r) + -\frac{1}{2}(j_m\tilde{\chi}_l, \gamma^\mu y_\mu\tilde{\psi}_r)+\\ + &+\frac{1}{2}(j_m\tilde{\psi}_l, \gamma^\mu y_\mu\tilde{\chi}_r)+ + \frac{1}{2}(j_m\tilde{\psi}_r, \gamma^\mu y_\mu\tilde{\chi}_l)=\\ + &= -(j_m\tilde{\chi}, \gamma^\mu y_\mu\tilde{\psi}). +\end{align} +for equation \ref{eq:3} we have +\begin{align} + \frac{1}{2}(j\tilde{\xi}, (\gamma_m\otimes d_f)\tilde{\xi})&= + +\frac{1}{2}(j_m\tilde{\chi}_r, d\gamma_m\tilde{\chi}_r) + +\frac{1}{2}(j_m\tilde{\chi}_l, \bar{d}\gamma_m\tilde{\chi}_l)+\\ + &+\frac{1}{2}(j_m\tilde{\chi}_l, \bar{d}\gamma_m\tilde{\chi}_l) + +\frac{1}{2}(j_m\tilde{\chi}_r, d\gamma_m\tilde{\chi}_r)=\\ + &= i(j_m\tilde{\chi}, m\tilde{\psi}) +\end{align} +note that we obtain a complex mass parameter $d$, so we write $d:=im$ for $m\in \mathbb{r}$, +which stands for the real mass and we obtain a nice result + +\begin{theorem} + the full lagrangian of $m\times f_{ed}$ is the sum of purely gravitational + lagrangian + \begin{align} + \mathcal{l}_{grav}(g_{\mu\nu})=4\mathcal{l}_m(g_{\mu\nu}) + \mathcal{l}_\phi (g_{\mu\nu}) + \end{align} + and the lagrangian of electrodynamics + \begin{align} + \mathcal{l}_{ed} = -i\bigg\langle + j_m\tilde{\chi},\big(\gamma^\mu(\nabla^s_\mu - iy_\mu) -m\big)\tilde{\psi}) + \bigg\rangle + +\frac{f(0)}{6\pi^2} y_{\mu\nu}y^{\mu\nu}. + \end{align} + +\end{theorem} diff --git a/src/thesis/front/acknowledgment.tex b/src/thesis/chapters/acknowledgment.tex diff --git a/src/thesis/chapters/basics.tex b/src/thesis/chapters/basics.tex @@ -0,0 +1,325 @@ + +\subsection{Noncommutative Geometric Spaces} +\subsubsection{Matrix Algebras and Finite Spaces} +\subsubsection{$*$-Algebra} +\begin{definition} + A \textit{vector space} $A$ over $\mathbb{C}$ is called a \textit{complex, unital Algebra} if, \\ + $\forall a,b \in A$ : + \begin{enumerate} + \item + $A \times A \rightarrow A$ \hspace{0.1\textwidth} \textit{bilinear} \\ + $(a, b)\ \mapsto \ a\cdot b$ + \item + $1a = a1 =a$ \hspace{0.08\textwidth} \textit{unital} \\ + \end{enumerate} +\end{definition} + +\begin{definition} + A $*$-algebra is an algebra $A$ with a \textit{conjugate linear map (involution)} $*:A\ \rightarrow A$, + $\forall a, b \in A$ satisfying: + \begin{enumerate} + \item + $(ab)^* = b^*a^*$ \hspace{0.05\textwidth} \textit{antidistributive} + \item + $(a^*)^* = a$ \hspace{0.1\textwidth} \textit{closure} + \end{enumerate} +\end{definition} +In the following all unital algebras are referred to as algebras. + +\subsubsection{Functions on Discrete Spaces} +Let $X$ be a \textit{discretized topological} space with $N$ points. +Consider functions of a continuous $*$-algebra $C(X)$ assigning values to $\mathbb{C}$, for $f, g \in C(X)$, +$\lambda \in \mathbb{C}$ and $x \in X$ they provide the following structures: + +\begin{itemize} + \item \textit{pointwise linear} \\ + $(f + g)(x) = f(x) + g(x)$\\ + $(\lambda f)(x) = \lambda (f(x))$ + \item \textit{pointwise multiplication} \\ + $fg(x) = f(x)g(x)$ \hspace{0.1\textwidth} same as $(fg)(x) = f(x)g(x))$? + \item \textit{pointwise involution} \\ + $f^*(x) = \overline{f(x)}$ +\end{itemize} + +\begin{question} + Mathematical difference between Topological Discreet Spaces and just Discreet Spaces? +\end{question} + +The author indicates that $\mathbb{C}$-valued functions on $X$ are automatically continuous. +\begin{idea} + CAN WE USE THE METRIC? NO! + We know that $X$ is a \textit{finite discrete space}, meaning in an $\epsilon$-$\delta$ approach + for each $x \in X$ the only $y \in X$, that is small enough is $x$ by itself, which implies + $\epsilon$ is always bigger than zero, thus every function $f:X\ \rightarrow\ \mathbb{C}$ is continuous. +\end{idea} + +\subsubsection{Isomorphism Property} +Furthermore $C(X)$ $*$-algebra is \textit{isomorphic} to a $*$-algebra $\mathbb{C}^N$ with involution +($N$ number of points in $X$), written as $C(X) \simeq \mathbb{C}^N$. +A function $f:X\ \rightarrow\ \mathbb{C}$ can be represented with $N \times N$ diagonal matrices, +where the value $(ii)$ is the value of the function at the corresponding +$i$-th point ($i = 1,...,N$). The structure is preserved because of the definitions of +matrix multiplication and the hermitian conjugate of matrices. + +\begin{question} + Can isomorphisms between $C(X)$ and $\mathbb{C}^N$ be shown with matrix factorization? +\end{question} + Isomorphisms are bijective preserve structure and don't lose physical information/ + +\subsubsection{Mapping Finite Discrete Spaces} + +\begin{definition} + A \textit{map} between finite discrete spaces $X_1$ and $X_2$ is a function $\phi:\ X_1 \rightarrow\ X_2$ +\end{definition} + +For every map between finite discrete spaces there exists a corresponding map \\ +$\phi ^*:C(X_2)\ \rightarrow C(X_1)$, which `pulls back' values even if $\phi$ is not bijective. +Note that the pullback doesn't map points back, but maps functions on an $*$-algebra $C(X)$. + + +This map is called a pullback (or a $*$-homomorphism or a $*$-algebra map under pointwise product). +Under the pointwise product: +\begin{itemize} + \item $\phi ^*(fg) = \phi ^*(f) \phi ^*(g)$ + \item $\phi ^*(\overline{f}) = \overline{\phi ^*(f)}$ + \item $\phi ^*(\lambda f + g) = \lambda \phi ^*(f) + \phi ^*(g)$ +\end{itemize} + +\begin{question} + $\phi$ is in most cases not bijective, so how can we prove that there exists such a + pullback for every map between discrete spaces which preserves information? For bijective + it is given by its inverse, which by definition exists because $\phi$ is a map. + Or I didn't understand this correctly? +\end{question} + +\begin{MyExercise} + \textbf{ + Show that $\phi :X_1\ \rightarrow \ X_2$ is injective (surjective) map of finite spaces iff + $\phi ^* :C(X_2)\ \rightarrow \ C(X_1)$ is surjective (injective). +}\newline + + Consider $X_1$ with $n$ points and $X_2$ with $m$ points. Then there are three cases: + \begin{enumerate} + \item $n=m$ \\ + Obviously $\phi$ is bijective and $\phi ^*$ too. + \item $n \rangle m$ \\ + $\phi$ assigns $n$ points to $m$ points when $n \rangle m$, + which is by definition surjective. \\ + $\phi ^*$ assigns $m$ points to $n$ points when $n \rangle m$, + which is by definition injective. \\ + \item $n \langle m $ \\ + analogous + \end{enumerate} +\end{MyExercise} + +\subsubsection{Matrix Algebras} +\begin{definition} + A \textit{(complex) matrix algebra} A is a direct sum, for $n_i, N \in \mathbb{N}$. + \begin{align} + A = \bigoplus _{i=1}^{N} M_{n_i}(\mathbb{C}) + \end{align} + The involution is the hermitian conjugate, a $*$ algebra with involution is referred to as + a matrix algebra +\end{definition} + +So from a topological discrete space $X$, we can construct a $*$-algebra $C(X)$ which is isomorphic +to a matrix algebra $A$. The question is can we construct $X$ given $A$? $A$ is a matrix algebra, +which are in most cases is not commutative, so the answer is generally no. + +There are two options. We can restrict ourselves to commutative matrix algebras, +which are the vast minority and not physically interesting. +Or we can allow more morphisms(isomorphisms) between matrix algebras. + +\begin{question} + Why are non-commutative algebras not physically interesting? + Maybe too far fetched,but because physical observables (QM-Operators) are not commutative? +\end{question} +Exactly. + +\subsubsection{Finite Inner Product Spaces and Representations} +Until now we looked at a finite topological discrete space, moreover we can consider a +finite dimensional inner product space $H$ (finite Hilbert-spaces), with inner product +$(\cdot,\cdot)\rightarrow \mathbb{C}$. $L(H)$ is the $*$-algebra of operators on $H$ +with product given by composition and involution given by the adjoint, $T \mapsto T^*$. +$L(H)$ is a \textit{normed vector space} with +\begin{align} + &\|T\|^2 = \text{sup}_{h \in H}\{(Th,Th): (h,h) \leq 1\} \hspace{0.1\textwidth} T \in L(H) \\ + &\|T\| = \text{sup}\{\sqrt{\lambda}: \lambda \text{ eigenvalue of } T\} +\end{align} + + +\begin{definition} + The \textit{representation} of a finite dimensional $*$-algebra A is a pair $(H, \pi)$. + $H$ is a finite, dimensional inner product space and $\pi$ is a $*$-\textit{algebra map} + \begin{align} + \pi:A\ \rightarrow \ L(H) + \end{align} +\end{definition} +\begin{definition} + $(H, \pi)$ is called \textit{irreducible} if: + \begin{itemize} + \item $H \neq \emptyset$ + \item only $\emptyset$ or $H$ is invariant under the action of $A$ on $H$ + \end{itemize} +\end{definition} + +Examples for reducible and irreducible representations +\begin{itemize} + \item $A = M_n(\mathbb{C})$, representation $H=\mathbb{C}^n$, $A$ acts as matrix multiplication\\ + $H$ is irreducible. + \item $A = M_n(\mathbb{C})$, representation $H=\mathbb{C}^n\oplus \mathbb{C}^n$, with $a \in A$ acting + in block form \\ $\pi: a \mapsto \big(\begin{smallmatrix} a & 0\\ 0 & a \end{smallmatrix}\big)$ is + reducible. +\end{itemize} + +\begin{definition} + Let $(H_1, \pi _1)$ and $(H_2, \pi _2)$ be representations of a $*$-algebra $A$. They are called + \textit{unitary equivalent} if there exists a map $U: H_1 \rightarrow H_2$ such that. + \begin{align} + \pi _1(a) = U^* \pi _2(a) U + \end{align} +\end{definition} + +\begin{question} + In matrix representation this is diagonalization condition? (unitary diagonalization) +\end{question} +Yes + +\begin{definition} + $A$ a $*$-algebra then, $\hat{A}$ is called the structure space of all \textit{unitary equivalence classes + of irreducible representations of A} +\end{definition} + +\begin{question} + Gelfand duality and the spectrum of $\hat{A}$, examples Fourier-Transform and Laplace-Transform + for simple spaces. +\end{question} +More on that in later chapters. + +\begin{MyExercise} + \textbf{ + Given $(H, \pi)$ of a $*$-algebra $A$, the \textbf{commutant} $\pi (A)'$ of $\pi (A)$ is defined as a set + of operators in $L(H)$ that commute with all $\pi (a)$ + \begin{align} + \pi (A)' = \{T \in L(H):\pi (a)T = T\pi (a) \;\;\; \forall a\in A\} + \end{align} + \begin{enumerate} + \item Show that $\pi (A)'$ is a $*$-algebra. + \item Show that a representation $(H, \pi)$ of $A$ is irreducible iff the commutant $\pi (A)'$ + consists of multiples of the identity + \end{enumerate} +} + + 1. To show that $\pi (A)'$ is a $*$-algebra we have to show that it is unital, associative and involute. + And note that $\pi (a) \in L(H)\ \forall a \in A$. + Unitarity is given by the unital operator of the $*$-algebra of operators $L(H)$, which exists by definition + because H is a inner product space. Associativity is given by $*$-algebra of $L(H)$, $L(H) \times L(H) \mapsto L(H)$, + which is associative by definition. Involutnes is also given by the $*$-algebra $L(H)$ + with a map $*: L(H) \mapsto L(H)$ only for $T$ that commute with $\pi (a)$. + \\ + 2.? +\end{MyExercise} + +\begin{MyExercise} + \textbf{ + \begin{enumerate} + \item If $A$ is a unital $*$-algebra, show that the $n \times n$ matrices $M_n(A)$ with entries + in $A$ form a unital $*$-algebra. + \item Let $\pi :A\ \rightarrow \ L(H)$ be a representation of a $*$-algebra $A$ and set + $H^n = H \oplus ... \oplus H$, $n$ times. Show that $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ + of $M_n(A)$ with\\ + $\tilde{\pi}((a_{ij})) = (\tilde{\pi}(a_{ij})) \in M_n(A)$. + \item Let $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ be a $*$ algebra representation of $M_n(A)$. + Show that $\pi: A \rightarrow L(H^n)$ is a representation of $A$. + \end{enumerate} +} + 1. We know $A$ is a $*$ algebra. Unitary operaton in $M_n(A)$ is given by the identity Matrix, which + has to exists because every entry in $M_n(A)$ has to behave like in $A$. Associativity is given by + matrix multiplication. Involutnes is given by the conjugate transpose.\\ + 2. $A \simeq M_n(A)$ and $H \simeq H^n$ meaning $\tilde{\pi}$ is a valid reducible representation.\\ + 3. $\tilde{\pi}$ and $\pi$ are unitary equivalent, there is a map $U: H^n \rightarrow H^n$ given by + $U=\mathbbm{1}_n$:\\ + $\pi (a) = \mathbbm{1}_n^*\ \tilde{\pi}((a_{ij}))\ \mathbbm{1}_n = \tilde{\pi}((a_{ij})) = \pi (a_{ij}) + \Rightarrow a_{ij} = a\mathbbm{1}_n$. +\end{MyExercise} + +\subsubsection{Commutative Matrix Algebras} +\begin{itemize} + \item Commutative matrix algebras can be used to reconstruct a discrete space given + a matrix \textit{commutative} matrix algebra. + \item The structure space $\hat{A}$ is used for this. Because $A \simeq \mathbb{C}^N$ we all any + irreducible representation are of the form + $\pi _i:(\lambda_1,...,\lambda_N)\in \mathbb{C}^N \mapsto \lambda_i \in \mathbb{C}$ \\ + for $i = 1,...,N \Rightarrow \hat{A} \simeq \{1,...,N\}.$ + \item Conclusion is that there is a duality between discrete spaces and commutative matrix algebra + this duality is called the \textit{finite dimensional Gelfand duality} +\end{itemize} + +\subsubsection{Noncommutative Matrix Algebras} +Aim is to construct duality between finite dimensional spaces and \textit{equivalence classes} +of matrix algebras, to preserve general non-commutivity of matrices. +\begin{itemize} + \item Equivalence classes are described by a generalized notion of ispomorphisms between matrix + algebras (\textit{Morita Equivalence}) +\end{itemize} + +\subsubsection{Algebraic Modules} +\begin{definition} + Let $A$, $B$ be algebras (need not be matrix algebras) + \begin{enumerate} + \item \textit{left} A-module is a vector space $E$, that carries a left representation of $A$, + that is $\exists$ a bilinear map $\gamma: A \times E \rightarrow E$ with + \begin{align} + (a_1a_2)\cdot e = a_1 \cdot (a_2 \cdot e);\;\;\; a_1, a_2 \in A, e \in E + \end{align} + \item \textit{right} B-module is a vector space $F$, that carries a right representation of $A$, + that is $\exists$ a bilinear map $\gamma: F \times B \rightarrow F$ with + \begin{align} + f \cdot (b_1b_2)= (f \cdot b_1) \cdot b_2;\;\;\; b_1, b_2 \in B, f \in F + \end{align} + \item \textit{left} A-module and \textit{right} B-module is a \textit{bimodule}, a vector space $E$ + satisfying + \begin{align} + a \cdot (e \cdot b)= (a \cdot e) \cdot b;\;\;\; a \in A, b \in B, e \in E + \end{align} + \end{enumerate} +\end{definition} +Notion of A-\textbf{module homomorphism} as linear map $\phi: E\rightarrow F$ which respects the +representation of A, e.g. for left module. +\begin{align} + \phi (ae) = a \phi (e); \;\;\; a \in A, e \in E. +\end{align} +Remark on the notation +\begin{itemize} + \item ${}_A E$ left $A$-module $E$; + \item ${}_A E_B$ right $B$-module $F$; + \item ${}_A E_B$ $A$-$B$-bimodule $E$; +\end{itemize} + +\begin{MyExercise} + \textbf{ + Check that a representation of $\pi : A \rightarrow L(H)$ of a $*$-algebra A turns H into a + left module ${}_A H$. +}\newline + + Not quite sure but \\ + $a \in A$, $h_1, h_2 \in H$, we know $\pi (a) = T \in L(H)$ than + \begin{align} + \langle \pi (a) h_1, \pi (a) h_2\rangle = \langle T h_1, T h_2\rangle = \langle T^*T h_1, h_2\rangle = \langle h_1, h_2\rangle + \end{align} + Or maybe this \\ + If $_A H$ than $(a_1a_2) h = a_1 (a_2 h)$ for $a_1, a_2 \in A$ and $h \in H$.