ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit c114fae80c3165461a37def1e20427fbb9cf5a01
parent 5d3c6f911cae56d27532921f25ef57c3d73228c6
Author: miksa234 <milutin@popovic.xyz>
Date:   Fri, 23 Jul 2021 11:36:36 +0200

checkpoint

Diffstat:
Msrc/thesis/back/title.tex | 31+++++++++++++++----------------
Msrc/thesis/chapters/diffgeo.tex | 79+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Msrc/thesis/chapters/electroncg.tex | 247+------------------------------------------------------------------------------
Msrc/thesis/chapters/heatkernel.tex | 201++++++++++++++++++++++++++-----------------------------------------------------
Asrc/thesis/chapters/twopointspace.tex | 241+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Msrc/thesis/main.pdf | 0
Msrc/thesis/main.tex | 7++++---
7 files changed, 407 insertions(+), 399 deletions(-)

diff --git a/src/thesis/back/title.tex b/src/thesis/back/title.tex @@ -5,9 +5,9 @@ \hspace{8.8cm} \includegraphics[width=8cm]{pics/uni_logo} \end{figure} -\vspace*{1cm} +\vspace*{2cm} - \fontsize{22}{0} \fontfamily{lmss}\selectfont \textbf{Bachelor's Thesis}\\ + \fontsize{22}{0} \fontfamily{phv}\selectfont \textbf{Bachelor's Thesis}\\ \vspace*{2.5cm} @@ -15,8 +15,7 @@ \vspace*{0.4cm} -\fontsize{18}{0} \selectfont \textbf{From Noncommutative Geometry to -Electrodynamics}\\ +\fontsize{18}{0} \selectfont \textbf{Noncommutative Geomtetry and Physics}\\ \vspace*{1.5cm} @@ -27,31 +26,31 @@ Electrodynamics}\\ \vspace*{2cm} - {\fontsize{12}{0} \selectfont in partial fulfillment of the requirements for the degree of}\\ + {\fontsize{12}{0} \selectfont in partial fulfilment of the requirements for the degree of}\\ \vspace*{0.4cm} { \fontsize{14}{0} \selectfont Bachelor of Science (BSc)}\\ \vspace*{2cm} - { \fontsize{12}{0} \selectfont Vienna, July 2021}\\ + { \fontsize{10}{0} \selectfont Vienna, July 2021}\\ \vspace*{3.5cm} \begin{tabular}{p{9cm}p{11.25cm}} - \fontsize{12}{0} \selectfont degree programme code as it appears on / & - \fontsize{12}{0} \selectfont A 033 676 \\ + \fontsize{10}{0} \selectfont degree programme code as it appears on / & + \fontsize{10}{0} \selectfont A 033 676 \\ - \fontsize{12}{0} \selectfont the student record sheet:\vspace*{0.4cm} & - \fontsize{12}{0} \selectfont\\ + \fontsize{10}{0} \selectfont the student record sheet:\vspace*{0.4cm} & + \fontsize{10}{0} \selectfont\\ - \fontsize{12}{0} \selectfont degree - programme as it appears on / & \fontsize{12}{0} \selectfont Physics \\ + \fontsize{10}{0} \selectfont degree + programme a0 it appears on / & \fontsize{10}{0} \selectfont Physics \\ - \fontsize{12}{0} \selectfont the student record sheet:\vspace*{0.4cm} & - \fontsize{12}{0} \selectfont \\ + \fontsize{10}{0} \selectfont the student record sheet:\vspace*{0.4cm} & + \fontsize{10}{0} \selectfont \\ - \fontsize{12}{0} \selectfont - Supervisor:\vspace*{0.4cm}& \fontsize{12}{0} \selectfont Lisa Glaser, PhD\\ + \fontsize{10}{0} \selectfont + Supervisor:\vspace*{0.4cm}& \fontsize{10}{0} \selectfont Lisa Glaser, PhD\\ \end{tabular} \end{center} \end{titlepage} diff --git a/src/thesis/chapters/diffgeo.tex b/src/thesis/chapters/diffgeo.tex @@ -47,3 +47,82 @@ operator $J_M:\Gamma(S) \rightarrow \Gamma(S)$ such that: $(S, J_M)$ is called the \textbf{spin Structure on $M$} \newline $J_M$ is called the \textbf{charge conjugation}. + +\subsection{Operators of Laplace Type} +Let $M$ be a $n$ dimensional compact Riemannian manifold with $\partial M = 0$. +Then consider a vector bundle $V$ over $M$ (i.e. there is a vector space to +each point on $M$), so we can define smooth functions. We want to look at +arbitrary differential operators $D$ of Laplace type on $V$, they have the general +from +\begin{align} + D = -(g^{\mu\nu} \partial_\mu\partial_\nu + a^\sigma\partial_\sigma +b) +\end{align} +where $a^\sigma, b$ are matrix valued functions on $M$ and $g^{\mu\nu}$ is the +inverse metric on $M$. There is a unique connection on $V$ and a unique +endomorphism (matrix valued function) $E$ on $V$, then we can rewrite $D$ in +terms of $E$ and covariant derivatives +\begin{align} + D = -(g^{\mu\nu} \nabla_\mu \nabla_\nu +E) +\end{align} +Where the covariant derivative consists of $\nabla = \nabla^{[R]} +\omega$ the +standard Riemannian covariant derivative $\nabla^{[R]}$ and a "gauge" bundle +$\omega$ (fluctuations). WE can write $E$ and $\omega$ in terms of geometrical +identities +\begin{align} + \omega_\delta &= \frac{1}{2}g_{\nu\delta}(a^\nu + +g^{\mu\sigma}\Gamma^\nu_{\mu\sigma}I_V)\\ + E &= b - g^{\nu\mu}(\partial_\mu \omega_\nu + \omega_\nu \omega_\mu - + \omega_\sigma \Gamma^\sigma_{\nu\mu}) +\end{align} +where $I_V$ is the identity in $V$ and the Christoffel symbol +\begin{align} + \Gamma^\sigma_{\mu\nu} = g^{\sigma\varrho} \frac{1}{2} (\partial_\mu + g_{\nu\varrho} + \partial_\nu g_{\mu\varrho} - \partial_\varrho g_{\mu\nu}) +\end{align} +Furthermore we remind ourselves of the Riemmanian curvature tensor, Ricci +Tensor and the Scalar curavture. +\begin{align} + R^\mu_{\nu\varrho\sigma} &= \partial_\sigma \Gamma^{\mu}_{\nu\varrho} + -\partial_\varrho \Gamma^\mu_{\nu\sigma} + \Gamma^{\lambda}_{\nu\varrho}\Gamma^{\mu}_{\lambda\sigma} + \Gamma^{\lambda}_{\nu\sigma}\Gamma^{\mu}_{\lambda\varrho}\\ + R_{\mu\nu} &:= R^{\sigma}_{\mu\nu\sigma}\\ + R &:= R^\mu_{\ \mu} +\end{align} + +The we let $\{e_1, \dots, e_n\}$ be the local orthonormal frame of +$TM$(tangent bundle $M$), which will be noted with flat indices $i,j,k,l +\in\{1,\dots, n\}$, we use $e^k_\mu, e^\nu_j$ to transform between flat indices +and curved indices $\mu, \nu, \varrho$. +\begin{align} + e^\mu_j e^\nu_k g_{\mu\nu} &= \delta_{jk}\\ + e^\mu_j e^\nu_k \delta^{jk} &= g^{\mu\nu} \\ + e^j_\mu e^\mu_k &= \delta^j_k +\end{align} + +The Riemannian part of the covariant derivative contains the standard +Levi-Civita connection, so that for a $v_\nu$ we write +\begin{align} + \nabla_\mu^{[R]} v_\nu = \partial_\mu v_\nu - + \Gamma^{\varrho}_{\mu\nu}v_\varrho. +\end{align} +The extended covariant derivative reads then +\begin{align} + \nabla_\mu v^j = \partial_\mu v^j + \sigma^{jk}_\mu v_k. +\end{align} +the condition $\nabla_\mu e^k_\nu = 0$ gives us the general connection +\begin{align} + \sigma^{kl}_\mu = e^\nu_l\Gamma^{\varrho}_{\mu\nu}e^k_\varrho - e^\nu_l + \partial_\mu e^k_\nu +\end{align} +The we may define the field strength $\Omega_{\mu\nu}$ of the connection $\omega$ +\begin{align} + \Omega_{\mu\nu} = \partial_\mu \omega_\nu -\partial_\nu \omega_\mu + +\omega_\mu \omega_\nu -\omega_\nu\omega_\mu. +\end{align} +If we apply the covariant derivative on $\Omega$ we get +\begin{align} + \nabla_\varrho\Omega_{\mu\nu} = \partial_\varrho \Omega_{\mu\nu} - + \Gamma^{\sigma}_{\varrho \mu} \Omega_{\sigma\mu} + [\omega_\varrho, + \Omega_{\mu\nu}] +\end{align} diff --git a/src/thesis/chapters/electroncg.tex b/src/thesis/chapters/electroncg.tex @@ -1,246 +1,4 @@ \subsection{Noncommutative Geometry of Electrodynamics} -\subsubsection{The Two-Point Space} -One of the basics forms of noncommutative space is the Two-Point space $X -:= \{x, y\}$. The Two-Point space can be represented by the following spectral triple -\begin{align} - F_X := (C(X) = \mathbb{C}^2, H_F, D_F; J_F, \gamma _f). -\end{align} -Three properties of $F_X$ stand out. First of all the action of -$C(X)$ on $H_F$ is faithful for $dim(H_F) \geq 2$, thus we can make a simple -choice for the Hilbertspace, $H_F = \mathbb{C}^2$. Furthermore $\gamma_F$ is -the $\mathbb{Z}_2$ grading, which allows us to decompose $H_F$ into -\begin{align} - H_F = H_F^+ \otimes H_F^- = \mathbb{C} \otimes \mathbb{C}, -\end{align} -where -\begin{align} - H_F^\pm = \{\psi \in H_F |\; \gamma_F\psi = \pm \psi\}, -\end{align} -are two eigenspaces. And lastly the Dirac operator $D_F$ lets us -interchange between $H_F^\pm$, -\begin{align} - D_F = - \begin{pmatrix}0 & t \\ \bar{t} & 0\end{pmatrix}, \;\;\;\;\; - \text{with} \;\; t\in\mathbb{C}. -\end{align} - - The Two-Point space $F_X$ can only have a real structure if the Dirac - operator vanishes, i.e. $D_F = 0$. In that case we have KO-dimension of 0, - 2 or 6. To elaborate on this, we know that there are two diagram representations of - $F_X$ at $\underbrace{\mathbb{C} \oplus \mathbb{C}}_{C(X)}$ on - $\underbrace{\mathbb{C} \oplus\mathbb{C}}_{H_F}$, which are: - \begin{figure}[h!] \centering - \begin{tikzpicture}[ - dot/.style = {draw, circle, inner sep=0.06cm}, - no/.style = {}, - ] - \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; - \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; - \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {}; - \node[no](d) at (2, 0.5) [label=above:$\textbf{1}$] {}; - \node[dot](d0) at (2,0) [] {}; - \node[dot](d0) at (1,-1) [] {}; - - \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {}; - \node[no](b2) at (6, -1) [label=left:$\textbf{1}^\circ$] {}; - \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {}; - \node[no](d2) at (8, 0.5) [label=above:$\textbf{1}$] {}; - \node[dot](d0) at (7,0) [] {}; - \node[dot](d0) at (8,-1) [] {}; - \end{tikzpicture} - \end{figure}\newline -If the Two-Point space $F_X$ would be a real spectral triple then $D_F$ can -only go vertically or horizontally. This would mean that $D_F$ vanishes. -As for the KO-dimension The diagram on the left has KO-dimension 2 and 6, the diagram on the -right 0 and 4. Yet KO-dimension 4 is ruled out because -$dim(H_F^\pm) = 1$ (see Lemma 3.8 Book), which ultimately means $J_F^2 = -1$ is -not allowed. -\subsubsection{The Product Space} -By Extending the Two-Point space with a four dimensional Riemannian spin -manifold, we get an almost commutative manifold $M\times F_X$, given by -\begin{align} - M\times F_X = \big(C^\infty(M, \mathbb{C}^2), L^2(S)\otimes \mathbb{C}^2, - D_M\otimes 1 ; J_M\otimes J_F, \gamma_M \otimes \gamma_F\big), -\end{align} -where -\begin{align} - C^\infty(M, \mathbb{C}^2) \simeq C^\infty(M) \oplus C^\infty(M). -\end{align} -According to Gelfand duality the algebra $C^\infty(M, \mathbb{C}^2)$ of the -spectral triple corresponds to the space -\begin{align} - N:= M\otimes X \simeq M\sqcup X. -\end{align} -Keep in mind that we still need to find an appropriate real structure on the -Riemannian spin manifold, $J_M$. Furthermore total Hilbertspace can be decomposed into $H = L^2(S) \oplus L^2(S)$, such that for -$\underbrace{a,b\in C^\infty(M)}_{(a, b) \in C^\infty(N)}$ -and $\underbrace{\psi, \phi \in L^2(S)}_{(\psi, \phi) \in