ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit bd23e8a8ad7160a22748ebfc347dfa3fab149c5b
parent cd1bb3dff4c8467640610d2da5c80cc4a4ec0d07
Author: miksa234 <milutin@popovic.xyz>
Date:   Mon,  9 Aug 2021 16:32:59 +0200

checkpoint 6/6, nextup introduction

Diffstat:
Msrc/thesis/back/packages.tex | 20++++++++++++++++++++
Msrc/thesis/chapters/basics.tex | 14+++++++-------
Msrc/thesis/chapters/electroncg.tex | 131++++++++++++++++++++++++++++++++++++++++++-------------------------------------
Msrc/thesis/main.pdf | 0
Msrc/thesis/main.tex | 10+++++-----
Msrc/thesis/todo.md | 14++++++++++++++
6 files changed, 116 insertions(+), 73 deletions(-)

diff --git a/src/thesis/back/packages.tex b/src/thesis/back/packages.tex @@ -68,6 +68,11 @@ ([xshift=0.6cm, yshift=-0.5pt]frame.south west)--([xshift=0.6cm,yshift=-1pt]frame.north west) --([xshift=0.6cm]frame.south west)--([xshift=-13cm]frame.south east); }, + overlay first={ + \draw[colexam,line width=1pt] + ([xshift=0.6cm, yshift=-0.5pt]frame.south + west)--([xshift=0.6cm,yshift=-1pt]frame.north west) + --([xshift=0.6cm]frame.south west); }, overlay last={ \draw[colexam,line width=1pt] ([xshift=0.6cm, yshift=-0.5pt]frame.south @@ -105,6 +110,11 @@ ([xshift=0.6cm, yshift=-0.5pt]frame.south west)--([xshift=0.6cm,yshift=-1pt]frame.north west) --([xshift=0.6cm]frame.south west)--([xshift=-13cm]frame.south east); }, + overlay first={ + \draw[colexam,line width=1pt] + ([xshift=0.6cm, yshift=-0.5pt]frame.south + west)--([xshift=0.6cm,yshift=-1pt]frame.north west) + --([xshift=0.6cm]frame.south west); }, overlay last={ \draw[colexam,line width=1pt] ([xshift=0.6cm, yshift=-0.5pt]frame.south @@ -142,6 +152,11 @@ ([xshift=0.6cm, yshift=-0.5pt]frame.south west)--([xshift=0.6cm,yshift=-1pt]frame.north west) --([xshift=0.6cm]frame.south west)--([xshift=-13cm]frame.south east); }, + overlay first={ + \draw[colexam,line width=1pt] + ([xshift=0.6cm, yshift=-0.5pt]frame.south + west)--([xshift=0.6cm,yshift=-1pt]frame.north west) + --([xshift=0.6cm]frame.south west); }, overlay last={ \draw[colexam,line width=1pt] ([xshift=0.6cm, yshift=-0.5pt]frame.south @@ -179,6 +194,11 @@ ([xshift=0.6cm, yshift=-0.5pt]frame.south west)--([xshift=0.6cm,yshift=-1pt]frame.north west) --([xshift=0.6cm]frame.south west)--([xshift=-13cm]frame.south east); }, + overlay first={ + \draw[colexam,line width=1pt] + ([xshift=0.6cm, yshift=-0.5pt]frame.south + west)--([xshift=0.6cm,yshift=-1pt]frame.north west) + --([xshift=0.6cm]frame.south west); }, overlay last={ \draw[colexam,line width=1pt] ([xshift=0.6cm, yshift=-0.5pt]frame.south diff --git a/src/thesis/chapters/basics.tex b/src/thesis/chapters/basics.tex @@ -3,8 +3,8 @@ To grasp the idea of encoding geometrical data into a spectral triple we introduce the first ingredient of a spectral triple, an unital $*$ algebra. \begin{mydefinition} - A \textit{vector space} $A$ over $\mathbb{C}$ is called a \textit{complex, unital Algebra} if, \\ - $\forall a,b \in A$ : + A \textit{vector space} $A$ over $\mathbb{C}$ is called a + \textit{complex, unital Algebra} if for all $a,b \in A$: \begin{align} A \times A \rightarrow A\\ (a,\ b)\ &\mapsto \ a\cdot b, @@ -64,11 +64,11 @@ which `pulls back' values even if $\phi$ is not bijective. Note that the pullback does not map points back, but maps functions on an $*$-algebra $C(X)$. The pullback, in literature often called a $*$-homomorphism or a $*$-algebra map under pointwise product has the following properties -\begin{itemize} - \item $\phi ^*(f\ g) = \phi ^*(f)\ \phi ^*(g)$, - \item $\phi ^*(\overline{f}) = \overline{\phi ^*(f)}$, - \item $\phi ^*(\lambda\ f + g) = \lambda\ \phi ^*(f) + \phi ^*(g)$. -\end{itemize} +\begin{align} + \phi ^*(f\ g) = \phi ^*(f)\ \phi ^*(g), + \phi ^*(\overline{f}) = \overline{\phi ^*(f)}, + \phi ^*(\lambda\ f + g) = \lambda\ \phi ^*(f) + \phi ^*(g). +\end{align} %------------ Exercise The map $\phi :X_1\ \rightarrow \ X_2$ is an injective (surjective) map, if only and if the corresponding pullback $\phi ^* :C(X_2)\ \rightarrow \ diff --git a/src/thesis/chapters/electroncg.tex b/src/thesis/chapters/electroncg.tex @@ -1,26 +1,27 @@ \subsection{Noncommutative Geometry of Electrodynamics} -In this chapter we describe Electrodynamics with the almost commutative -manifold $M\times F_X$ and the abelian gauge group $U(1)$. -We arrive at a unified description of gravity and electrodynamics although in the classical level. +In this chapter we go through a derivation Electrodynamics with +the almost commutative manifold $M\times F_X$ and the abelian gauge group +$U(1)$. The conclusion is an unified description of gravity and +electrodynamics although in the classical level. -The almost commutative Manifold $M\times F_X$ describes a local gauge group +The almost commutative Manifold $M\times F_X$ outlines a local gauge group $U(1)$. The inner fluctuations of the Dirac operator relate to $Y_\mu$ the gauge field of $U(1)$. According to the setup we ultimately arrive at two serious problems. -First of all in the Two-Point space $F_X$, the operator $D_F$ must vanish for -us to have a real structure. However this implies that the electrons -are massless, which would be absurd. +First of all the operator $D_F$, in the Two-Point space $F_X$, must vanish +such that a real structure can exists. However this implies that the electrons +are massless. The second problem arises when looking at the Euclidean action for a free Dirac field \begin{align} S = - \int i \bar{\psi}(\gamma ^\mu\partial _\mu - m) \psi d^4x, \end{align} -where $\psi,\ \bar{\psi}$ must be considered as independent variables, which -means that the fermionic action $S_f$ needs two independent Dirac spinors. -Let us try and construct two independent Dirac spinors with our data. To do -this we take a look at the decomposition of the basis and of the total +where $\psi,\ \bar{\psi}$ must be considered as two independent variables. +This means that the fermionic action $S_f$ needs two independent Dirac spinors. +Let us try and construct two independent Dirac spinors with our data, first +take a look at the decomposition of the basis and of the total Hilbertspace $H = L^2(S) \otimes H_F$. For the orthonormal basis of $H_F$ we can write $\{e, \bar{e}\}$ , where $\{e\}$ is the orthonormal basis of $H_F^+$ and $\{\bar{e}\}$ the orthonormal basis of $H_F^-$. Accompanied with @@ -32,31 +33,31 @@ the real structure we arrive at the following