\\ + Then we take the representation of an $a \in A$, $\pi (a)$: + \begin{align} + (\pi(a_1)\pi(a_2))h = \pi(a_1)(\pi(a_2) h) = (T_1T_2) h = T_1 (T_2 h) + \end{align} + For $T_1, T_2 \in L(H)$, which operate naturally from the left on $h$. +\end{MyExercise} + +\begin{MyExercise} + \textbf{ + Show that $A$ is a bimodule ${}_A A_A$ with itself. +}\newline + + $\gamma: A\times A\times A \rightarrow A$ which is given by the inner product of the $*$-algebra. +\end{MyExercise} diff --git a/src/thesis/front/conclusion.tex b/src/thesis/chapters/conclusion.tex diff --git a/src/thesis/chapters/diffgeo.tex b/src/thesis/chapters/diffgeo.tex @@ -0,0 +1,49 @@ +\subsection{Excurse} +\textbf{Manifold:} A topological space that is locally Euclidean. +\newline +\textbf{Riemannian Manifold:}A Manifold equipped with a Riemannian +Metric, a +symmetric bilinear form on Vector Fields $\Gamma(TM)$ +\begin{align} + &g: \Gamma(TM) \times \Gamma(TM) \rightarrow C(M) \\ + \text{with}& \nonumber\\ + &g(X, Y) \in \mathbb{R} \;\;\; \text{if $X, Y \in \mathbb{R}$}\\ + &\text{$g$ is $C(M)$-bilinear } \forall f\in C(M):\;\; g(fX, Y) = + g(X, + fY) = fg(X,Y)\\ + &g(X,X) \begin{cases}\geq 0 \;\;\; \forall X \\ = 0 \;\;\; \forall X + =0 + \end{cases} +\end{align} +$g$ on $M$ gives rise to a distance function on $M$ +\begin{align} + d_g(x, y) = \inf_\gamma \left\{\int_0^1(\dot{\gamma}(t), + \dot{\gamma}(t))dt;\;\; \gamma(0) = x, \gamma(1) = y \right\} +\end{align} +Riemannian Manifold is called spin$^c$ if there exists a vector bundle $S +\rightarrow M$ with an algebra bundle isomorphism +\begin{align} + \mathbb{C}\text{I}(TM) &\simeq \text{End}(S)\;\;\; &\text{($dim(M)$ + even)}\\ + \mathbb{C}\text{I}(TM)^\circ &\simeq \text{End}(S)\;\;\; + &\text{($dim(M)$ odd)}\\ +\end{align} +$(M,S)$ is called the \textbf{spin$^c$ structure on $M$}. +\newline +$S$ is called the \textbf{spinor Bundle}. +\newline +$\Gamma(S)$ are the \textbf{spinors}. + +Riemannian spin$^c$ Manifold is called spin if there exists an +anti-unitary +operator $J_M:\Gamma(S) \rightarrow \Gamma(S)$ such that: +\begin{enumerate} + \item $J_M$ commutes with the action of real-valued continuous + functions + on $\Gamma(S)$. + \item $J_M$ commutes with $\text{Cliff}^-(M)$ (even case)\\ + $J_M$ commutes with $\text{Cliff}^-(M)^\circ$ (odd case) +\end{enumerate} +$(S, J_M)$ is called the \textbf{spin Structure on $M$} +\newline +$J_M$ is called the \textbf{charge conjugation}. diff --git a/src/thesis/chapters/electroncg.tex b/src/thesis/chapters/electroncg.tex @@ -0,0 +1,755 @@ +\subsection{Noncommutative Geometry of Electrodynamics} +\subsubsection{The Two-Point Space} +One of the basics forms of a noncommutative space is the the two point space $X +:= \{x, y\}$, it can be represented by the following spectral triple +\begin{align} + F_x := (C(X) = \mathbb{C}^2, H_F, D_F; J_F, \gamma _f). +\end{align} +There are three properties of $F_x$ that stand out, first of all the action of +$C(X)$ on $H_F$ is faithful for $dim(H_F) \geq 2$. Thus we can make a simple +choice for the Hilbertspace, $H_F = \mathbb{C}^2$. Furthermore $\gamma_F$ is +the $\mathbb{Z}_2$ grading, which allows us to decompose $H_F$ into +\begin{align} + H_F = H_F^+ \otimes H_F^- = \mathbb{C} \otimes \mathbb{C}, +\end{align} +where +\begin{align} + H_F^\pm = \{\psi \in H_F |\; \gamma_F\psi = \pm \psi\}, +\end{align} +are two eigenspaces. And lastly the Dirac operator $D_F$ lets us +interchange between $H_F^\pm$, +\begin{align} + D_F = + \begin{pmatrix}0 & t \\ \bar{t} & 0\end{pmatrix}, \;\;\;\;\; + \text{with} \;\; t\in\mathbb{C}. +\end{align} + + The Two-Point space $F_x$ can only have a real structure if the Dirac + operator vanishes, i.e. $D_F = 0$, in that case we have KO-dimension of 0, + 2 or 6. + + To elaborate on this, we know that there are two diagram representations of + $F_x$ at $\underbrace{\mathbb{C} \oplus \mathbb{C}}_{C(X)}$ on + $\underbrace{\mathbb{C} \oplus\mathbb{C}}_{H_F}$, which are: + \begin{figure}[h!] \centering + \begin{tikzpicture}[ + dot/.style = {draw, circle, inner sep=0.06cm}, + no/.style = {}, + ] + \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d) at (2, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (2,0) [] {}; + \node[dot](d0) at (1,-1) [] {}; + + \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b2) at (6, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d2) at (8, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (7,0) [] {}; + \node[dot](d0) at (8,-1) [] {}; + \end{tikzpicture} + \end{figure}\newline +If the Two-Point space $F_x$ would be a real spectral triple then $D_F$ can +only go vertically or horizontally. This would mean that $D_F$ vanishes. + +The diagram on the left has KO-dimension 2 and 6, the diagram on the +right has KO-dimension 0 and 4. Yet KO-dimension 4 is not ruled out because +$dim(H_F^\pm) = 1$ (see Lemma 3.8 Book), which ultimately means $J_F^2 = -1$ is +not allowed. +\subsubsection{The product Space} +By Extending the Two-Point space with a four dimensional Riemannian spin +manifold, we get an almost commutative manifold $M\times F_x$, given by +\begin{align} + M\times F_x = (C^\infty(M), \mathbb{C}^2), L^2(S)\otimes \mathbb{C}^2, + D_M\otimes 1 ; J_M\otimes J_F, \gamma_M \otimes \gamma_F), +\end{align} +where +\begin{align} + C^\infty(M, \mathbb{C}^2) \simeq C^\infty(M) \oplus C^\infty(M). +\end{align} +According to Gelfand duality the algebra $C^\infty(M, \mathbb{C}^2)$ of the +spectral triple corresponds to the space +\begin{align} + N:= M\otimes X \simeq M\sqcup X +\end{align} +Keep in mind that we still need to find an appropriate real structure on the +Riemannian spin manifold, $J_M$. +\newline +The total Hilbertspace can be decomposed into $H = L^2(S) \oplus L^2(S)$, such +that for +\newline +$\underbrace{a,b\in C^\infty(M)}_{(a, b) \in C^\infty(N)}$ +and $\underbrace{\psi, \phi \in L^2(S)}_{(\psi, \phi) \in H}$ we have +\begin{align} + (a, b)(\psi, \phi) = (a\psi, b\phi) +\end{align} +Along with the decomposition of the total Hilbertspace we can consider a +distance formula on $M\times F_x$ with +\begin{align}\label{eq:commutator inequality} + d_{D_F}(x,y) = \sup\left\{ |a(x) - a(y)|:a\in A_F, ||[D_F, a]|| \leq + 1 \right\}. +\end{align} +To calculate the distance between two points on the Two-Point space $X= \{x, +y\}$, between $x$ and $y$, we consider an $a \in \mathbb{C}^2 = C(X)$, which is +specified by two complex numbers $a(x)$ and $a(y)$. Then we simplify the +commutator inequality in \ref{eq:commutator inequality} +\begin{align} + &||[D_F , a]|| = ||(a(y) - a(x))\begin{pmatrix}0 &t\\\bar{t} &0 + \end{pmatrix}|| \leq 1,\\ + &\Rightarrow |a(y) - a(x)|\leq \frac{1}{|t|}, +\end{align} +and the supremum gives us the distance +\begin{align} + d_{D_F} (x,y) = \frac{1}{|t|}. +\end{align} +An interesting observation here is that, if the Riemannian spin manifold can be +represented by a real spectral triple then a real structure $J_M$ exists, +then it follows that $t=0$ and the distance becomes infinite. This is a purely +mathematical observation and has no physical meaning. + +Now let $p \in M$, then take two points on $N=M\times X$, $(p, x)$ and +$(p,y)$ and $a \in C^\infty(N)$ is determined by $a_x(p):=a(p, x)$ and +$a_y(p):=a(p, y)$. The distance between these two points is then +\begin{align} + d_{D_F\otimes 1}(n_1, n_2) = \sup \left\{ |a(n_1) - a(n_2)|: a\in + A, ||[D\otimes 1, a]||\right\} +\end{align} +\textbf{Remark}: If $n_1 = (p,x)$ and $n_2 = (q, x)$ for $p,q \in M$ then +\begin{align} + d_{D_M \otimes 1} (n_1, n_2) = |a_x(p) - a_x(q)| \;\;\; a_x\in + C^\infty(M) \;\; \text{with} \;\; ||[D\otimes 1, a_x]|| \leq 1 +\end{align} +The distance turns to the geodestic distance formula +\begin{align} + d_{D_M\otimes1}(n_1, n_2) = d_g(p, q) +\end{align} + +However if $n_1 = (p, x)$ and $n_2 = (q, y)$ then the two conditions are +$||[D_M, a_x]|| \leq 1$ and $||[D_M, a_y|| \leq 1$. They have no +restriction which results in the distance being infinite! And $N = +M\times X$ is given by two disjoint copies of M which are separated by +infinite distance + +\textbf{Note}: distance is only finite if $[D_F, a] \neq 1$. The +commutator +generates a scalar field say $\phi$ and the finiteness of the distance is +related to the existence of scalar fields. +\subsubsection{$U(1)$ Gauge Group} +Here we determine the Gauge theory corresponding to the almost +commutative +Manifold $M\times F_x$. + +\textbf{Gauge Group of a Spectral Triple}: +\begin{align} + \mathfrak{B}(A, H; J) := \{ U = uJuJ^{-1} | u\in U(A)\} +\end{align} +\begin{definition} + A *-automorphism of a *-algebra $A$ is a linear invertible + map + \begin{align} + &\alpha:A \rightarrow A\;\;\; \text{with}\\ + \nonumber\\ + &\alpha(ab) = \alpha(a)\alpha(b)\\ + &\alpha(a)^* = \alpha(a^*) + \end{align} + The \textbf{Group of automorphisms of the *-Algebra $A$} is + $(A)$.