H}$ we have -\begin{align} - (a, b)(\psi, \phi) = (a\psi, b\phi) -\end{align} -Along with the decomposition of the total Hilbertspace we can consider a -distance formula on $M\times F_X$ with -\begin{align}\label{eq:commutator inequality} - d_{D_F}(x,y) = \sup\left\{ |a(x) - a(y)|:a\in A_F, ||[D_F, a]|| \leq - 1 \right\}. -\end{align} -To calculate the distance between two points on the Two-Point space $X= \{x, -y\}$, between $x$ and $y$, we consider an $a \in \mathbb{C}^2 = C(X)$, which is -specified by two complex numbers $a(x)$ and $a(y)$. Then we simplify the -commutator inequality in \ref{eq:commutator inequality} -\begin{align} - &||[D_F , a]|| = ||(a(y) - a(x))\begin{pmatrix}0 &t\\\bar{t} &0 - \end{pmatrix}|| \leq 1,\\ - &\Leftrightarrow |a(y) - a(x)|\leq \frac{1}{|t|}, -\end{align} -and the supremum gives us the distance -\begin{align} - d_{D_F} (x,y) = \frac{1}{|t|}. -\end{align} -An interesting observation here is that, if the Riemannian spin manifold can be -represented by a real spectral triple then a real structure $J_M$ exists, -then it follows that $t=0$ and the distance becomes infinite. This is a -purely mathematical observation and has no physical meaning. - -We can also construct a distance formula on $N$ (in reference to a point $p -\in M$) between two points on $N=M\times X$, $(p, x)$ and $(p,y)$. Then an $a -\in C^\infty(N)$ is determined by $a_x(p):=a(p, x)$ and $a_y(p):=a(p, y)$. -The distance between these two points is -\begin{align} - d_{D_F\otimes 1}(n_1, n_2) = \sup \left\{ |a(n_1) - a(n_2)|: a\in - A, ||[D\otimes 1, a]||\right\}. -\end{align} -On the other hand if we consider $n_1 = (p,x)$ and $n_2 = (q, x)$ -for $p,q \in M$ then -\begin{align} - d_{D_M \otimes 1} (n_1, n_2) = |a_x(p) - a_x(q)| \;\;\;\text{for}\;\; - a_x\in - C^\infty(M) \;\; \text{with} \;\; ||[D\otimes 1, a_x]|| \leq 1 -\end{align} -The distance formula turns to out to be the geodesic distance formula -\begin{align} - d_{D_M\otimes1}(n_1, n_2) = d_g(p, q), -\end{align} -which is to be expected since we are only looking at the manifold. -However if $n_1 = (p, x)$ and $n_2 = (q, y)$ then the two conditions are -\begin{align} - &||[D_M, a_x]|| \leq 1, \;\;\; \text{and}\\ - &||[D_M, a_y|| \leq 1. -\end{align} -These conditions have no restriction which results in the distance being -infinite! And $N = M\times X$ is given by two disjoint copies of M which are -separated by infinite distance - -The distance is only finite if $[D_F, a] < 1$. In this case the commutator -generates a scalar field and the finiteness of the distance is -related to the existence of scalar fields. - -\subsubsection{$U(1)$ Gauge Group} -To get a insight into the physical properties of the almost commutative -manifold $M\times F_X$, that is to calculate the spectral action, we need to -determine the corresponding Gauge theory. -For this we set of with simple definitions and important propositions to -help us break down and search for the gauge group of the Two-Point $F_X$ -space which we then extend to $M\times F_X$. We will only be diving -superficially into this chapter, for further reading we refer to -\cite{ncgwalter}. -\begin{definition} -Gauge Group of a real spectral triple is given by -\begin{align} - \mathfrak{B}(A, H; J) := \{ U = uJuJ^{-1} | u\in U(A)\} -\end{align} -\end{definition} -\begin{definition} - A *-automorphism of a *-algebra $A$ is a linear invertible - map - \begin{align} - &\alpha:A \rightarrow A\;\;\; \text{with}\\ - \nonumber\\ - &\alpha(ab) = \alpha(a)\alpha(b)\\ - &\alpha(a)^* = \alpha(a^*) - \end{align} - The \textbf{Group of automorphisms of the *-Algebra $A$} is denoted by - $(A)$.\newline - The automorphism $\alpha$ is called \textbf{inner} if - \begin{align} - \alpha(a) = u a u^* \;\;\; \text{for} \;\; U(A) - \end{align} - where $U(A)$ is - \begin{align} - U(A) = \{ u\in A|\;\; uu^* = u^*u=1\} \;\;\; - \text{(unitary)} - \end{align} -\end{definition} -The Gauge group of $F_X$ is given by the quotient $U(A)/U(A_J)$. -We want a nontrivial Gauge group so we need to choose a $U(A_J) \neq -U(A)$ and $U((A_F)_{J_F}) \neq U(A_F)$. -We consider our Two-Point space $F_X$ to be equipped with a real structure, -which means the operator vanishes, and the spectral triple representation is -\begin{align} - F_X := \left(\mathbb{C}^2,\mathbb{C}^2, D_F =\begin{pmatrix} - 0&0\\0&0\end{pmatrix}; J_f =\begin{pmatrix} - 0&C\\C&0\end{pmatrix}, - \gamma_F = \begin{pmatrix}1&0\\0&-1\end{pmatrix}\right). -\end{align} -Here $C$ is the complex conjugation, and $F_X$ is a real even finite -spectral triple (space) of KO-dimension 6. - -\begin{proposition} -The Gauge group of the Two-Point space $\mathfrak{B}(F_X)$ is $U(1)$. -\end{proposition} -\begin{proof} - Note that $U(A_F) = U(1) \times U(1)$. We need to show that $U(A_F) \cap - U(A_F)_{J_F}) \simeq U(1)$, such that $\mathfrak{B}(F) \simeq U(1)$. So - for an element $a \in \mathbb{C}^2$ to be in $(A_F)_{J_F}$, it has to - satisfy $J_F a^* J_F = a$, - \begin{align} - J_F a^* J^{-1} = - \begin{pmatrix}0&C\\C&0\end{pmatrix} - \begin{pmatrix}\bar{a}_1&0\\0&\bar{a}_2\end{pmatrix} - \begin{pmatrix}0&C\\C&0\end{pmatrix} - = - \begin{pmatrix}a_2&0\\0&a_1\end{pmatrix}. - \end{align} - This