relations Along with the decomposition of $L^2(S) = L^2(S)^+ \oplus L^2(S)^-$ and $\gamma = \gamma _M \otimes \gamma _F$ we can obtain the positive eigenspace \begin{align} - H^+ = L^2(S)^+ \otimes H_F^+ \oplus L^(S)^- \otimes H_F^-. + H^+ = L^2(S)^+ \otimes H_F^+ \oplus L(S)^- \otimes H_F^-. \end{align} -So, for a $\xi \in H^+$ we can write +So, for an $\xi \in H^+$ we can write \begin{align} - \xi = \psi _L \otimes e + \psi _R \otimes \bar{e} + \xi = \psi _L \otimes e + \psi _R \otimes \bar{e}, \end{align} where $\psi_L \in L^2(S)^+$ and $\psi _R \in L^2(S)^-$ are the two Wheyl spinors. We denote that $\xi$ is only determined by one Dirac spinor $\psi := -\psi_L + \psi _R$, \textbf{but we require two independent spinors}. Our +\psi_L + \psi _R$. Since \textbf{we require two independent spinors}, our conclusion is that the definition of the fermionic action gives too much restrictions to the Two-Point space $F_X$. \subsubsection{The Finite Space} To solve the two problems we simply enlarge (double) the Hilbertspace. This -is visualized by introducing multiplicities in Krajewski Diagrams which will also -allow us to choose a nonzero Dirac operator that will connect the two -vertices and preserve real structure making our particles massive and -bringing anti-particles into the mix. +is visualized by introducing multiplicities in Krajewski Diagrams +\cite{ncgwalter} which will also allow us to choose a nonzero Dirac operator +that will connect the two vertices and preserve real structure making our +particles massive and bringing anti-particles into the mix. We start of with the same algebra $C^\infty(M, \mathbb{C}^2)$, corresponding to space $N= M\times X$. The Hilbertspace describes four particles, meaning it has four orthonormal basis elements. It describes \textbf{left handed -electrons} and \textbf{right handed positrons}. Pointing this out, we have +electrons} and \textbf{right handed positrons}. This way we have $\{ \underbrace{e_R, e_L}_{\text{left-handed}}, \underbrace{\bar{e}_R, -\bar{e}_L}_{\text{right-handed}}\}$ the orthonormal basis for $H_F = -\mathbb{C}^4$. Accompanied with the real structure $J_F$, which allows us to +\bar{e}_L}_{\text{right-handed}}\}$ an orthonormal basis for $H_F = +\mathbb{C}^4$. Accompanied with the real structure $J_F$ allowing us to interchange particles with antiparticles by the following equations \begin{align} &J_F e_R = \bar{e}_R, \\ @@ -70,7 +71,7 @@ where $J_F$ and $\gamma_F$ have to following properties &J_F^2 = 1,\\ & J_F \gamma_F = - \gamma_F J_F. \end{align} -By means of $\gamma_F$ we have two options to decompose the total +By the means of $\gamma_F$ we have two options to decompose the total Hilbertspace $H$, firstly into \begin{align} H_F = \underbrace{H_F^+}_{\text{ONB } \{e_L, \bar{e}_L\}} @@ -78,12 +79,12 @@ Hilbertspace $H$, firstly into \end{align} or alternatively into the eigenspace of particles and their antiparticles (electrons and positrons) which is preferred in literature and -which we will use going further +which will be used further out \begin{align} H_F = \underbrace{H_{e}}_{\text{ONB } \{e_L, e_R\}} \oplus - \underbrace{H_{\bar{e}}}_{\text{ONB } \{\bar{e}_L, \bar{e}_R\}}. + \underbrace{H_{\bar{e}}}_{\text{ONB } \{\bar{e}_L, \bar{e}_R\}}, \end{align} -Here ONB means orthonormal basis. +the shortening `ONB' means orthonormal basis. The action of $a \in A = \mathbb{C}^2$ on $H$ with respect to the ONB $\{e_L, e_R, \bar{e}_L, \bar{e}_R\}$ is represented by @@ -97,11 +98,10 @@ $\{e_L, e_R, \bar{e}_L, \bar{e}_R\}$ is represented by 0 &0 &0 &a_2\\ \end{pmatrix} \end{align} -Do note that this action commutes wit the grading and that -$[a, b^\circ] = 0$ with $b:= J_F b^*J_F$ because both the left and the right -action is given by diagonal matrices by equation \eqref{eq:leftrightrepr}. Note -that we are still left with $D_F = 0$ and the following spectral -triple +Do note that this action commutes wit the grading and that $[a, b^\circ] = 0$ +with $b:= J_F b^*J_F$ because both the left and the right action are given by +diagonal matrices according to equation \eqref{eq:leftrightrepr}. Furthermore +note that we are still left with $D_F = 0$ and the following spectral triple \begin{align}\label{eq:fedfail} \left( \mathbb{C}^2, \mathbb{C}^2, D_F=0; J_F = \begin{pmatrix} @@ -114,7 +114,7 @@ triple \right). \end{align} It can be represented in the following Krajewski diagram, -with two nodes of multiplicity two +with two nodes of multiplicity two bellow \begin{figure}[H] \centering \begin{tikzpicture}[ dot/.style = {draw, circle, inner sep=0.06cm}, @@ -130,6 +130,7 @@ with two nodes of multiplicity two \node[bigdot](d0) at (1.5,0) [] {}; \node[bigdot](d0) at (0.5,-1) [] {}; \end{tikzpicture} + \caption{Krajewski diagram of the spectral triple from equation \ref{eq:fedfail}} \end{figure} \subsubsection{A noncommutative Finite Dirac Operator} To extend our spectral triple with a non-zero Operator, we need to take a @@ -149,7 +150,7 @@ We can now define the finite space $F_{ED}$. \begin{align} F_{ED} := (\mathbb{C}^2, \mathbb{C}^4, D_F; J_F, \gamma_F) \end{align} -where $J_F$ and $\gamma_F$ are like in equation \eqref{eq:fedfail} and $D_F$ +where $J_F$ and $\gamma_F$ are as in equation \eqref{eq:fedfail} and $D_F$ from equation \eqref{eq:feddirac}. \subsubsection{Almost commutative Manifold of Electrodynamics} @@ -159,11 +160,11 @@ represented by the following spectral triple M\times F_{ED} := \big(C^\infty(M,\mathbb{C}^2),\ L^2(S)\otimes \mathbb{C}^4,\ D_M\otimes 1 +\gamma _M \otimes D_F;\; J_M\otimes J_F,\ \gamma_M\otimes - \gamma _F\big) + \gamma _F\big). \end{align} The algebra didn't change, thus we can decompose it like before \begin{align} - C^\infty(M, \mathbb{C}^2) = C^\infty (M) \oplus C^\infty (M) + C^\infty(M, \mathbb{C}^2) = C^\infty (M) \oplus C^\infty (M). \end{align} As for the Hilbertspace, we can decomposition it in the following way \begin{align} @@ -186,15 +187,15 @@ arbitrary gauge field $B_\mu = A_\mu - J_F A_\mu J_F^{-1}$ we can write 0 & 0 & 0 & Y_\mu \end{pmatrix} \;\;\;\;\;\ \text{for} \;\;\ Y_\mu (x) \in \mathbb{R}. \end{align} -We have one single $U(1)$ gauge field $Y_\mu$, carrying the action of the +There is one single $U(1)$ gauge field $Y_\mu$, carrying the action of the gauge group \begin{align} \text{$\mathfrak{B}$}(M\times F_{ED}) \simeq C^\infty(M, U(1)) \end{align} The space $N = M\times X$ consists of two copies of $M$. -If $D_F = 0$ we have infinite distance between the two copies. Now have -hacked the spectral triple to have nonzero Dirac operator $D_F$. The new +If $D_F = 0$ we have infinite distance between the two copies, yet now we have +adjusted the spectral triple to have a nonzero Dirac operator. The new Dirac operator still has a commuting relation with the algebra $[D_F, a] = 0$ $\forall a \in A$, and we should note that the distance between the two copies of $M$ is still infinite. This is purely an mathematically abstract @@ -210,8 +211,11 @@ action $S_b$ (bosonic) and of the fermionic action $S_f$. The simplest spectral action of a spectral triple $(A, H, D)$ is given by the trace of a function of $D$. We also consider inner fluctuations of the Dirac -operator $D_\omega = D + \omega + \varepsilon' J\omega J^{-1}$ where $\omega = -\omega ^* \in \Omega_D^1(A)$. +operator +\begin{align} + D_\omega = D + \omega + \varepsilon' J\omega J^{-1}, +\end{align} +where $\omega = \omega ^* \in \Omega_D^1(A)$. \begin{mydefinition} Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a suitable function \textbf{positive and even}. The spectral action is then @@ -224,7 +228,7 @@ operator $D_\omega = D + \omega + \varepsilon' J\omega J^{-1}$ where $\omega = independent of the basis. The subscript $b$ in $S_b$ stands for bosonic, because in physical applications $\omega$ will describe bosonic fields. - In addition to the bosonic action $S_b$ we can define a topological spectral + In addition to the bosonic action $S_b$, we can define a topological spectral action $S_{top}$. Leaning on the grading $\gamma$ the topological spectral action is \begin{align} S_{\text{top}}[\omega] := \text{Tr}(\gamma\ @@ -237,19 +241,18 @@ operator $D_\omega = D + \omega + \varepsilon' J\omega J^{-1}$ where $\omega = S_f[\omega, \psi] = (J\tilde{\psi}, D_\omega \tilde{\psi}) \end{align} with $\tilde{\psi} \in H_{cl}^+ := \{\tilde{\psi}: \psi \in H^+\}$, where - $H_{cl}^+$ is a set of Grassmann variables in $H$ in the +1-eigenspace + $H_{cl}^+$ is a set of Grassmann variables in $H$ in the $+1$-eigenspace of the grading $\gamma$. \end{mydefinition} %---------------------- APPENDIX ?????????????-------------------- -\textbf{APPENDIX??} Grassmann variables are a set of Basis vectors of a vector space, they form a unital algebra over a vector field $V$, where the generators are anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have \begin{align} - &\theta _i \theta _j = -\theta _j \theta _i \\ - &\theta _i x = x\theta _j \;\;\;\; x\in V \\ - &(\theta_i)^2 = 0 \;\;\; (\theta _i \theta _i = -\theta _i \theta _i) + &\theta _i \theta _j = -\theta _j \theta _i, \\ + &\theta _i x = x\theta _j \;\;\;\; x\in V, \\ + &(\theta_i)^2 = 0 \;\;\; (\theta _i \theta _i = -\theta _i \theta _i). \end{align} %---------------------- APPENDIX ?????????????