\newline + The automorphism $\alpha$ is called \textbf{inner} if + \begin{align} + \alpha(a) = u a u^* \;\;\; \text{for} \;\; U(A) + \end{align} + where $U(A)$ is + \begin{align} + U(A) = \{ u\in A|\;\; uu^* = u^*u=1\} \;\;\; + \text{(unitary)} + \end{align} +\end{definition} +The Gauge group is given by the quotient $U(A)/U(A_J)$. +We want a nontrivial Gauge group so we need to choose $U(A_J) \neq +U(A)$ which is the same as $U((A_F)_{J_F}) \neq +U(A_F)$. +We consider $F_x$ to be +\begin{align} + F_x := \left(\mathbb{C}^2,\mathbb{C}^2, D_F =\begin{pmatrix} + 0&0\\0&0\end{pmatrix}; J_f =\begin{pmatrix} + 0&C\\C&0\end{pmatrix}, + \gamma_F = \begin{pmatrix}1&0\\0&-1\end{pmatrix}\right). +\end{align} +Here $C$ is the complex conjugation, and $F_X$ is a real even finite + spectral triple (space) with $KO-dim=6$ + +\begin{proposition} + The Gauge group $\mathfrak{B}(F)$ of the two point space is given by + $U(1)$. +\end{proposition} +\begin{proof} + Note that $U(A_F) = U(1) \times U(1)$. We need to show that + $U(\mathcal{A}_F) + \cap U(A_F)_{J_F}) \simeq U(1)$, such that $\mathfrak{B}(F) + \simeq U(1)$.\newline + + So for $a \in \mathbb{C}^2$ to be in $(A_F)_{J_F}$ it has + to satisfy $J_F a^* J_F = a$. + \begin{align} + J_F a^* J^{-1} = + \begin{pmatrix}0&C\\C&0\end{pmatrix} + \begin{pmatrix}\bar{a}_1&0\\0&\bar{a}_2\end{pmatrix} + \begin{pmatrix}0&C\\C&0\end{pmatrix} + = + \begin{pmatrix}a_2&0\\0&a_1\end{pmatrix} + \end{align} + Which is only the case if $a_1 = a_2$. So we have + $(A_F)_{J_F} \simeq \mathbb{C}$, whose unitary elements + from $U(1)$ are contained in the diagonal subgroup of + $U(\mathcal{A}_F)$. +\end{proof} + +Now we need to find the exact from of the field $B_\mu$ to calculate the +spectral action of a spectral triple. Since $(A_F)_{J_F} \simeq +\mathbb{C}$ we find that $\mathfrak{h}(F) = \mathfrak{u}((A_F)_{J_F}) +\simeq i\mathbb{R}$. Where $\mathfrak{h}(F)$ is the Lie Algebra on $F$ +and $\mathfrak{u}((A_F)_{J_F})$ is the Lie algebra of the unitary group +$(A_F)_{J_F}$.\newline + +An arbitrary hermitian field $A_\mu = -ia\partial _\mu b$ is given by +two +$U(1)$ Gauge fields $X_\mu^1, X_\mu^2 \in C^\infty(M, \mathbb{R})$. +However $A_\mu$ appears in combination $A_\mu - J_F A_\mu J_F^{-1}$: +\begin{align} + B_\mu = A_\mu - J_F A_\mu J_F^{-1} = + \begin{pmatrix}X_\mu^1&0\\0&X_\mu^2 \end{pmatrix} + - + \begin{pmatrix}X_\mu^2&0\\0&X_\mu^1 \end{pmatrix} + =: + \begin{pmatrix}Y_\mu&0\\0&-Y_\mu \end{pmatrix}= + Y_\mu \otimes \gamma _F +\end{align} +where $Y_\mu$ the $U(1)$ Gauge field is defined as +\begin{align} + Y_\mu := X_\mu^1 - X_\mu^2 \in C^\infty(M, \mathbb{R}) = C^\infty(M, + i\ u(1)). +\end{align} + +\begin{proposition} + The inner fluctuations of the almost-commutative manifold $M\times + F_x$ described above are parametrized by a $U(1)$-gauge field $Y_\mu$ + as + \begin{align} + D \mapsto D' = D + \gamma ^\mu Y_\mu \otimes \gamma_F + \end{align} + The action of the gauge group $\mathfrak{B}(M\times F_X) \simeq + C^\infty (M, U(1))$ on $D'$ is implemented by + \begin{align} + Y_\mu \mapsto Y_\mu - i\ u\partial_\mu u^*; \;\;\;\;\; (u\in + \mathfrak{B}(M\times F_X)). + \end{align} +\end{proposition} + +\subsection{Electrodynamics} +Now we use the almost commutative Manifold and the abelian gauge group +$U(1)$ to describe Electrodynamics. We arrive at a unified description of +gravity and electrodynamics although in the classical level. +\newline + +The almost commutative Manifold $M\times F_X$ describes a local gauge group +$U(1)$. The inner fluctuations of the Dirac operator describe $Y_\mu$ the +gauge field of $U(1)$. There arise two Problems: +\newline +(1): With $F_X$, $D_F$ must vanish, however this implies that the electrons +are massless (this we do not want) +\newline + +(2): The Euclidean action for a free Dirac field is +\begin{align} + S = - \int i \bar{\psi}(\gamma ^\mu\partial _\mu - m) \psi d^4x, +\end{align} +$\psi,\ \bar{\psi}$ must be considered as independent variables, which means +$S_F$ need two independent Dirac Spinors. We write $\{e, \bar{e}\}$ for the +ONB of $H_F$, where $\{e\}$ is the ONB of $H_F^+$ and $\{\bar{e}\}$ the ONB +of $H_F^-$ with the real structure this gives us the following relations +\begin{align} + J_F e &= \bar{e} \;\;\;\;\;\; J_F \bar{e} = e \\ + \gamma_F e &= e \;\;\;\;\;\; \gamma_F \bar{e} = \bar{e}. +\end{align} +The total Hilbertspace is $H = L^2(S) \otimes H_F$, with $\gamma _F$ we can +decompose $L^2(S) = L^2(S)^+ \oplus L^2(S)^-$, so with $\gamma = \gamma _M +\otimes \gamma _F$ we can obtain the positive eigenspace $H^+$ +\begin{align} + H^+ = L^2(S)^+ \otimes H_F^+ \oplus L^(S)^- \otimes H_F^-. +\end{align} +For a $\xi \i H^+$ we can write +\begin{align} + \xi = \psi _L \otimes e + \psi _R \otimes \bar{e} +\end{align} +where $\psi _L \in L^2(S)^+$ and $\psi _R \in L^2(S)^-$ are the two Wheyl +spinors. We denote that $\xi$ is only determined by one Dirac spinor $\psi := +\psi_L + \psi _R$, \textbf{but we require two independent spinors}. This is +too much restriction for $F_X$. +\subsubsection{The Finite Space} +Here we solve the two problems by enlarging(doubling) the Hilbertspace. This +is done by introducing multiplicities in Krajewski Diagrams which will also +allow us to choose a nonzero Dirac operator which will connect the two +vertices (next chapter). +\newline + +We start of with the same algebra $C^\infty(M, \mathbb{C}^2)$, corresponding +to space $N= M\times X \simeq M\sqcup M$. +\newline + +The Hilbertspace will describe four particles, +\begin{itemize} + \item left handed electrons + \item right handed positrons +\end{itemize} +Thus we have $\{ \underbrace{e_R, e_L}_{\text{left-handed}}, +\underbrace{\bar{e}_R, \bar{e}_L}_{\text{right-handed}}\}$ the ONB for $H_F +\mathbb{C}^4$. +\newline +Then with $J_F$ we interchange particles with antiparticles we have the +following properties +\begin{align} + &J_F e_R = \bar{e}_R \;\;\;\;\; &J_F e_L = \bar{e_L} \\ + &\gamma _F e_R = -e_R \;\;\;\;\; &\gamma_F e_L = e_L \\ + \text{and}& \nonumber \\ + &J_F^2 = 1 \;\;\;\;\; & J_F \gamma_F = - \gamma_F J_F +\end{align} +This corresponds to KO-dim$= 6$. Then $\gamma_F$ allows us to can decompose +$H$ +\begin{align} + H_F = \underbrace{H_F^+}_{\text{ONB } \{e_L, \bar{e}_L\}} + \oplus \underbrace{H_F^-}_{\text{ONB } \{e_R, \bar{e}_R\}}. +\end{align} +Alternatively we can decompose $H$ into the eigenspace of particles and their +antiparticles (electrons and positrons) which we will use going further. +\begin{align} + H_F = \underbrace{H_{e}}_{\text{ONB } \{e_L, e_R\}} \oplus + \underbrace{H_{\bar{e}}}_{\text{ONB } \{\bar{e}_L, \bar{e}_R\}} +\end{align} +Now the action of $a \in A = \mathbb{C}^2$ on $H$ with respect to the ONB +$\{e_L, e_R, \bar{e}_L, \bar{e}_R\}$ is represented by +\begin{align} + a = + \begin{pmatrix}a_1 & a_2 \end{pmatrix} \mapsto + \begin{pmatrix} + a_1 &0 &0 &0\\ + 0&a_1 &0 &0\\ + 0 &0 &a_2 &0\\ + 0 &0 &0 &a_2\\ + \end{pmatrix} +\end{align} +Do note that this action commutes wit the grading and that +$[a, b^\circ] = 0$ with $b:= J_F b^*J_F$ because both the left and the right +action is given by diagonal matrices. +\begin{proposition} + The data + \begin{align} + \left( \mathbb{C}^2, \mathbb{C}^2, D_F=0; J_F = + \begin{pmatrix} + 0 & C \\ C &0 + \end{pmatrix}, + \gamma _F = + \begin{pmatrix} + 1 & 0 \\ 0 &-1 + \end{pmatrix} + \right) + \end{align} + defines a real even spectral triple of KO-dimension 6. +\end{proposition} +This spectral triple can be represented in the following Krajewski diagram, +with two nodes of multiplicity two + \begin{figure}[h!] \centering + \begin{tikzpicture}[ + dot/.style = {draw, circle, inner sep=0.06cm}, + bigdot/.style = {draw, circle, inner sep=0.09cm}, + no/.style = {}, + ] + \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c) at (0.5, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d) at (1.5, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (1.5,0) [] {}; + \node[dot](d0) at (0.5,-1) [] {}; + \node[bigdot](d0) at (1.5,0) [] {}; + \node[bigdot](d0) at (0.5,-1) [] {}; + \end{tikzpicture} + \end{figure} +\subsubsection{A noncommutative Finite Dirac Operator} +Add a non-zero Dirac Operator to $F_{ED}$. From the Krajewski Diagram, we see +that edges only exist between the multiple vertices. So we construct a Dirac +operator mapping between the two vertices. +\begin{align}\label{dirac} + D_F = + \begin{pmatrix} + 0 & d & 0 & 0 \\ + \bar{d} & 0 & 0 & 0 \\ + 0 & 0 & 0 & \bar{d} \\ + 0 & 0 & d & 0 + \end{pmatrix} +\end{align} +We can now consider the finite space $F_{ED}$. +\begin{align} + F_{ED} := (\mathbb{C}^2, \mathbb{C}^4, D_F; J_F, \gamma_F) +\end{align} +where $J_F$ and $\gamma_F$ like before, $D_F$ like above. +\subsubsection{The almost-commutative Manifold} +The almost commutative manifold $M\times F_{ED}$ has KO-dim$=2$, it is the +following spectral triple +\begin{align} + M\times F_{ED} := \left(C^\infty(M,\mathbb{C}^2),\ L^2(S)\otimes + \mathbb{C}^4,\ + D_M\otimes 1 +\gamma _M \otimes D_F;\; J_M\otimes J_F,\ \gamma_M\otimes + \gamma _F\right) +\end{align} + +The algebra decomposition is like before +\begin{align} + C^\infty(M, \mathbb{C}^2) = C^\infty (M) \oplus C^\infty (M) +\end{align} + +The Hilbertspace decomposition is +\begin{align} + H = (L^2(S) \otimes H_e ) \oplus (L^2(S) \otimes H_{\bar{e}}). +\end{align} +Here we have the one component of the algebra acting on $L^2(S) \otimes H_e$, +and the other one acting on $L^2(S) \otimes H_{\bar{e}}$ +\newline + +The derivation of the gauge theory is the same for $F_{ED}$ as for $F_X$, we +have $\mathfrak{B}(F) \simeq U(1)$ and for $B_\mu = A_\mu - J_F A_\mu +J_F^{-1}$ +\begin{align} \label{field} + B_\mu = + \begin{pmatrix} + Y_\mu & 0 & 0 & 0 \\ + 0 & Y_\mu& 0 & 0 \\ + 0 & 0 & Y_\mu& 0 \\ + 0 & 0 & 0 & Y_\mu + \end{pmatrix} \;\;\;\;\;\ \text{for} \;\;\ Y_\mu (x) \in \mathbb{R}. +\end{align} +We have one single $U(1)$ gauge field $Y_\mu$, carrying the action of the +gauge group +\begin{align} + \text{$\mathfrak{B}$}(M\times F_{ED}) \simeq C^\infty(M, U(1)) +\end{align} + +Our space $N = M\times X \simeq M\sqcup M$ consists of two compies of $M$. +If $D_F = 0$ we have infinite distance between the two copies. Now we have $D_F$ +nonzero but $[D_F, a] = 0$ $\forall a \in A$ which still yields infinite +distance. +\begin{question} + What does this imply (physically, mathematically)? Why can we continue + even thought we have infinite distance between the same manifold? What do + we get if we fix this? +\end{question} +\subsubsection{The Spectral Action} +Here we calculate the Lagrangian of the almost commutative Manifold $M\times +F_{ED}$, which corresponds to the Lagrangian of Electrodynamics on a curved +background Manifold (+ gravitational Lagrangian). It consists of the spectral +action $S_b$ (bosonic) and of the fermionic action $S_f$. + +The simples spectral action of a spectral triple $(A, H, D)$ is given by the +trace of some function of $D$, we also allow inner fluctuations of the Dirac +operator $D_\omega = D + \omega + \varepsilon' J\omega J^{-1}$ where $\omega = +\omega ^* \in \Omega_D^1(A)$. +\begin{definition} + Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a suitable function + \textbf{positive and even}. The spectral action is then + \begin{align} + S_b [\omega] := \text{Tr}f(\frac{D_\omega}{\Lambda}) + \end{align} + where $\Lambda$ is a real cutoff parameter. The minimal condition on $f$ + is that $f(\frac{D_\omega}{\Lambda})$ is a traclass operator, which mean + that it should be compact operator with well defined finite trace + independent of the basis. The subscript $b$ of $S_b$ refers to bosonic, + because in physical applications $\omega$ will describe bosonic fields. + + Furthermore there is a topological spectral action, defined with the + grading $\gamma$ + \begin{align} + S_{\text{top}}[\omega] := \text{Tr}(\gamma\ + f(\frac{D_\omega}{\Lambda})). + \end{align} +\end{definition} +\begin{definition} + The fermionic action is defined by + \begin{align} + S_f[\omega, \psi] = (J\tilde{\psi}, D_\omega \tilde{\psi}) + \end{align} + with $\tilde{\psi} \in H_{cl}^+ := \{\tilde{\psi}: \psi \in H^+\}$. + $H_{cl}^+$ is the set of Grassmann variables in $H$ in the +1-eigenspace + of the grading $\gamma$. +\end{definition} +The grasmann variables are a set of Basis vectors of a vector space, they +form a unital algebra over a vector field say $V$ where the generators are anti commuting, that is for +$\theta _i, \theta _j$ some Grassmann variables we have +\begin{align} + &\theta _i \theta _j = -\theta _j \theta _i \\ + &\theta _i x = x\theta _j \;\;\;\; x\in V \\ + &(\theta_i)^2 = 0 \;\;\; (\theta _i \theta _i = -\theta _i \theta _i) +\end{align} +\begin{proposition} + The spectral action of the almost commutative manifold $M$ with $\dim(M) + =4$ with a fluctuated Dirac operator is. + \begin{align} + \text{Tr}(f\frac{D_\omega}{\Lambda}) \sim \int_M \mathcal{L}(g_{\mu\nu}, + B_\mu, \Phi) \sqrt{g}\ d^4x + O(\Lambda^{-1}) + \end{align} + with + \begin{align} + \mathcal{L}(g_{\mu\nu}, B_\mu, \Phi) = + N\mathcal{L}_M(g_{\mu\nu}) + \mathcal{L}_B(B_\mu)+ + \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi) + \end{align} + where $N=4$ and $\mathcal{L}_M$ is the Lagrangian of the spectral triple + $(C^\infty(M) , L^2(S), D_M)$ + \begin{align}\label{lagr} + \mathcal{L}_M(g_{\mu\nu}) := \frac{f_4 \Lambda ^4}{2\pi^2} - + \frac{f_2 \Lambda^2}{24\pi ^2}s - \frac{f(0)}{320\pi^2} C_{\mu\nu + \varrho \sigma}C^{\mu\nu \varrho \sigma}. + \end{align} + Here $C^{\mu\nu \varrho \sigma}$ is defined in terms of the Riemannian + curvature tensor $R_{\mu\nu \varrho \sigma}$ and the Ricci tensor + $R_{\nu\sigma} = g^{\mu\varrho} R_{\mu\nu \varrho\sigma}$. + + + Furthermore $\mathcal{L}_B$ describes the kinetic term of the gauge field + \begin{align} + \mathcal{L}_B(B_\mu) := \frac{f(0)}{24\pi^2} + \text{Tr}(F_{\mu\nu}F^{\mu\nu}). + \end{align} + Last $\mathcal{L}_\phi$ is the scalar-field Lagrangian with a boundary + term. + \begin{align} + \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi) := + &-\frac{2f_2\Lambda^2}{4\pi^2}\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2} + \text{Tr}(\Phi^4) + \frac{f(0)}{24\pi^2} \Delta(\text{Tr}(\Phi^2))\\ + &+ \frac{f(0)}{48\pi^2}s\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2}\text{Tr}((D_\mu \Phi)(D^\mu \Phi)). + \end{align} +\end{proposition} +\begin{proof} + the dimension of our manifold $m$ is $\dim(m) = \text{tr}(id) =4 $. let us + take a $x \in m$, we have an asymtotic expansion of + $\text{tr}(f(\frac{d_\omega}{\lambda}))$ as $\lambda \rightarrow \infty$ + \begin{align} + \text{tr}(f(\frac{d_\omega}{\lambda})) \simeq& \ 2f_4 \lambda ^4 + a_0(d_\omega ^2)+ 2f_2\lambda^2 a_2(d_\omega^2) \\&+ f(0) a_4(d_\omega^4) + +o(\lambda^{-1}). + \end{align} + note that the heat kernel coefficients are zero for uneven $k$, + furthermore they are dependent on the fluctuated dirac operator + $d_\omega$. we can rewrite the heat kernel coefficients in terms of $d_m$, + for the first two we note that $n:= \text{tr}\mathbbm{1_{h_f}})$ + \begin{align} + a_0(d_\omega^2) &= na_0(d_m^2)\\ + a_2(d_\omega^2 &= na_2(d_m^2) - \frac{1}{4\pi^2}\int_m + \text{tr}(\phi^2)\sqrt{g}d^4x + \end{align} + for $a_4$ we need to extend in terms of coefficients of $f$, look week9.pdf + for the standard version, + \begin{align} + &\frac{1}{360}\text{tr}(60sf)= -\frac{1}{6}s(ns + 4 + \text{tr}(\phi^2))\\ + \nonumber\\ + &f^2 = \frac{1}{16}s^2\otimes 1 + 1\otimes \phi^4 - \frac{1}{4} + \gamma^\mu\gamma^\nu \gamma^\varrho\gamma^\sigma f_{\mu\nu}f^{\mu\nu}+\\ + &\;\;\;\;\;\;\;+\gamma^\mu\gamma^\nu\otimes(d_\mu\phi)(d_\nu + \phi)+\frac{1}{2}s\otimes \phi^2 + \ \text{traceless terms}\\ + \nonumber\\ + &\frac{1}{360}\text{tr}(180f^2) = \frac{1}{8}s^2n + 2\text{tr}(\phi^4) + + \text{tr}(f_{\mu\nu}f^{\mu\nu}) +\\ + &\;\;\;\;\;\;\;+2\text{tr}((d_\mu\phi)(d^\mu\phi)) + + s\text{tr}(\phi^2)\\ + \nonumber\\ + &\frac{1}{360}\text{tr}(-60\delta f)= + \frac{1}{6}\delta(ns+4\text{tr}(\phi^2)). + \end{align} + now for the cross terms of $\omega_{\mu\nu}^e\omega^{e\mu\nu}$ the trace + vanishes because of the anti-symmetric properties of the riemannian + curvature tensor + \begin{align} + \omega_{\mu\nu}^e\omega^{e\mu\nu} = \omega_{\mu\nu}^s\omega^{s\mu\nu} + \otimes 1 - 1\otimes f_{\mu\nu}f^{\mu\nu} + 2i\omega_{\mu\nu}^s + \otimes f^{\mu\nu} + \end{align} + the trace of the cross term vanishes because + \begin{align} + \text{tr}(\omega^{s}_{\mu\nu} = \frac{1}{4} + r_{\mu\nu\varrho\sigma}\text{tr}(\gamma^\mu\gamma^\nu) = \frac{1}{4} + r_{\mu\nu\varrho\sigma}g^{\mu\nu} =0 + \end{align} + and the trace of the whole term is + \begin{align} + \frac{1}{360}\text{tr}(30\omega^e_{\mu\nu}\omega^{e\mu\nu}) = + \frac{n}{24}r_{\mu\nu\varrho\sigma}r^{\mu\nu\varrho\sigma} + -\frac{1}{3}\text{tr}(f_{\mu\nu}f^{\mu\nu}). + \end{align} + plugging the results into $a_4$ and simplifying we can write + \begin{align} + a_4(x, d_\omega^4) &= na_4(x, d_m^2) + \frac{1}{4\pi^2}\bigg(\frac{1}{12} s + \text{tr}(\phi^2) + \frac{1}{2}\text{tr}(\phi^4) \\ + &+ \frac{1}{4} + \text{tr}((d_\mu\phi)(d^\mu \phi)) + \frac{1}{6} + \delta\text{tr}(\phi^2) + \frac{1}{6} + \text{tr}(f_{\mu\nu}f^{\mu\nu})\bigg) + \end{align} + the only thing left is to plug in the heat kernel coefficients into the + heat kernel expansion above. +\end{proof} + +Here on we go and calculate the spectral action of $M\times F_{ED}$ +\begin{proposition} + The Spectral action of $M\times F_{ED}$ is + \begin{align} + \text{Tr}(f\frac{D_\omega}{\Lambda}) \sim \int_M \mathcal{L}(g_{\mu\nu}, + Y_\mu) \sqrt{g}\ d^4x + O(\Lambda^{-1}) + \end{align} + where the Lagrangian is + \begin{align} + \mathcal{L}(g_{\mu\nu}, Y_\mu) = + 4\mathcal{L}_M(g_{\mu\nu})+ + \mathcal{L}_Y(Y_\mu)+ + \mathcal{L}_\phi(g_{\mu\nu}, d) + \end{align} + here the $d$ in $\mathcal{L}_\phi$ is from $D_F$ in equation + \ref{dirac}. The Lagrangian $\mathcal{L}_M$ is like in equation + \ref{lagr}. The Lagrangian $\mathcal{L}_Y$ is the kinetic term of the + $U(1)$ gauge field $Y_\mu$ + \begin{align} + \mathcal{L}_Y(Y_\mu):= \frac{f(0)}{6\pi^2} + Y_{\mu\nu}Y^{\mu\nu}\;\;\;\;\;\;\;\;\text{with}\;\;\; Y_{\mu\nu} = + \partial_\mu Y_\nu - + \partial_\nu Y_\mu. + \end{align} + Then there is $\mathcal{L}_\phi$, which has two constant terms + (disregarding the boundary term) that add up to the Cosmological Constant + and a term that for the Einstein-Hilbert action + \begin{align} + \mathcal{L}_\phi(g_{\mu\nu}, d) := \frac{2f_2 \Lambda ^2}{\pi^2} + |d|^2 + \frac{f(0)}{2\pi^2} |d|^4 + \frac{f(0)}{12\pi ^2} s |d|^2. + \end{align} +\end{proposition} +\begin{proof} + The Trace of $\mathbb{C}^4$ (the Hilbertspace) gives $N=4$. With $B_\mu$ + like in equation \ref{field} we have $\text{Tr}(F_{\mu\nu} + F^{\mu\nu})=4Y_{\mu\nu}Y^{\mu\nu}$. This provides $\mathcal{L}_Y$. + Furthermore we have $\Phi^2 = D_F^2 = |d|^2$ and $\mathcal{L}_\phi$ only + give numerical contributions to the cosmological constant and the + Einstein-Hilbert action. + + The proof is relying itself on just plugging the terms into the previous + proposition, for which I didn't write the proof for. +\end{proof} + + +\subsection{fermionic action} +a quick reminder with what we are dealing with, the fermionic action is defined +in the following way. +\begin{definition} + the fermionic action is defined by + \begin{align} + s_f[\omega, \psi] = (j\tilde{\psi}, d_\omega \tilde{\psi}) + \end{align} + with $\tilde{\psi} \in h_{cl}^+ := \{\tilde{\psi}: \psi \in h^+\}$. + $h_{cl}^+$ is the set of grassmann variables in $h$ in the +1-eigenspace + of the grading $\gamma$. +\end{definition} + +the almostcommutative manifold we are dealing with is the following +\begin{align} + &m\times f_{ed} := \left(c^\infty(m,\mathbb{c}^2),\ l^2(s)\otimes + \mathbb{c}^4,\ + d_m\otimes 1 +\gamma _m \otimes d_f;\; j_m\otimes j_f,\ \gamma_m\otimes + \gamma _f\right).\\ + \nonumber\\ + &\text{where:} \nonumber \\ + &c^\infty(m,\mathbb{c}^2) = c^\infty(m) \otimes c^\infty(m) + &\mathcal{h} = \mathcal{h}^+ \otimes \mathcal{h}^-\\ + &\mathcal{h} = l^2(s)^+ \otimes h_f^+ \oplus l^2(s)^- \otimes h_f^-. +\end{align} +where $h_f$ is separated into the particle-anitparticle states with onb $\{e_r, +e_l, \bar{e}_r, \bar{e}_l\}$. the onb of $h_f^+$ is $\{e_l, \bar{e}_r\}$ and +for $h_f^-$ we have $\{e_r, \bar{e}_l\}$. furthermore we can decompose a spinor +$\psi \in l^2(s)$ for each of the eigenspaces $h_f^\pm$, $\psi = \psi_r +\psi_l$. thus we can write for an arbitrary $\psi \in \mathcal{h}^+$ +\begin{align} + \psi = \chi_r \otimes e_r + \chi_l \otimes e_l + \psi_l \otimes \bar{e}_r + \psi_r \otimes \bar{e}_l +\end{align} +for $\chi_l, \psi_l \in l^2(s)^+$ and $\chi_r, \psi_r \in l^2(s)^-$. +\begin{proposition} + we can define the action of the fermionic art of $m\times f_{ed}$ in the + following way + \begin{align} + s_f = -i\big(j_m\tilde{\chi}, \gamma(\nabla^s_\mu - i\gamma_\mu) + \tilde{\psi}\big) + \big(s_m\tilde{\chi}_l, \bar{d}\tilde{\psi}_l\big) - + \big(j_m\tilde{\chi}_r, d \tilde{\psi}_r\big) + \end{align} +\end{proposition} +\begin{proof} + we take the fluctuated dirac operator + \begin{align} + d_\omega = d_m \otimes i + \gamma^\mu \otimes b_\mu + \gamma_m \otimes + d_f + \end{align} +\end{proof} +the fermionic action is $s_f = (j\tilde{\xi}, d_\omega\tilde{\xi})$ for a $\xi +\in \mathcal{h}^+$, we can begin to calculate (note that we add the constant +$\frac{1}{2}$ to the action) +\begin{align} + \frac{1}{2}(j\tilde{\xi}, d_\omega\tilde{\xi}) =&\\ + &+\frac{1}{2}(j\tilde{\xi}, (d_m \otimes i)\tilde{\xi})\label{eq:1}\\ + &+\frac{1}{2}(j\tilde{\xi}, (\gamma^\mu \otimes b_\mu) + \tilde{\xi})\label{eq:2}\\ + &+\frac{1}{2}(j\tilde{\xi}, (\gamma_m\otimes + d_f)\tilde{\xi})\label{eq:3}. +\end{align} +for equation \ref{eq:1} we calculate +\begin{align} + \frac{1}{2}(j\tilde{\xi}, (d_m\otimes 1)\tilde{\xi}) &= + \frac{1}{2}(j_m\tilde{\chi}_r,d_m\tilde{\psi}_l)+ + \frac{1}{2}(j_m\tilde{\chi}_l,d_m\tilde{\psi}_r)+ + \\&+\frac{1}{2}(j_m\tilde{\psi}_l,d_m\tilde{\psi}_r)+ + \frac{1}{2}(j_m\tilde{\chi}_r,d_m\tilde{\chi}_l)\\ + &= (j_m\tilde{\chi},d_m\tilde{\chi}). +\end{align} +for equation \ref{eq:2} we have +\begin{align} + \frac{1}{2}(j\tilde{\xi}, (\gamma^\mu \otimes b_\mu)\tilde{\xi})&= + -\frac{1}{2}(j_m\tilde{\chi}_r, \gamma^\mu y_\mu\tilde{\psi}_r) + -\frac{1}{2}(j_m\tilde{\chi}_l, \gamma^\mu y_\mu\tilde{\psi}_r)+\\ + &+\frac{1}{2}(j_m\tilde{\psi}_l, \gamma^\mu y_\mu\tilde{\chi}_r)+ + \frac{1}{2}(j_m\tilde{\psi}_r, \gamma^\mu y_\mu\tilde{\chi}_l)=\\ + &= -(j_m\tilde{\chi}, \gamma^\mu y_\mu\tilde{\psi}). +\end{align} +for equation \ref{eq:3} we have +\begin{align} + \frac{1}{2}(j\tilde{\xi}, (\gamma_m\otimes d_f)\tilde{\xi})&= + +\frac{1}{2}(j_m\tilde{\chi}_r, d\gamma_m\tilde{\chi}_r) + +\frac{1}{2}(j_m\tilde{\chi}_l, \bar{d}\gamma_m\tilde{\chi}_l)+\\ + &+\frac{1}{2}(j_m\tilde{\chi}_l, \bar{d}\gamma_m\tilde{\chi}_l) + +\frac{1}{2}(j_m\tilde{\chi}_r, d\gamma_m\tilde{\chi}_r)=\\ + &= i(j_m\tilde{\chi}, m\tilde{\psi}) +\end{align} +note that we obtain a complex mass parameter $d$, so we write $d:=im$ for $m\in \mathbb{r}$, +which stands for the real mass and we obtain a nice result + +\begin{theorem} + the full lagrangian of $m\times f_{ed}$ is the sum of purely gravitational + lagrangian + \begin{align} + \mathcal{l}_{grav}(g_{\mu\nu})=4\mathcal{l}_m(g_{\mu\nu}) + \mathcal{l}_\phi (g_{\mu\nu}) + \end{align} + and the lagrangian of electrodynamics + \begin{align} + \mathcal{l}_{ed} = -i\bigg\langle + j_m\tilde{\chi},\big(\gamma^\mu(\nabla^s_\mu - iy_\mu) -m\big)\tilde{\psi}) + \bigg\rangle + +\frac{f(0)}{6\pi^2} y_{\mu\nu}y^{\mu\nu}. + \end{align} + +\end{theorem} diff --git a/src/thesis/chapters/heatkernel.tex b/src/thesis/chapters/heatkernel.tex @@ -0,0 +1,373 @@ + +\subsection{Heat Kernel Expansion} +\subsubsection{The Heat Kernel} +The heat kernel $K(t; x, y; D)$ is the fundamental solution of the heat +equation. It depends on the operator $D$ of Laplacian type. +\begin{align} + (\partial _t + D_x)K(t;x, y;D) =0 +\end{align} +For a flat manifold $M = \mathbb{R}^n$ and $D = D_0 := -\Delta_\mu\Delta^\mu +m^2$ the +Laplacian with a mass term and the initial condition +\begin{align} + K(0;x,y;D) = \delta(x,y) +\end{align} +we have the standard fundamental solution +\begin{align}\label{eq:standard} + K(t;x,y;D_0) = (4\pi t)^{-n/2}\exp\left(-\frac{(x-y)^2}{4t}-tm^2\right) +\end{align} +Let us consider now a more general operator $D$ with a potential term or a +guage field, the heat kernel reads then +\begin{align} + K(t;x,y;D) = \langle