can only be the case if $a_1 = a_2$. So we have - $(A_F)_{J_F} \simeq \mathbb{C}$, whose unitary elements - from $U(1)$ are contained in the diagonal subgroup of - $U(A_F)$. -\end{proof} - -An arbitrary hermitian field $A_\mu = -ia\partial _\mu b$ is given by -two $U(1)$ Gauge fields $X_\mu^1, X_\mu^2 \in C^\infty(M, \mathbb{R})$. -However $A_\mu$ appears in combination $A_\mu - J_F A_\mu J_F^{-1}$: -\begin{align} - A_\mu - J_F A_\mu J_F^{-1} = - \begin{pmatrix}X_\mu^1&0\\0&X_\mu^2 \end{pmatrix} - - - \begin{pmatrix}X_\mu^2&0\\0&X_\mu^1 \end{pmatrix} - =: - \begin{pmatrix}Y_\mu&0\\0&-Y_\mu \end{pmatrix} - = Y_\mu \otimes \gamma _F, -\end{align} -where $Y_\mu$ the $U(1)$ Gauge field is defined as -\begin{align} - Y_\mu := X_\mu^1 - X_\mu^2 \in C^\infty(M, \mathbb{R}) = C^\infty(M, - i\ u(1)). -\end{align} - -\begin{proposition} - The inner fluctuations of the almost-commutative manifold $M\times - F_X$ are parameterized by a $U(1)$-gauge field $Y_\mu$ as - \begin{align} - D \mapsto D' = D + \gamma ^\mu Y_\mu \otimes \gamma_F - \end{align} - The action of the gauge group $\mathfrak{B}(M\times F_X) \simeq - C^\infty (M, U(1))$ on $D'$ is implemented by - \begin{align} - Y_\mu \mapsto Y_\mu - i\ u\partial_\mu u^*; \;\;\;\;\; (u\in - \mathfrak{B}(M\times F_X)). - \end{align} -\end{proposition} - - -\subsection{Electrodynamics} In this chapter we describe Electrodynamics with the almost commutative manifold $M\times F_X$ and the abelian gauge group $U(1)$. We arrive at a unified description of gravity and electrodynamics although in the classical level. @@ -394,7 +152,7 @@ We can now define the finite space $F_{ED}$. where $J_F$ and $\gamma_F$ are like in equation \ref{eq:fedfail} and $D_F$ from equation \ref{eq:feddirac}. -\subsubsection{The almost-commutative Manifold} +\subsubsection{Almost commutative Manifold of Electrodynamics} The almost commutative manifold $M\times F_{ED}$ has KO-dimension 2, and is represented by the following spectral triple \begin{align}\label{eq:almost commutative manifold} @@ -442,7 +200,7 @@ $\forall a \in A$, and we should note that the distance between the two copies of $M$ is still infinite. This is purely an mathematically abstract observation and doesn't affect physical results. -\subsubsection{The Spectral Action} +\subsubsection{Spectral Action} In this chapter we bring all our results together to establish an Action functional to describe a physical system. It turns out that the Lagrangian of the almost commutative manifold $M\times F_{ED}$ @@ -694,4 +452,3 @@ and the Lagrangian of electrodynamics +\frac{f(0)}{6\pi^2} Y_{\mu\nu}Y^{\mu\nu}. \end{align} - diff --git a/src/thesis/chapters/heatkernel.tex b/src/thesis/chapters/heatkernel.tex @@ -1,4 +1,3 @@ - \subsection{Heat Kernel Expansion} \subsubsection{The Heat Kernel} The heat kernel $K(t; x, y; D)$ is the fundamental solution of the heat @@ -9,205 +8,137 @@ equation. It depends on the operator $D$ of Laplacian type. For a flat manifold $M = \mathbb{R}^n$ and $D = D_0 := -\Delta_\mu\Delta^\mu +m^2$ the Laplacian with a mass term and the initial condition \begin{align} - K(0;x,y;D) = \delta(x,y) + K(0;x,y;D) = \delta(x,y), \end{align} -we have the standard fundamental solution +takes to form of the standard fundamental solution \begin{align}\label{eq:standard} - K(t;x,y;D_0) = (4\pi t)^{-n/2}\exp\left(-\frac{(x-y)^2}{4t}-tm^2\right) + K(t;x,y;D_0) = (4\pi t)^{-n/2}\exp\left(-\frac{(x-y)^2}{4t}-tm^2\right). \end{align} Let us consider now a more general operator $D$ with a potential term or a -guage field, the heat kernel reads then +gauge field, the heat kernel reads then \begin{align} K(t;x,y;D) = \langle x|e^{-tD}|y\rangle. \end{align} -We can expand it it in terms of $D_0$ and we still have the -singularity from the equation \ref{eq:standard} as $t\rightarrow 0$ thus the -expansion gives +We can expand the heat kernel in $t$, still having a +singularity from the equation \ref{eq:standard} as $t \rightarrow 0$ thus the +expansion reads \begin{align} - K(t;x,y;D) = K(t;x,y;D_0)\left(1 + tb_2(x,y) + t^2b_4(x,y) + \dots \right) + K(t;x,y;D) = K(t;x,y;D_0)\left(1 + tb_2(x,y) + t^2b_4(x,y) + \dots + \right), \end{align} -where $b_k(x,y)$ are regular in $y \rightarrow x$. They are called the heat +where $b_k(x,y)$ become regular as $y \rightarrow x$. These coefficients are called the heat kernel coefficients. - -\subsubsection{Example} -Now let us consider a propagator $D^{-1}(x,y)$ defined through the heat kernel -in an integral representation +%----------------------- KANN WEGGELASSEN WERDEN +\newline +\textbf{KANN WEGELASSEN WERDEN BIS ZUM NÄCHSTEN KAPITEL} +Let's turn our attention to a propagator $D^{-1}(x,y)$ defined through the +heat kernel, with an integral representation \begin{align} D^{-1} (x,y) = \int_0^\infty dt K(t;x,y;D). \end{align} -We can integrate the expression formally if we assume the heat kernel vanishes -for $t\rightarrow \infty$ we get +If we assume the heat kernel vanishes for $t\rightarrow \infty$, we can +integrate formally to get \begin{align} D^{-1}(x,y) \simeq 2(4\pi)^{-n/2}\sum_{j=0}\left(\frac{|x-y|}{2m}\right)^{-\frac{n}{2}+j+1} - K_{-\frac{n}{2}+j+1}(|x-y|m)b_{2j}(x,y). + K_{-\frac{n}{2}+j+1}(|x-y|m)b_{2j}(x,y), \end{align} where $b_0 = 1$ and $K_\nu (z)$ is the Bessel function \begin{align} - K_\nu(z) = \frac{1}{\pi} \int_0^\pi cos(\nu\tau-z\sin(\tau))d\tau + K_\nu(z) = \frac{1}{\pi} \int_0^\pi \cos(\nu\tau-z\sin(\tau))d\tau. \end{align} -it solves the differential equation +The Bessel function solves the following differential equation \begin{align} z^2 \frac{d^2K}{dz^2} + z \frac{dK}{dz} + (z^2 - \nu^2)=0. \end{align} -By looking at integral approximation of the propagator we conclude -that the singularities of $D^{-1}$ coincide with the singularities of the heat -kernel coefficients. -We consider now a generating functional in terns of $\det(D)$ which is called -the one-loop effective action (quantum fields theory) +By looking at an integral approximation for the propagator we conclude that +the singularities of $D^{-1}$ coincide with the singularities of the heat +kernel coefficients. Thus we can say, that a generating functional in terms of +$\det(D)$ is called the one-loop effective action (quantum field theory) \begin{align} - W = \frac{1}{2}\ln(\det D) + W = \frac{1}{2}\ln(\det D). \end{align} -we can relate $W$ with the heat kernel. For each eigenvalue $\lambda >0$ of $D$ +We have a direct relation with one-loop effective action $W$ and the +heat kernel. Furthermore notice that for each eigenvalue $\lambda >0$ of $D$ we can write the identity. \begin{align} \ln \lambda = -\int_0^\infty \frac{e^{-t\lambda}}{t}dt \end{align} -This expression is correct up to an infinite constant which does not depent on -$\lambda$, because of this we can ignore it. Further more we use $\ln(\det D) = -\text{Tr}(\ln D)$ and therefor we can write for $W$ +This expression is correct up to an infinite constant which does not depend +on the eigenvalue $\lambda$, thus we can ignore it. By substituting +$\ln(\det D) = \text{Tr}(\ln D)$ we can rewrite the one-loop effective action +$W$ into \begin{align} - W = -\frac{1}{2} \int_0^\infty dt \frac{K(t, D)}{t} + W = -\frac{1}{2} \int_0^\infty dt \frac{K(t, D)}{t}, \end{align} where \begin{align} K(t, D) = \text{Tr}(e^{-tD}) = \int d^n x \sqrt{g}K(t;x,x;D). \end{align} -The problem is now that the integral of $W$ is divergent at both limits. Yet +The problem now is that the integral of $W$ is divergent at both limits. Yet the divergences at $t\rightarrow \infty$ are caused by $\lambda \leq 0$ of $D$ -(infrared divergences) and are just ignored. The divergences at $t\rightarrow 0$ -are cutoff at $t=\Lambda^{-2}$, thus we write +(infrared divergences) and can be ignored. The divergences at $t\rightarrow 0$ +are cutoff at $t=\Lambda^{-2}$, simply written as \begin{align} W_\Lambda = -\frac{1}{2} \int_{\Lambda^{-2}}^\infty dt \frac{K(t, D)}{t}. \end{align} -We can calculate $W_\Lambda$ at up to an order of $\lambda ^0$ +We can calculate $W_\Lambda$ up to an order of $\lambda ^0$ \begin{align} W_\Lambda &= -(4\pi)^{-n/2} \int d^n x\sqrt{g}\bigg( \sum_{2(j+l)<n}\Lambda^{n-2j-2l}b_{2j}(x,x) \frac{(-m^2)^l l!}{n-2j-2l} +\\ &+ \sum_{2(j+l) =n }\ln(\Lambda) (-m^2)^l l! b_{2j}(x,x) \mathcal{O}(\lambda^0) \bigg) \end{align} -There is an divergence at $b_2(x,x)$ with $k\leq n$. Now we compute the limit -$\Lambda \rightarrow \infty$ +There is an divergence at $b_2(x,x)$ for $k\leq n$. Computing the limit +$\Lambda \rightarrow \infty$ we get \begin{align} -\frac{1}{2}(4\pi)^{n/2}m^n\int d^n x\sqrt{g} \sum_{2j>n} - \frac{b_{2j}(x,x)}{m^{2j}}\Gamma(2j-n) -\end{align} -here $\Gamma$ is the gamma function. -\subsubsection{Differential Geometry and Operators of Laplace Type} -Let $M$ be a $n$ dimensional compact Riemannian manifold with $\partial M = 0$. -Then consider a vector bundle $V$ over $M$ (i.e. there is a vector space to -each point on $M$), so we can define smooth functions. We want to look at -arbitrary differential operators $D$ of Laplace type on $V$, they have the general -from -\begin{align} - D = -(g^{\mu\nu} \partial_\mu\partial_\nu + a^\sigma\partial_\sigma +b) -\end{align} -where $a^\sigma, b$ are matrix valued functions on $M$ and $g^{\mu\nu}$ is the -inverse metric on $M$. There is a unique connection on $V$ and a unique -endomorphism (matrix valued function) $E$ on $V$, then we can rewrite $D$ in -terms of $E$ and covariant derivatives -\begin{align} - D = -(g^{\mu\nu} \nabla_\mu \nabla_\nu +E) -\end{align} -Where the covariant derivative consists of $\nabla = \nabla^{[R]} +\omega$ the -standard Riemannian covariant derivative $\nabla^{[R]}$ and a "gauge" bundle -$\omega$ (fluctuations). WE can write $E$ and $\omega$ in terms of geometrical -identities -\begin{align} - \omega_\delta &= \frac{1}{2}g_{\nu\delta}(a^\nu - +g^{\mu\sigma}\Gamma^\nu_{\mu\sigma}I_V)\\ - E &= b - g^{\nu\mu}(\partial_\mu \omega_\nu + \omega_\nu \omega_\mu - - \omega_\sigma \Gamma^\sigma_{\nu\mu}) -\end{align} -where $I_V$ is the identity in $V$ and the Christoffel symbol -\begin{align} - \Gamma^\sigma_{\mu\nu} = g^{\sigma\varrho} \frac{1}{2} (\partial_\mu - g_{\nu\varrho} + \partial_\nu g_{\mu\varrho} - \partial_\varrho g_{\mu\nu}) -\end{align} -Furthermore we remind ourselves of the Riemmanian curvature tensor, Ricci -Tensor and the Scalar curavture. -\begin{align} - R^\mu_{\nu\varrho\sigma} &= \partial_\sigma \Gamma^{\mu}_{\nu\varrho} - -\partial_\varrho \Gamma^\mu_{\nu\sigma} - \Gamma^{\lambda}_{\nu\varrho}\Gamma^{\mu}_{\lambda\sigma} - \Gamma^{\lambda}_{\nu\sigma}\Gamma^{\mu}_{\lambda\varrho}\\ - R_{\mu\nu} &:= R^{\sigma}_{\mu\nu\sigma}\\ - R &:= R^\mu_{\ \mu} + \frac{b_{2j}(x,x)}{m^{2j}}\Gamma(2j-n), \end{align} +where $\Gamma$ stands for the gamma function. +%----------------------- KANN WEGGELASSEN WERDEN -The we let $\{e_1, \dots, e_n\}$ be the local orthonormal frame of -$TM$(tangent bundle $M$), which will be noted with flat indices $i,j,k,l -\in\{1,\dots, n\}$, we use $e^k_\mu, e^\nu_j$ to transform between flat indices -and curved indices $\mu, \nu, \varrho$. -\begin{align} - e^\mu_j e^\nu_k g_{\mu\nu} &= \delta_{jk}\\ - e^\mu_j e^\nu_k \delta^{jk} &= g^{\mu\nu} \\ - e^j_\mu e^\mu_k &= \delta^j_k -\end{align} - -The Riemannian part of the covariant derivative contains the standard -Levi-Civita connection, so that for a $v_\nu$ we write -\begin{align} - \nabla_\mu^{[R]} v_\nu = \partial_\mu v_\nu - - \Gamma^{\varrho}_{\mu\nu}v_\varrho. -\end{align} -The extended covariant derivative reads then -\begin{align} - \nabla_\mu v^j = \partial_\mu v^j + \sigma^{jk}_\mu v_k. -\end{align} -the condition $\nabla_\mu e^k_\nu = 0$ gives us the general connection -\begin{align} - \sigma^{kl}_\mu = e^\nu_l\Gamma^{\varrho}_{\mu\nu}e^k_\varrho - e^\nu_l - \partial_\mu e^k_\nu -\end{align} -The we may define the field strength $\Omega_{\mu\nu}$ of the connection $\omega$ -\begin{align} - \Omega_{\mu\nu} = \partial_\mu \omega_\nu -\partial_\nu \omega_\mu - +\omega_\mu \omega_\nu -\omega_\nu\omega_\mu. -\end{align} -If we apply the covariant derivative on $\Omega$ we get -\begin{align} - \nabla_\varrho\Omega_{\mu\nu} = \partial_\varrho \Omega_{\mu\nu} - - \Gamma^{\sigma}_{\varrho \mu} \Omega_{\sigma\mu} + [\omega_\varrho, - \Omega_{\mu\nu}] -\end{align} \subsubsection{Spectral Functions} -Manifolds without $M$ boundary condition for the operator $e^{-tD}$ for $t>0$ is a -trace class operator on $L^2(V)$, this means that for any smooth function $f$ -on $M$ we can define +Manifolds $M$ with a disappearing boundary condition for the operator $e^{-tD}$ for $t>0$ is a +trace class operator on $L^2(V)$. Meaning for any smooth function $f$ on $M$ +we can define \begin{align} - K(t,f,D) = \text{Tr}_{L^2}(fe^{-tD}) + K(t,f,D) := \text{Tr}_{L^2}(fe^{-tD}), \end{align} -and we can rewrite +or alternately write an integral representation \begin{align} - K(t, f, D) = \int_M d^n x \sqrt{g} \text{Tr}_V(K(t;x,x;D)f(x)). + K(t, f, D) = \int_M d^n x \sqrt{g} \text{Tr}_V(K(t;x,x;D)f(x)), \end{align} -in terms of the Heat kernel $K(t;x,y;D)$ in the regular limit $y\rightarrow y$. -We can write the Heat Kernel in terms of the spectrum of $D$. Say -$\{\phi_\lambda\}$ is a ONB of eigenfunctions of $D$ corresponding to the -eigenvalue $\lambda$ +in the regular limit $y\rightarrow y$. We can write the Heat Kernel in terms +of the spectrum of $D$. So for an orthonormal basis $\{\phi_\lambda\}$ of +eigenfunctions for $D$, which corresponds to the eigenvalue $\lambda$, we +can rewrite the heat kernel into \begin{align} K(t;x,y;D) = \sum_\lambda \phi^\dagger_\lambda(x) \phi_\lambda(y)e^{-t\lambda}. \end{align} -We have an asymtotic expansion at $t \rightarrow 0$ for the trace +An asymptotic expansion as $t \rightarrow 0$ for the trace is then \begin{align} - Tr_{L^2}(fe^{-tD}) \simeq \sum_{k\geq 0}t^{(k-n)/2}a_k(f,D). + \text{Tr}_{L^2}(fe^{-tD}) \simeq \sum_{k\geq 0}t^{(k-n)/2}a_k(f,D), \end{align} where \begin{align} - a_k(f,D) = (4\pi)^{-n/2} \int_M d^4x \sqrt{g} b_k(x,x) f(x) + a_k(f,D) = (4\pi)^{-n/2} \int_M d^4x \sqrt{g} b_k(x,x) f(x). \end{align} \subsubsection{General Formulae} -We consider a compact Riemmanian Manifold $M$ without boundary condition, a -vector bundle $V$ over $M$ to define functions which carry discrete (spin or -gauge) indices. An Laplace style operator $D$ over $V$ and smooth function $f$ -on $M$. There is an asymtotic expansion where the heat kernel coefficients +Summarizing, in the last chapter we considered a compact Riemannian manifold +$M$ without boundary condition, a vector bundle $V$ over $M$ to define +functions which carry discrete (spin or gauge) indices, an Laplace style +operator $D$ over $V$ and smooth function $f$ on $M$. Now there is an asymptotic +expansion where the heat kernel coefficients are +%------------------------------- HERE +\newline +\textbf{---------------------HERE} +\newline +%------------------------------- HERE \begin{enumerate} - \item with odd index $k=2j+1$ vanish - $a_{2j+1}(f,D) = 0$ + \item with odd index $k=2j+1$ vanish $a_{2j+1}(f,D) = 0$ \item with even index are locally computable in terms of geometric invariants \end{enumerate} @@ -247,7 +178,7 @@ coefficients and that the only nonzero coefficient is $a_0(1, D_1) = \mathcal{A}^I_n(D_2)\right). \end{align} -On the other had all geometric invariants associated with $D$ are in the $D_2$ +On the other had all geometric invariants associated with $D$ are in the $D_2$ part. Thus all invariants are independent of $x_1$, so we can choose for $M_1$. Say $M_1 = S^1$ with $x\in (0, 2\pi)$ and $D_1=-\partial_{x_1}^2$ we may rewrite