ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit ca51a9ea241136bf2426523d924a11dd9feb6047
parent 2b11e4d44fc696ca2dbb8048cc280bd250de0d0b
Author: miksa234 <milutin@popovic.xyz>
Date:   Fri, 26 Mar 2021 08:37:17 +0100

added some exercise

Diffstat:
Mpdfs/week5.pdf | 0
Msrc/week5.tex | 28++++++++++++++--------------
Msrc/week6.tex | 25++++++++++++++++++-------
3 files changed, 32 insertions(+), 21 deletions(-)

diff --git a/pdfs/week5.pdf b/pdfs/week5.pdf Binary files differ. diff --git a/src/week5.tex b/src/week5.tex @@ -325,20 +325,20 @@ Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$. \end{align*} \newline - First off we know the algebra is associative then we know that elements - in $A$ can be represented faithfully on a Hilbert space $H$. Because of - the Hilbert Basis $\{\textbf{n}_i\}_{i\in \mathbb{N}}$ of the Hilbert space we can decompose these elements - in therms of the basis elements. - \begin{align*} - aa_k &= \sum _{\textbf{n}}(\langle a, \textbf{n} \rangle) a_k \\ - &= \sum _{k} a'_{k} - \end{align*} - Which would than be the same as the sum of some elements - $a'_{k} \in A$. Then we calculate the commutator: - \begin{align*} - [D, b_k] b = d(b_k)b = d(b_kb) - b_kd(b)\\ - \end{align*} -I don't think this is correct I'll try it again + % First off we know the algebra is associative then we know that elements + % in $A$ can be represented faithfully on a Hilbert space $H$. Because of + % the Hilbert Basis $\{\textbf{n}_i\}_{i\in \mathbb{N}}$ of the Hilbert space we can decompose these elements + % in therms of the basis elements. + % \begin{align*} + % aa_k &= \sum _{\textbf{n}}(\langle a, \textbf{n} \rangle) a_k \\ + % &= \sum _{k} a'_{k} + % \end{align*} + % Which would than be the same as the sum of some elements + % $a'_{k} \in A$. Then we calculate the commutator: + % \begin{align*} + % [D, b_k] b = d(b_k)b = d(b_kb) - b_kd(b)\\ + % \end{align*} + %I don't think this is correct I'll try it again \end{MyExercise} \begin{lemma} diff --git a/src/week6.tex b/src/week6.tex @@ -144,7 +144,7 @@ An opposite-algebra $A^\circ$ of a $A$ is defined to be equal to $A$ as a vector space with the opposite product \begin{align} &a\circ b := ba\\ - &\Rihtarrow a^\circ = Ja^* J^{-1} \;\;\; \text{defines the left + &\Rightarrow a^\circ = Ja^* J^{-1} \;\;\; \text{defines the left representation of $A^\circ$ on $H$} \end{align} \end{definition} @@ -158,6 +158,17 @@ vector space with the opposite product Then we define $\gamma (a) = a$ and $J(a) = a^*$ with $a\in H$. Since $D$ mus be odd with respect to $\gamma$ it vanishes identically. \end{example} +\begin{MyExercise} + \textbf{ + In the previous example, show that the right action on $M_N(\mathbb{C})$ + on $H = M_N(\mathbb{C})$ as defined by $a \mapsto a^\circ$ + is given by right matrix multiplication. +}\newline + + \begin{align*} + a^\circ \xi = J a^* J^{-1} = Ja^* \xi^* = J\xi a=\xi^* a + \end{align*} +\end{MyExercise} \subsection{Morphisms Between Finite Real Spectral Triples} Extend unitary equivalence of finite spectral triples to real ones (with $J$ @@ -174,8 +185,8 @@ and $\gamma$) &U\gamma _1 U^* = \gamma _2\\ &UJ_1 U^* = J_2 \end{align} -\end{definiton} -\begin{definiton} +\end{definition} +\begin{definition} Let $E$ be a $B$-$A$ bimodule. The \textit{conjugate Module} $E^\circ$ is given by the $A$-$B$-bimodule. \begin{align} @@ -186,7 +197,7 @@ and $\gamma$) a \cdot \bar{e} \cdot b = b^* \bar{e} a^* \;\;\;\; \forall a\in A, b \in B \end{align} -\end{definiton} +\end{definition} $E^\circ$ is not a Hilbert bimodule for $(A, B)$ because it doesn't have a natural $B$-valued inner product. But there is a $A$-valued inner product on the left $A$-module $E^\circ$ with @@ -195,10 +206,10 @@ the left $A$-module $E^\circ$ with \;\;\;\; e_1, e_2 \in E \end{align} and linearity in $A$: -\begin{aling} +\begin{align} \langle a \bar{e}_1, \bar{e}_2 \rangle = a \langle \bar{e}_1, \bar{e}_2 \rangle \;\;\;\; \forall a \in A. -\end{aling} +\end{align} \subsubsection{Construction of a Finite Real Spectral Triple from a Finite Real Spectral Triple} Given a Hilbert bimodule $E$ for $(B, A)$ we construct a spectral triple @@ -267,7 +278,7 @@ Finally for the grading and for $\epsilon '$ \begin{align*} J'D'(e_1 \otimes \xi \otimes \bar{e}_2)&=J'((\nabla e_1) \xi \otimes - \bar{e_2} + e_1 \otims D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau + \bar{e_2} + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau \nabla e_2))\\ &= \epsilon' D'(e_2 \otimes J\xi \otimes \bar{e}_2)\\ &= \epsilon' D'J'(e_1 \otimes \xi \bar{e}_2)