x|e^{-tD}|y\rangle. +\end{align} +We can expand it it in terms of $D_0$ and we still have the +singularity from the equation \ref{eq:standard} as $t\rightarrow 0$ thus the +expansion gives +\begin{align} + K(t;x,y;D) = K(t;x,y;D_0)\left(1 + tb_2(x,y) + t^2b_4(x,y) + \dots \right) +\end{align} +where $b_k(x,y)$ are regular in $y \rightarrow x$. They are called the heat +kernel coefficients. + +\subsubsection{Example} +Now let us consider a propagator $D^{-1}(x,y)$ defined through the heat kernel +in an integral representation +\begin{align} + D^{-1} (x,y) = \int_0^\infty dt K(t;x,y;D). +\end{align} +We can integrate the expression formally if we assume the heat kernel vanishes +for $t\rightarrow \infty$ we get +\begin{align} + D^{-1}(x,y) \simeq + 2(4\pi)^{-n/2}\sum_{j=0}\left(\frac{|x-y|}{2m}\right)^{-\frac{n}{2}+j+1} + K_{-\frac{n}{2}+j+1}(|x-y|m)b_{2j}(x,y). +\end{align} +where $b_0 = 1$ and $K_\nu (z)$ is the Bessel function +\begin{align} + K_\nu(z) = \frac{1}{\pi} \int_0^\pi cos(\nu\tau-z\sin(\tau))d\tau +\end{align} +it solves the differential equation +\begin{align} + z^2 \frac{d^2K}{dz^2} + z \frac{dK}{dz} + (z^2 - \nu^2)=0. +\end{align} +By looking at integral approximation of the propagator we conclude +that the singularities of $D^{-1}$ coincide with the singularities of the heat +kernel coefficients. +We consider now a generating functional in terns of $\det(D)$ which is called +the one-loop effective action (quantum fields theory) +\begin{align} + W = \frac{1}{2}\ln(\det D) +\end{align} +we can relate $W$ with the heat kernel. For each eigenvalue $\lambda >0$ of $D$ +we can write the identity. +\begin{align} + \ln \lambda = -\int_0^\infty \frac{e^{-t\lambda}}{t}dt +\end{align} +This expression is correct up to an infinite constant which does not depent on +$\lambda$, because of this we can ignore it. Further more we use $\ln(\det D) = +\text{Tr}(\ln D)$ and therefor we can write for $W$ +\begin{align} + W = -\frac{1}{2} \int_0^\infty dt \frac{K(t, D)}{t} +\end{align} +where +\begin{align} + K(t, D) = \text{Tr}(e^{-tD}) = \int d^n x \sqrt{g}K(t;x,x;D). +\end{align} +The problem is now that the integral of $W$ is divergent at both limits. Yet +the divergences at $t\rightarrow \infty$ are caused by $\lambda \leq 0$ of $D$ +(infrared divergences) and are just ignored. The divergences at $t\rightarrow 0$ +are cutoff at $t=\Lambda^{-2}$, thus we write +\begin{align} + W_\Lambda = -\frac{1}{2} \int_{\Lambda^{-2}}^\infty dt \frac{K(t, D)}{t}. +\end{align} +We can calculate $W_\Lambda$ at up to an order of $\lambda ^0$ +\begin{align} + W_\Lambda &= -(4\pi)^{-n/2} \int d^n x\sqrt{g}\bigg( + \sum_{2(j+l)<n}\Lambda^{n-2j-2l}b_{2j}(x,x) \frac{(-m^2)^l l!}{n-2j-2l} +\\ + &+ \sum_{2(j+l) =n }\ln(\Lambda) (-m^2)^l l! b_{2j}(x,x) + \mathcal{O}(\lambda^0) \bigg) +\end{align} +There is an divergence at $b_2(x,x)$ with $k\leq n$. Now we compute the limit +$\Lambda \rightarrow \infty$ +\begin{align} + -\frac{1}{2}(4\pi)^{n/2}m^n\int d^n x\sqrt{g} \sum_{2j>n} + \frac{b_{2j}(x,x)}{m^{2j}}\Gamma(2j-n) +\end{align} +here $\Gamma$ is the gamma function. +\subsubsection{Differential Geometry and Operators of Laplace Type} +Let $M$ be a $n$ dimensional compact Riemannian manifold with $\partial M = 0$. +Then consider a vector bundle $V$ over $M$ (i.e. there is a vector space to +each point on $M$), so we can define smooth functions. We want to look at +arbitrary differential operators $D$ of Laplace type on $V$, they have the general +from +\begin{align} + D = -(g^{\mu\nu} \partial_\mu\partial_\nu + a^\sigma\partial_\sigma +b) +\end{align} +where $a^\sigma, b$ are matrix valued functions on $M$ and $g^{\mu\nu}$ is the +inverse metric on $M$. There is a unique connection on $V$ and a unique +endomorphism (matrix valued function) $E$ on $V$, then we can rewrite $D$ in +terms of $E$ and covariant derivatives +\begin{align} + D = -(g^{\mu\nu} \nabla_\mu \nabla_\nu +E) +\end{align} +Where the covariant derivative consists of $\nabla = \nabla^{[R]} +\omega$ the +standard Riemannian covariant derivative $\nabla^{[R]}$ and a "gauge" bundle +$\omega$ (fluctuations). WE can write $E$ and $\omega$ in terms of geometrical +identities +\begin{align} + \omega_\delta &= \frac{1}{2}g_{\nu\delta}(a^\nu + +g^{\mu\sigma}\Gamma^\nu_{\mu\sigma}I_V)\\ + E &= b - g^{\nu\mu}(\partial_\mu \omega_\nu + \omega_\nu \omega_\mu - + \omega_\sigma \Gamma^\sigma_{\nu\mu}) +\end{align} +where $I_V$ is the identity in $V$ and the Christoffel symbol +\begin{align} + \Gamma^\sigma_{\mu\nu} = g^{\sigma\varrho} \frac{1}{2} (\partial_\mu + g_{\nu\varrho} + \partial_\nu g_{\mu\varrho} - \partial_\varrho g_{\mu\nu}) +\end{align} +Furthermore we remind ourselves of the Riemmanian curvature tensor, Ricci +Tensor and the Scalar curavture. +\begin{align} + R^\mu_{\nu\varrho\sigma} &= \partial_\sigma \Gamma^{\mu}_{\nu\varrho} + -\partial_\varrho \Gamma^\mu_{\nu\sigma} + \Gamma^{\lambda}_{\nu\varrho}\Gamma^{\mu}_{\lambda\sigma} + \Gamma^{\lambda}_{\nu\sigma}\Gamma^{\mu}_{\lambda\varrho}\\ + R_{\mu\nu} &:= R^{\sigma}_{\mu\nu\sigma}\\ + R &:= R^\mu_{\ \mu} +\end{align} + +The we let $\{e_1, \dots, e_n\}$ be the local orthonormal frame of +$TM$(tangent bundle $M$), which will be noted with flat indices $i,j,k,l +\in\{1,\dots, n\}$, we use $e^k_\mu, e^\nu_j$ to transform between flat indices +and curved indices $\mu, \nu, \varrho$. +\begin{align} + e^\mu_j e^\nu_k g_{\mu\nu} &= \delta_{jk}\\ + e^\mu_j e^\nu_k \delta^{jk} &= g^{\mu\nu} \\ + e^j_\mu e^\mu_k &= \delta^j_k +\end{align} + +The Riemannian part of the covariant derivative contains the standard +Levi-Civita connection, so that for a $v_\nu$ we write +\begin{align} + \nabla_\mu^{[R]} v_\nu = \partial_\mu v_\nu - + \Gamma^{\varrho}_{\mu\nu}v_\varrho. +\end{align} +The extended covariant derivative reads then +\begin{align} + \nabla_\mu v^j = \partial_\mu v^j + \sigma^{jk}_\mu v_k. +\end{align} +the condition $\nabla_\mu e^k_\nu = 0$ gives us the general connection +\begin{align} + \sigma^{kl}_\mu = e^\nu_l\Gamma^{\varrho}_{\mu\nu}e^k_\varrho - e^\nu_l + \partial_\mu e^k_\nu +\end{align} +The we may define the field strength $\Omega_{\mu\nu}$ of the connection $\omega$ +\begin{align} + \Omega_{\mu\nu} = \partial_\mu \omega_\nu -\partial_\nu \omega_\mu + +\omega_\mu \omega_\nu -\omega_\nu\omega_\mu. +\end{align} +If we apply the covariant derivative on $\Omega$ we get +\begin{align} + \nabla_\varrho\Omega_{\mu\nu} = \partial_\varrho \Omega_{\mu\nu} - + \Gamma^{\sigma}_{\varrho \mu} \Omega_{\sigma\mu} + [\omega_\varrho, + \Omega_{\mu\nu}] +\end{align} + +\subsubsection{Spectral Functions} +Manifolds without $M$ boundary condition for the operator $e^{-tD}$ for $t>0$ is a +trace class operator on $L^2(V)$, this means that for any smooth function $f$ +on $M$ we can define +\begin{align} + K(t,f,D) = \text{Tr}_{L^2}(fe^{-tD}) +\end{align} +and we can rewrite +\begin{align} + K(t, f, D) = \int_M d^n x \sqrt{g} \text{Tr}_V(K(t;x,x;D)f(x)). +\end{align} +in terms of the Heat kernel $K(t;x,y;D)$ in the regular limit $y\rightarrow y$. +We can write the Heat Kernel in terms of the spectrum of $D$. Say +$\{\phi_\lambda\}$ is a ONB of eigenfunctions of $D$ corresponding to the +eigenvalue $\lambda$ +\begin{align} + K(t;x,y;D) = \sum_\lambda \phi^\dagger_\lambda(x) + \phi_\lambda(y)e^{-t\lambda}. +\end{align} +We have an asymtotic expansion at $t \rightarrow 0$ for the trace +\begin{align} + Tr_{L^2}(fe^{-tD}) \simeq \sum_{k\geq 0}t^{(k-n)/2}a_k(f,D). +\end{align} +where +\begin{align} + a_k(f,D) = (4\pi)^{-n/2} \int_M d^4x \sqrt{g} b_k(x,x) f(x) +\end{align} +\subsubsection{General Formulae} +We consider a compact Riemmanian Manifold $M$ without boundary condition, a +vector bundle $V$ over $M$ to define functions which carry discrete (spin or +gauge) indices. An Laplace style operator $D$ over $V$ and smooth function $f$ +on $M$. There is an asymtotic expansion where the heat kernel coefficients +\begin{enumerate} + \item with odd index $k=2j+1$ vanish + $a_{2j+1}(f,D) = 0$ + \item with even index are locally computable in terms of