ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit b084f9a20cf0ad6cf7ebf2dd817dcd668733e2ac
parent 24757a9157b3ea60fb7ab6f74fbf227ef760e23d
Author: miksa <milutin@popovic.xyz>
Date:   Wed,  9 Jun 2021 14:35:12 +0200

done week10.pdf

Diffstat:
Apdfs/week10.pdf | 0
Dsrc/week10.pdf | 0
Msrc/week10.tex | 97+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++----
3 files changed, 93 insertions(+), 4 deletions(-)

diff --git a/pdfs/week10.pdf b/pdfs/week10.pdf Binary files differ. diff --git a/src/week10.pdf b/src/week10.pdf Binary files differ. diff --git a/src/week10.tex b/src/week10.tex @@ -168,12 +168,12 @@ Glaser} &\;\;\;\;\;\;\;+2\text{Tr}((D_\mu\Phi)(D^\mu\Phi)) + s\text{Tr}(\Phi^2)\\ \nonumber\\ - &\frac{1}{360}\text{Tr}(-60\DeltaF)= + &\frac{1}{360}\text{Tr}(-60\Delta F)= \frac{1}{6}\Delta(Ns+4\text{Tr}(\Phi^2)). \end{align} Now for the cross terms of $\Omega_{\mu\nu}^E\Omega^{E\mu\nu}$ the trace vanishes because of the anti-symmetric properties of the Riemannian - Cruvature Tensor + curvature Tensor \begin{align} \Omega_{\mu\nu}^E\Omega^{E\mu\nu} = \Omega_{\mu\nu}^S\Omega^{S\mu\nu} \otimes 1 - 1\otimes F_{\mu\nu}F^{\mu\nu} + 2i\Omega_{\mu\nu}^S @@ -205,6 +205,8 @@ Glaser} \end{proof} \section{Fermionic Action} +A quick reminder with what we are dealing with, the fermionic action is defined +in the following way. \begin{definition} The fermionic action is defined by \begin{align} @@ -215,14 +217,101 @@ Glaser} of the grading $\gamma$. \end{definition} +The almostcommutative Manifold we are dealing with is the following \begin{align} - M\times F_{ED} := \left(C^\infty(M,\mathbb{C}^2),\ L^2(S)\otimes + &M\times F_{ED} := \left(C^\infty(M,\mathbb{C}^2),\ L^2(S)\otimes \mathbb{C}^4,\ D_M\otimes 1 +\gamma _M \otimes D_F;\; J_M\otimes J_F,\ \gamma_M\otimes - \gamma _F\right) + \gamma _F\right).\\ + \nonumber\\ + &\text{where:} \nonumber \\ + &C^\infty(M,\mathbb{C}^2) = C^\infty(M) \otimes C^\infty(M) + &\mathcal{H} = \mathcal{H}^+ \otimes \mathcal{H}^-\\ + &\mathcal{H} = L^2(S)^+ \otimes H_F^+ \oplus L^2(S)^- \otimes H_F^-. \end{align} +Where $H_F$ is separated into the particle-anitparticle states with ONB $\{e_R, +e_L, \bar{e}_R, \bar{e}_L\}$. The ONB of $H_F^+$ is $\{e_L, \bar{e}_R\}$ and +for $H_F^-$ we have $\{e_R, \bar{e}_L\}$. Furthermore we can decompose a spinor +$\psi \in L^2(S)$ for each of the eigenspaces $H_F^\pm$, $\psi = \psi_R +\psi_L$. Thus we can write for an arbitrary $\psi \in \mathcal{H}^+$ +\begin{align} + \psi = \chi_R \otimes e_R + \chi_L \otimes e_L + \psi_L \otimes \bar{e}_R + \psi_R \otimes \bar{e}_L +\end{align} +for $\chi_L, \psi_L \in L^2(S)^+$ and $\chi_R, \psi_R \in L^2(S)^-$. +\begin{proposition} + We can define the action of the fermionic art of $M\times F_{ED}$ in the + following way + \begin{align} + S_f = -i\big(J_M\tilde{\chi}, \gamma(\nabla^S_\mu - i\Gamma_\mu) + \tilde{\Psi}\big) + \big(S_M\tilde{\chi}_L, \bar{d}\tilde{\psi}_L\big) - + \big(J_M\tilde{\chi}_R, d \tilde{\psi}_R\big) + \end{align} +\end{proposition} +\begin{proof} + We take the fluctuated Dirac operator + \begin{align} + D_\omega = D_M \otimes i + \gamma^\mu \otimes B_\mu + \gamma_M \otimes + D_F + \end{align} +\end{proof} +The Fermionic Action is $S_F = (J\tilde{\xi}, D_\omega\tilde{\xi})$ for a $\xi +\in \mathcal{H}^+$, we can begin to calculate (note that we add the constant +$\frac{1}{2}$ to the action) +\begin{align} + \frac{1}{2}(J\tilde{\xi}, D_\omega\tilde{\xi}) =&\\ + &+\frac{1}{2}(J\tilde{\xi}, (D_M \otimes i)\tilde{\xi})\label{eq:1}\\ + &+\frac{1}{2}(J\tilde{\xi}, (\gamma^\mu \otimes B_\mu) + \tilde{\xi})\label{eq:2}\\ + &+\frac{1}{2}(J\tilde{\xi}, (\gamma_M\otimes + D_F)\tilde{\xi})\label{eq:3}. +\end{align} +For equation \ref{eq:1} we calculate +\begin{align} + \frac{1}{2}(J\tilde{\xi}, (D_M\otimes 1)\tilde{\xi}) &= + \frac{1}{2}(J_M\tilde{\chi}_R,D_M\tilde{\psi}_L)+ + \frac{1}{2}(J_M\tilde{\chi}_L,D_M\tilde{\psi}_R)+ + \\&+\frac{1}{2}(J_M\tilde{\psi}_L,D_M\tilde{\psi}_R)+ + \frac{1}{2}(J_M\tilde{\chi}_R,D_M\tilde{\chi}_L)\\ + &= (J_M\tilde{\chi},D_M\tilde{\chi}). +\end{align} +For equation \ref{eq:2} we have +\begin{align} + \frac{1}{2}(J\tilde{\xi}, (\gamma^\mu \otimes B_\mu)\tilde{\xi})&= + -\frac{1}{2}(J_M\tilde{\chi}_R, \gamma^\mu Y_\mu\tilde{\psi}_R) + -\frac{1}{2}(J_M\tilde{\chi}_L, \gamma^\mu Y_\mu\tilde{\psi}_R)+\\ + &+\frac{1}{2}(J_M\tilde{\psi}_L, \gamma^\mu Y_\mu\tilde{\chi}_R)+ + \frac{1}{2}(J_M\tilde{\psi}_R, \gamma^\mu Y_\mu\tilde{\chi}_L)=\\ + &= -(J_M\tilde{\chi}, \gamma^\mu Y_\mu\tilde{\psi}). +\end{align} +For equation \ref{eq:3} we have +\begin{align} + \frac{1}{2}(J\tilde{\xi}, (\gamma_M\otimes D_F)\tilde{\xi})&= + +\frac{1}{2}(J_M\tilde{\chi}_R, d\gamma_M\tilde{\chi}_R) + +\frac{1}{2}(J_M\tilde{\chi}_L, \bar{d}\gamma_M\tilde{\chi}_L)+\\ + &+\frac{1}{2}(J_M\tilde{\chi}_L, \bar{d}\gamma_M\tilde{\chi}_L) + +\frac{1}{2}(J_M\tilde{\chi}_R, d\gamma_M\tilde{\chi}_R)=\\ + &= i(J_M\tilde{\chi}, m\tilde{\psi}) +\end{align} +Note that we obtain a complex mass parameter $d$, so we write $d:=im$ for $m\in \mathbb{R}$, +which stands for the real mass and we obtain a nice result +\begin{theorem} + The full Lagrangian of $M\times F_{ED}$ is the sum of purely gravitational + Lagrangian + \begin{align} + \mathcal{L}_{grav}(g_{\mu\nu})=4\mathcal{L}_M(g_{\mu\nu}) + \mathcal{L}_\phi (g_{\mu\nu}) + \end{align} + and the Lagrangian of electrodynamics + \begin{align} + \mathcal{L}_{ED} = -i\bigg\langle + J_M\tilde{\chi},\big(\gamma^\mu(\nabla^S_\mu - iY_\mu) -m\big)\tilde{\psi}) + \bigg\rangle + +\frac{f(0)}{6\pi^2} Y_{\mu\nu}Y^{\mu\nu}. + \end{align} +\end{theorem} \end{document}