the heat kernel coefficients in diff --git a/src/thesis/chapters/twopointspace.tex b/src/thesis/chapters/twopointspace.tex @@ -0,0 +1,241 @@ +\subsection{Almost-commutative Manifold} +\subsubsection{Two-Point Space} +One of the basics forms of noncommutative space is the Two-Point space $X +:= \{x, y\}$. The Two-Point space can be represented by the following spectral triple +\begin{align} + F_X := (C(X) = \mathbb{C}^2, H_F, D_F; J_F, \gamma _f). +\end{align} +Three properties of $F_X$ stand out. First of all the action of +$C(X)$ on $H_F$ is faithful for $dim(H_F) \geq 2$, thus we can make a simple +choice for the Hilbertspace, $H_F = \mathbb{C}^2$. Furthermore $\gamma_F$ is +the $\mathbb{Z}_2$ grading, which allows us to decompose $H_F$ into +\begin{align} + H_F = H_F^+ \otimes H_F^- = \mathbb{C} \otimes \mathbb{C}, +\end{align} +where +\begin{align} + H_F^\pm = \{\psi \in H_F |\; \gamma_F\psi = \pm \psi\}, +\end{align} +are two eigenspaces. And lastly the Dirac operator $D_F$ lets us +interchange between $H_F^\pm$, +\begin{align} + D_F = + \begin{pmatrix}0 & t \\ \bar{t} & 0\end{pmatrix}, \;\;\;\;\; + \text{with} \;\; t\in\mathbb{C}. +\end{align} + + The Two-Point space $F_X$ can only have a real structure if the Dirac + operator vanishes, i.e. $D_F = 0$. In that case we have KO-dimension of 0, + 2 or 6. To elaborate on this, we know that there are two diagram representations of + $F_X$ at $\underbrace{\mathbb{C} \oplus \mathbb{C}}_{C(X)}$ on + $\underbrace{\mathbb{C} \oplus\mathbb{C}}_{H_F}$, which are: + \begin{figure}[h!] \centering + \begin{tikzpicture}[ + dot/.style = {draw, circle, inner sep=0.06cm}, + no/.style = {}, + ] + \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d) at (2, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (2,0) [] {}; + \node[dot](d0) at (1,-1) [] {}; + + \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b2) at (6, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d2) at (8, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (7,0) [] {}; + \node[dot](d0) at (8,-1) [] {}; + \end{tikzpicture} + \end{figure}\newline +If the Two-Point space $F_X$ would be a real spectral triple then $D_F$ can +only go vertically or horizontally. This would mean that $D_F$ vanishes. +As for the KO-dimension The diagram on the left has KO-dimension 2 and 6, the diagram on the +right 0 and 4. Yet KO-dimension 4 is ruled out because +$dim(H_F^\pm) = 1$ (see Lemma 3.8 Book), which ultimately means $J_F^2 = -1$ is +not allowed. +\subsubsection{Product Space} +By Extending the Two-Point space with a four dimensional Riemannian spin +manifold, we get an almost commutative manifold $M\times F_X$, given by +\begin{align} + M\times F_X = \big(C^\infty(M, \mathbb{C}^2), L^2(S)\otimes \mathbb{C}^2, + D_M\otimes 1 ; J_M\otimes J_F, \gamma_M \otimes \gamma_F\big), +\end{align} +where +\begin{align} + C^\infty(M, \mathbb{C}^2) \simeq C^\infty(M) \oplus C^\infty(M). +\end{align} +According to Gelfand duality the algebra $C^\infty(M, \mathbb{C}^2)$ of the +spectral triple corresponds to the space +\begin{align} + N:= M\otimes X \simeq M\sqcup X. +\end{align} +Keep in mind that we still need to find an appropriate real structure on the +Riemannian spin manifold, $J_M$. Furthermore total Hilbertspace can be decomposed into $H = L^2(S) \oplus L^2(S)$, such that for +$\underbrace{a,b\in C^\infty(M)}_{(a, b) \in C^\infty(N)}$ +and $\underbrace{\psi, \phi \in L^2(S)}_{(\psi, \phi) \in H}$ we have +\begin{align} + (a, b)(\psi, \phi) = (a\psi, b\phi) +\end{align} +Along with the decomposition of the total Hilbertspace we can consider a +distance formula on $M\times F_X$ with +\begin{align}\label{eq:commutator inequality} + d_{D_F}(x,y) = \sup\left\{ |a(x) - a(y)|:a\in A_F, ||[D_F, a]|| \leq + 1 \right\}. +\end{align} +To calculate the distance between two points on the Two-Point space $X= \{x, +y\}$, between $x$ and $y$, we consider an $a \in \mathbb{C}^2 = C(X)$, which is +specified by two complex numbers $a(x)$ and $a(y)$. Then we simplify the +commutator inequality in \ref{eq:commutator inequality} +\begin{align} + &||[D_F , a]|| = ||(a(y) - a(x))\begin{pmatrix}0 &t\\\bar{t} &0 + \end{pmatrix}|| \leq 1,\\ + &\Leftrightarrow |a(y) - a(x)|\leq \frac{1}{|t|}, +\end{align} +and the supremum gives us the distance +\begin{align} + d_{D_F} (x,y) = \frac{1}{|t|}. +\end{align} +An interesting observation here is that, if the Riemannian spin manifold can be +represented by a real spectral triple then a real structure $J_M$ exists, +then it follows that $t=0$ and the distance becomes infinite. This is a +purely mathematical observation and has no physical meaning. + +We can also construct a distance formula on $N$ (in reference to a point $p +\in M$) between two points on $N=M\times X$, $(p, x)$ and $(p,y)$. Then an $a +\in C^\infty(N)$ is determined by $a_x(p):=a(p, x)$ and $a_y(p):=a(p, y)$. +The distance between these two points is +\begin{align} + d_{D_F\otimes 1}(n_1, n_2) = \sup \left\{ |a(n_1) - a(n_2)|: a\in + A, ||[D\otimes 1, a]||\right\}. +\end{align} +On the other hand if we consider $n_1 = (p,x)$ and $n_2 = (q, x)$ +for $p,q \in M$ then +\begin{align} + d_{D_M \otimes 1} (n_1, n_2) = |a_x(p) - a_x(q)| \;\;\;\text{for}\;\; + a_x\in + C^\infty(M) \;\; \text{with} \;\; ||[D\otimes 1, a_x]|| \leq 1 +\end{align} +The distance formula turns to out to be the geodesic distance formula +\begin{align} + d_{D_M\otimes1}(n_1, n_2) = d_g(p, q), +\end{align} +which is to be expected since we are only looking at the manifold. +However if $n_1 = (p, x)$ and $n_2 = (q, y)$ then the two conditions are +\begin{align} + &||[D_M, a_x]|| \leq 1, \;\;\; \text{and}\\ + &||[D_M, a_y|| \leq 1. +\end{align} +These conditions have no restriction which results in the distance being +infinite! And $N = M\times X$ is given by two disjoint copies of M which are +separated by infinite distance + +The distance is only finite if $[D_F, a] < 1$. In this case the commutator +generates a scalar field and the finiteness of the distance is +related to the existence of scalar fields. + +\subsubsection{$U(1)$ Gauge Group} +To get a insight into the physical properties of the almost commutative +manifold $M\times F_X$, that is to calculate the spectral action, we need to +determine the corresponding Gauge theory. +For this we set of with simple definitions and important propositions to +help us break down and search for the gauge group of the Two-Point $F_X$ +space which we then extend to $M\times F_X$. We will only be diving +superficially into this chapter, for further reading we refer to +\cite{ncgwalter}. +\begin{definition} +Gauge Group of a real spectral triple is given by +\begin{align} + \mathfrak{B}(A, H; J) := \{ U = uJuJ^{-1} | u\in U(A)\} +\end{align} +\end{definition} +\begin{definition} + A *-automorphism of a *-algebra $A$ is a linear invertible + map + \begin{align} + &\alpha:A \rightarrow A\;\;\; \text{with}\\ + \nonumber\\ + &\alpha(ab) = \alpha(a)\alpha(b)\\ + &\alpha(a)^* = \alpha(a^*) + \end{align} + The \textbf{Group of automorphisms of the *-Algebra $A$} is denoted by + $(A)$.\newline + The automorphism $\alpha$ is called \textbf{inner} if + \begin{align} + \alpha(a) = u a u^* \;\;\; \text{for} \;\; U(A) + \end{align} + where $U(A)$ is + \begin{align} + U(A) = \{ u\in A|\;\; uu^* = u^*u=1\} \;\;\; + \text{(unitary)} + \end{align} +\end{definition} +The Gauge group of $F_X$ is given by the quotient $U(A)/U(A_J)$. +We want a nontrivial Gauge group so we need to choose a $U(A_J) \neq +U(A)$ and $U((A_F)_{J_F}) \neq U(A_F)$. +We consider our Two-Point space $F_X$ to be equipped with a real structure, +which means the operator vanishes, and the spectral triple representation is +\begin{align} + F_X := \left(\mathbb{C}^2,\mathbb{C}^2, D_F =\begin{pmatrix} + 0&0\\0&0\end{pmatrix}; J_f =\begin{pmatrix} + 0&C\\C&0\end{pmatrix}, + \gamma_F = \begin{pmatrix}1&0\\0&-1\end{pmatrix}\right). +\end{align} +Here $C$ is the complex conjugation, and $F_X$ is a real even finite +spectral triple (space) of KO-dimension 6. + +\begin{proposition} +The Gauge group of the Two-Point space $\mathfrak{B}(F_X)$ is $U(1)$. +\end{proposition} +\begin{proof} + Note that $U(A_F) = U(1) \times U(1)$. We need to show that $U(A_F) \cap + U(A_F)_{J_F}) \simeq U(1)$, such that $\mathfrak{B}(F) \simeq U(1)$. So + for an element $a \in \mathbb{C}^2$ to be in $(A_F)_{J_F}$, it has to + satisfy $J_F a^* J_F = a$, + \begin{align} + J_F a^* J^{-1} = + \begin{pmatrix}0&C\\C&0\end{pmatrix} + \begin{pmatrix}\bar{a}_1&0\\0&\bar{a}_2\end{pmatrix} + \begin{pmatrix}0&C\\C&0\end{pmatrix} + = + \begin{pmatrix}a_2&0\\0&a_1\end{pmatrix}. + \end{align} + This can only be the case if $a_1 = a_2$. So we have + $(A_F)_{J_F} \simeq \mathbb{C}$, whose unitary elements + from $U(1)$ are contained in the diagonal subgroup of + $U(A_F)$. +\end{proof} + +An arbitrary hermitian field $A_\mu = -ia\partial _\mu b$ is given by +two $U(1)$ Gauge fields $X_\mu^1, X_\mu^2 \in C^\infty(M, \mathbb{R})$. +However $A_\mu$ appears in combination $A_\mu - J_F A_\mu J_F^{-1}$: +\begin{align} + A_\mu - J_F A_\mu J_F^{-1} = + \begin{pmatrix}X_\mu^1&0\\0&X_\mu^2 \end{pmatrix} + - + \begin{pmatrix}X_\mu^2&0\\0&X_\mu^1 \end{pmatrix} + =: + \begin{pmatrix}Y_\mu&0\\0&-Y_\mu \end{pmatrix} + = Y_\mu \otimes \gamma _F, +\end{align} +where $Y_\mu$ the $U(1)$ Gauge field is defined as +\begin{align} + Y_\mu := X_\mu^1 - X_\mu^2 \in C^\infty(M, \mathbb{R}) = C^\infty(M, + i\ u(1)). +\end{align} + +\begin{proposition} + The inner fluctuations of the almost-commutative manifold $M\times + F_X$ are parameterized by a $U(1)$-gauge field $Y_\mu$ as + \begin{align} + D \mapsto D' = D + \gamma ^\mu Y_\mu \otimes \gamma_F + \end{align} + The action of the gauge group $\mathfrak{B}(M\times F_X) \simeq + C^\infty (M, U(1))$ on $D'$ is implemented by + \begin{align} + Y_\mu \mapsto Y_\mu - i\ u\partial_\mu u^*; \;\;\;\;\; (u\in + \mathfrak{B}(M\times F_X)). + \end{align} +\end{proposition} + diff --git a/src/thesis/main.pdf b/src/thesis/main.pdf Binary files differ. diff --git a/src/thesis/main.tex b/src/thesis/main.tex @@ -7,7 +7,6 @@ \input{back/title} \newpage - %-------------------- BACKHAND --------------------- \input{back/abstract} @@ -19,8 +18,10 @@ \input{chapters/main_sec} %\input{chapters/basics} -% -%\input{chapters/heatkernel} + +\input{chapters/heatkernel} + +\input{chapters/twopointspace} \input{chapters/electroncg}