-------------------- \begin{myproposition} @@ -266,17 +269,21 @@ anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have \mathcal{L}_B(B_\mu)+ \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi). \end{align} - The Lagrangian $\mathcal{L}_M$ is of the spectral triple, represented by - the following term - $(C^\infty(M) , L^2(S), D_M)$ + The Lagrangian $\mathcal{L}_M$ is of the spectral triple $(C^\infty(M) , + L^2(S), D_M)$, represented by the following term \begin{align}\label{lagr} \mathcal{L}_M(g_{\mu\nu}) := \frac{f_4 \Lambda ^4}{2\pi^2} - \frac{f_2 \Lambda^2}{24\pi ^2}s - \frac{f(0)}{320\pi^2} C_{\mu\nu \varrho \sigma}C^{\mu\nu \varrho \sigma}, \end{align} - here $C^{\mu\nu \varrho \sigma}$ is defined in terms of the Riemannian + where $C^{\mu\nu \varrho \sigma}$ is the Weyl tensor defined in terms of the Riemannian curvature tensor $R_{\mu\nu \varrho \sigma}$ and the Ricci tensor - $R_{\nu\sigma} = g^{\mu\varrho} R_{\mu\nu \varrho\sigma}$. + $R_{\nu\sigma} = g^{\mu\varrho} R_{\mu\nu \varrho\sigma}$ such that + \begin{align} + C^{\mu\nu\varrho\sigma}C_{\mu\nu\varrho\sigma}= + R_{\mu\nu\varrho\sigma}R^{\mu\nu\varrho\sigma} - + 2R_{\nu\sigma}R^{\nu\sigma} + \frac{1}{2}s^2. + \end{align} The kinetic term of the gauge field is described by the Lagrangian $\mathcal{L}_B$, which takes the following shape \begin{align} @@ -308,7 +315,7 @@ anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have and they are dependent on the fluctuated Dirac operator $D_\omega$. We can rewrite the heat kernel coefficients in terms of $D_M$, for the first two terms $a_0$ and $a_2$ we use $N:= - \text{Tr}\mathbbm{1_{H_F}})$ and write + \text{Tr}(\mathbbm{1}_{H_F})$ and one obtains \begin{align} a_0(D_\omega^2) &= Na_0(D_M^2),\\ a_2(D_\omega^2 &= Na_2(D_M^2) - \frac{1}{4\pi^2}\int_M @@ -323,7 +330,7 @@ anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have &F^2 = \frac{1}{16}s^2\otimes 1 + 1\otimes \Phi^4 - \frac{1}{4} \gamma^\mu\gamma^\nu \gamma^\varrho\gamma^\sigma F_{\mu\nu}F^{\mu\nu}+\\ &\;\;\;\;\;\;\;+\gamma^\mu\gamma^\nu\otimes(D_\mu\Phi)(D_\nu - \Phi)+\frac{1}{2}s\otimes \Phi^2 + \ \text{traceless terms}\\ + \Phi)+\frac{1}{2}s\otimes \Phi^2 + \ \text{traceless terms},\\ \nonumber\\ &\frac{1}{360}\text{Tr}(180F^2) = \frac{1}{8}s^2N + 2\text{Tr}(\Phi^4) + \text{Tr}(F_{\mu\nu}F^{\mu\nu}) +\\ @@ -335,7 +342,7 @@ anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have \end{align} The cross terms of the trace in $\Omega_{\mu\nu}^E\Omega^{E\mu\nu}$ vanishes because of the antisymmetric property of the Riemannian - curvature tensor, thus we can write + curvature tensor, reading \begin{align} \Omega_{\mu\nu}^E\Omega^{E\mu\nu} = \Omega_{\mu\nu}^S\Omega^{S\mu\nu} \otimes 1 - 1\otimes F_{\mu\nu}F^{\mu\nu} + 2i\Omega_{\mu\nu}^S @@ -353,7 +360,8 @@ anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have \frac{N}{24}R_{\mu\nu\varrho\sigma}R^{\mu\nu\varrho\sigma} -\frac{1}{3}\text{Tr}(F_{\mu\nu}F^{\mu\nu}). \end{align} - Finally plugging the results into the coefficient $a_4$ and simplifying we get + Finally plugging the results into the coefficient $a_4$ and simplifying + one gets \begin{align} a_4(x, D_\omega^4) &= Na_4(x, D_M^2) + \frac{1}{4\pi^2}\bigg(\frac{1}{12} s \text{Tr}(\Phi^2) + \frac{1}{2}\text{Tr}(\Phi^4) \nonumber \\ @@ -372,9 +380,9 @@ We remind ourselves the definition of the fermionic action in definition \eqref{eq:almost commutative manifold}. The Hilbertspace $H_F$ is separated into the particle-antiparticle states with ONB $\{e_R, e_L, \bar{e}_R, \bar{e}_L\}$. The orthonormal basis of $H_F^+$ is $\{e_L, \bar{e}_R\}$ and -consequently for $H_F^-$, $\{e_R, \bar{e}_L\}$. We can decompose a spinor -$\psi \in L^2(S)$ in each of the eigenspaces $H_F^\pm$, $\psi = \psi_R+ -\psi_L$. That means for an arbitrary $\psi \in H^+$ we can write +consequently for $H_F^-$, $\{e_R, \bar{e}_L\}$. The decomposition of a spinor +$\psi \in L^2(S)$ in each of the eigenspaces $H_F^\pm$ is $\psi = \psi_R+ +\psi_L$. Meaning for an arbitrary $\psi \in H^+$ we can write \begin{align} \psi = \chi_R \otimes e_R + \chi_L \otimes e_L + \psi_L \otimes \bar{e}_R+ @@ -383,7 +391,7 @@ $\psi \in L^2(S)$ in each of the eigenspaces $H_F^\pm$, $\psi = \psi_R+ where $\chi_L, \psi_L \in L^2(S)^+$ and $\chi_R, \psi_R \in L^2(S)^-$. Since the fermionic action yields too much restriction on $F_{ED}$ (modified -Two-Point space $F_X$) we redefine it by taking account the fluctuated Dirac +Two-Point space $F_X$) one redefines it by taking into account the fluctuated Dirac operator \begin{align} D_\omega = D_M \otimes i + \gamma^\mu \otimes B_\mu + \gamma_M \otimes @@ -439,8 +447,9 @@ Finally the fermionic action of $M\times F_{ED}$ takes the form \tilde{\Psi}\big) + \big(S_M\tilde{\chi}_L, \bar{d}\tilde{\psi}_L\big) - \big(J_M\tilde{\chi}_R, d \tilde{\psi}_R\big). \end{align} -Ultimately we arrive at the full Lagrangian of $M\times F_{ED}$, which is the -sum of purely gravitational Lagrangian +Ultimately we arrive at the full Lagrangian of the almost commutative +manifold $M\times F_{ED}$, which is the sum of the purely gravitational +Lagrangian \begin{align} \mathcal{L}_{grav}(g_{\mu\nu})=4\mathcal{L}_M(g_{\mu\nu})+ \mathcal{L}_\phi (g_{\mu\nu}), diff --git a/src/thesis/main.pdf b/src/thesis/main.pdf Binary files differ. diff --git a/src/thesis/main.tex b/src/thesis/main.tex @@ -24,15 +24,15 @@ \input{chapters/main_sec} -%\input{chapters/basics} % ausgearbeitet ohne exercises, ohne examples +\input{chapters/basics} % ausgearbeitet ohne exercises, ohne examples -%\input{chapters/finitencg} % ausgearbeitet ohne exercises, ohne examples +\input{chapters/finitencg} % ausgearbeitet ohne exercises, ohne examples -%\input{chapters/realncg} % ausgearbeitet ohne exercises, ohne examples +\input{chapters/realncg} % ausgearbeitet ohne exercises, ohne examples -%\input{chapters/heatkernel} % ausgearbeitet ohne exercises, ohne examples +\input{chapters/heatkernel} % ausgearbeitet ohne exercises, ohne examples -%\input{chapters/twopointspace} % ausgearbeitet ohne exercises, ohne examples +\input{chapters/twopointspace} % ausgearbeitet ohne exercises, ohne examples \input{chapters/electroncg} diff --git a/src/thesis/todo.md b/src/thesis/todo.md @@ -3,3 +3,17 @@ * rewrite geometrical invariants $E$ in heatkernel.tex into the right one from electroncg.tex ! * figures need caption and numbering + +# NORMAL TODO + + 1. go through the main part and rewrite the chapters make sure the context + is followed, the equations have a comma or a dot at the sentence end + etc. DONE + 2. rethink the chapters + 3. write introduction + 4. write conclusion + 5. cut out exercises and examples in the main part if necessary, read + through the not cut out and write them up nicely + 6. write abstract + 7. read through + 8. submit