geometric + invariants +\end{enumerate} +\begin{align} + a_k(f,D) &= \text{Tr}_V\left(\int_M d^n x\sqrt{g}(f(x)a_k(x;D)\right) =\\ + &=\sum_I \text{Tr}_V\left(\int_M d^nx \sqrt{g}(fu^I \mathcal{A}^I_k(D))\right) +\end{align} +here $\mathcal{K}^I_k$ are all possible independent invariants of dimension +$k$, constructed from $E, \Omega, R_{\mu\nu\varrho\sigma}$ and their +derivatives, $u^I$ are some constants. + +If $E$ has dimension two, then the derivative has dimension one. So if $k=2$ +there are only two independent invariants, $E$ and $R$. This corresponds to the +statement $a_{2j+1}=0$. + +If we consider $M = M_1 \times M_2$ with coordinates $x_1$ and $x_2$ and a +decomposed Laplace style operator $D = D_1 \otimes 1 + 1 \otimes D_2$ we can +separate everything, i.e. +\begin{align} + e^{-tD} &= e^{-tD_1} \otimes e^{-tD_2}\\ + f(x_1, x_2) &= f_1(x_1)f_2(x_2)\\ + a_k(x;D) &= \sum_{p+q=k} a_p(x_1; D_1)a_q(x_2;D_2) +\end{align} +Say the spectrum of $D_1$ is known, $l^2, l\in \mathbb{Z}$. We obtain the heat +kernel asymmetries with the Poisson Summation formula +\begin{align} + K(t, D_1) &= \sum_{l\in\mathbb{Z}} e^{-tl^2} = \sqrt{\frac{\pi}{t}} + \sum_{l\in\mathbb{Z}} e^{-\frac{\pi^2l^2}{t}} = \\ + &\simeq \sqrt{\frac{\pi}{t}} + \mathcal{O}(e^{-1/t}). +\end{align} +Note that the exponentially small terms have no effect on the heat kernel +coefficients and that the only nonzero coefficient is $a_0(1, D_1) = +\sqrt{\pi}$. Therefore we can write +\begin{align} + a_k(f(x^2), D) = \sqrt{\pi}\int_{M_2} + d^{n-1}x\sqrt{g}\sum_I\text{Tr}_V\left(f(x^2)u^I_{(n-1)} + \mathcal{A}^I_n(D_2)\right). +\end{align} + +On the other had all geometric invariants associated with $D$ are in the $D_2$ +part. Thus all invariants are independent of $x_1$, so we can choose for $M_1$. +Say $M_1 = S^1$ with $x\in (0, 2\pi)$ and $D_1=-\partial_{x_1}^2$ we may +rewrite the heat kernel coefficients in +\begin{align} + a_k(f(x_2), D) &= \int_{S^1\times M_2}d^nx \sqrt{g} \sum_I + \text{Tr}_V(f(x_2) u_{(n)}^I \mathcal{A}^I_k(D_2))=\\ + &= 2\pi \int_{M_2} d^nx\sqrt{g} \sum_I\text{Tr}_V(f(x_2) u_{(n)}^I + \mathcal{A}^I_k(D_2)). +\end{align} +Computing the two equations above we see that +\begin{align} + u_{(n)}^I = \sqrt{4\pi} u^I_{(n+1)} +\end{align} + +\subsubsection{Heat Kernel Coefficients} +To calculate the heat kernel coefficients we need the following variational +equations +\begin{align} + &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(1, e^{-2\varepsilon f}D) = + (n-k) a_k(f, D),\label{eq:var1}\\ + &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(1, D-\varepsilon F) = + a_{k-2}(F,D),\label{eq:var2}\\ + &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(e^{-2\varepsilon f}F, + e^{-2\varepsilon f}D) = + 0\label{eq:var3}. +\end{align} +To prove the equation \ref{eq:var1} we differentiate +\begin{align} + \frac{d}{d\varepsilon}|_{\varepsilon=0} \text{Tr}(\exp(-e^{-2\varepsilon + f}tD) = \text{Tr}(2ftDe^{-tD}) = -2t\frac{d}{dt}\text{Tr}(fe^{-tD})) +\end{align} +then we expand both sides in $t$ and get \ref{eq:var1}. Equation \ref{eq:var2} +is derived similarly. For equation \ref{eq:var3} we consider the following +operator +\begin{align} + D(\varepsilon,\delta) = e^{-2\varepsilon f}(D-\delta F) +\end{align} +for $k=n$ we use equation \ref{eq:var1} and we get +\begin{align} + \frac{d}{d\varepsilon}|_{\varepsilon=0}a_n(1,D(\varepsilon,\delta)) =0 +\end{align} +then we take the variation in terms of $\delta$, evaluated at $\delta =0$ and +swap the differentiation, allowed by theorem of Schwarz +\begin{align} + 0 &= + \frac{d}{d\delta}|_{\delta=0}\frac{d}{d\varepsilon}|_{\varepsilon=0}a_n(1, + D(\varepsilon,\delta)) = + \frac{d}{d\varepsilon}|_{\varepsilon=0}\frac{d}{d\delta}|_{\delta=0}a_n(1, + D(\varepsilon,\delta)) =\\ + &=a_{n-2} ( e^{-2\varepsilon f}F, e^{-2\varepsilon f}D) +\end{align} +which proves equation \ref{eq:var3}. With this we calculate the constants $u^I$ +and we can write the first three heat kernel coefficients as +\begin{align} + a_0(f, D) &= (4\pi)^{-n/2}\int_Md^n x\sqrt{g} \text{Tr}_V(a_0 f)\\ + a_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_Md^n + x\sqrt{g}\text{Tr}_V)(f\alpha _1 E+\alpha _2 R)\\ + a_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_Md^n + x\sqrt{g}\text{Tr}_V(f(\alpha_3 E_{,kk} + \alpha_4 RE + \alpha_5 E^2 + \alpha_6 R_{,kk} + \\ + &+\alpha_7 R^2 + \alpha_8 R_{ij}R_{ij} + \alpha_9 + R_{ijkl}R_{ijkl} +\alpha_{10} \Omega_{ij}\Omega{ij})). +\end{align} +The constants $\alpha_I$ do not depend on the dimension $n$ of the Manifold and +we can compute them with our variational identities. + +The first coefficient $\alpha_0$ can be seen from the heat kernel expanion of +the Laplacian on $S^1$ (above), $\alpha_0 = 1$. For $\alpha_1$ we use +\ref{eq:var2}, for $k = 2$ +\begin{align} + \frac{1}{6} \int_M d^n x\sqrt{g} \text{Tr}_V(\alpha_1F) = \int_M d^n + x\sqrt{g} \text{Tr}_V(F), +\end{align} +thus we conclude that $\alpha_1 = 6$. Now we take $k=4$ +\begin{align} + \frac{1}{360}\int_Md^n x \sqrt{g}\text{Tr}_V(\alpha_4 F R + 2\alpha_5 F E) + = \frac{1}{6} \int_Md^n x\sqrt{g}\text{Tr}_V(\alpha_1 FE + \alpha_2 FR), +\end{align} +thus $\alpha_4 = 60\alpha_2$ and $\alpha_5 = 180$. + +Furthermore we apply \ref{eq:var3} to $n=4$ +\begin{align} + \frac{d}{d\varepsilon}|_{\varepsilon=0} a_2(e^{-2\varepsilon f}F, + e^{-2\varepsilon f}D) = 0. +\end{align} +By collecting the terms with $\text{Tr}_V(\int_Md^nx\sqrt{g}(Ff_{,jj}))$ we +obtain $\alpha_1 = 6\alpha_2$, that is $\alpha_2 = 1$, so $\alpha_4 = 60$. + +Now we let $M=M_1\times M_2$ and split $D = -\Delta_1 -\Delta_2$, where +$\Delta_{1/2}$ are Laplacians for $M_1, M_2$, then we can decompose the heat +kernel coefficients for $k=4$ +\begin{align} + a_4(1,-\Delta_1-\Delta_2) =& a_4(1, -\Delta_1) a_0(1, -\Delta_2) + +a_2(1,-\Delta_1) a_2(1,-\Delta_2) \\&+ a_0(1,-\Delta_1) a_4(1,-\Delta_2) +\end{align} +with $E=0$ and $\Omega =0$ and by calculating the terms with $R_1R_2$ (scalar +curvature of $M_{1/2}$) we obtain $\frac{2}{360}\alpha_7 = +(\frac{\alpha_2}{6})^2$, thus $\alpha_7 = 5$. + +For $n=6$ we get +\begin{align} + 0 &= \text{Tr}_V(\int_Md^nx\sqrt{g} + (F(-2\alpha_3-10\alpha_4+4\alpha_5)f_{,kk}E +\\ + &+(2\alpha_3 + 10\alpha_6)f_{,iijj}+\\ + &+(2\alpha_4 -2\alpha_6 - 20\alpha_7 -2\alpha_8)f_{,ii}R\\ + &+(-8\alpha_8 -8\alpha_6)f_{,ij}R_{ij})) +\end{align} +we obtain $\alpha_3 = 60$, $\alpha_6=12$, $\alpha_8 = -2$ and $\alpha_9 = 2$ + +For $\alpha_{10}$ we use the Gauss-Bonnet theorem to get $\alpha_{10}=30$, +which is left out because it is a lengthy computation. + +Summarizing we get for the heat kernel coefficients +\begin{align} + \alpha_0(f, D) &= (4\pi)^{-n/2}\int_M d^n x \sqrt{g} \text{Tr}_V(f)\\ + \alpha_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_M d^n x \sqrt{g} + \text{Tr}_V(f(6E+R))\\ + \alpha_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_M d^n x \sqrt{g} + \text{Tr}_V(f(60E_{,kk}+60RE+ 180E^2 +\\ + &+12R_{,kk} + 5R^2 - 2 R_{ij}R_{ij} + 2R_{ijkl}R_{ijkl} +30\Omega_{ij}\Omega_{ij}))\\ +\end{align} + diff --git a/src/thesis/front/intro.tex b/src/thesis/chapters/intro.tex diff --git a/src/thesis/chapters/main_sec.tex b/src/thesis/chapters/main_sec.tex @@ -0,0 +1 @@ +\section{Main Section} diff --git a/src/thesis/front/main_sec.tex b/src/thesis/front/main_sec.tex @@ -1,2 +0,0 @@ -\section{Main Section} -\lipsum[8] diff --git a/src/thesis/main.pdf b/src/thesis/main.pdf Binary files differ. diff --git a/src/thesis/main.tex b/src/thesis/main.tex @@ -8,15 +8,28 @@ \newpage +%-------------------- BACKHAND --------------------- + \input{back/abstract} -\input{front/intro} +\input{chapters/intro} + +%----------------- MAIN SECTION -------------------- + +\input{chapters/main_sec} + +%\input{chapters/basics} +% +%\input{chapters/heatkernel} + +\input{chapters/electroncg} + -\input{front/main_sec} +%------------------- BACKHAND --------------------- -\input{front/conclusion} +\input{chapters/conclusion} -\input{front/acknowledgment} +\input{chapters/acknowledgment} \input{back/refs} diff --git a/src/thesis/uni.bib b/src/thesis/thesis.bib