ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit f8c6751f8899b6c9731587ca3c63830852f52f7d
parent c114fae80c3165461a37def1e20427fbb9cf5a01
Author: miksa234 <milutin@popovic.xyz>
Date:   Fri, 23 Jul 2021 13:02:43 +0200

checkpoint done heatkernel

Diffstat:
Msrc/thesis/chapters/heatkernel.tex | 150+++++++++++++++++++++++++++++++++++++++++--------------------------------------
Msrc/thesis/main.pdf | 0
Msrc/thesis/main.tex | 9+++++++--
3 files changed, 85 insertions(+), 74 deletions(-)

diff --git a/src/thesis/chapters/heatkernel.tex b/src/thesis/chapters/heatkernel.tex @@ -127,61 +127,60 @@ where a_k(f,D) = (4\pi)^{-n/2} \int_M d^4x \sqrt{g} b_k(x,x) f(x). \end{align} \subsubsection{General Formulae} -Summarizing, in the last chapter we considered a compact Riemannian manifold -$M$ without boundary condition, a vector bundle $V$ over $M$ to define -functions which carry discrete (spin or gauge) indices, an Laplace style -operator $D$ over $V$ and smooth function $f$ on $M$. Now there is an asymptotic -expansion where the heat kernel coefficients are -%------------------------------- HERE -\newline -\textbf{---------------------HERE} -\newline -%------------------------------- HERE -\begin{enumerate} - \item with odd index $k=2j+1$ vanish $a_{2j+1}(f,D) = 0$ - \item with even index are locally computable in terms of geometric - invariants -\end{enumerate} +Let us summarize what we have obtained in the last chapter, we considered a +compact Riemannian manifold $M$ without boundary condition, a vector bundle +$V$ over $M$ to define functions which carry discrete (spin or gauge) +indices, an operator $D$ of Laplace type over $V$ and smooth function $f$ on +$M$. + +There is an asymptotic expansion where the heat kernel coefficients with an +odd index $k=2j+1$ vanish $a_{2j+1}(f,D) = 0$. On the other hand coefficients +with an even index are locally computable in terms of geometric invariants \begin{align} a_k(f,D) &= \text{Tr}_V\left(\int_M d^n x\sqrt{g}(f(x)a_k(x;D)\right) =\\ - &=\sum_I \text{Tr}_V\left(\int_M d^nx \sqrt{g}(fu^I \mathcal{A}^I_k(D))\right) -\end{align} -here $\mathcal{K}^I_k$ are all possible independent invariants of dimension -$k$, constructed from $E, \Omega, R_{\mu\nu\varrho\sigma}$ and their -derivatives, $u^I$ are some constants. - -If $E$ has dimension two, then the derivative has dimension one. So if $k=2$ -there are only two independent invariants, $E$ and $R$. This corresponds to the + &=\sum_I \text{Tr}_V\left(\int_M d^nx \sqrt{g}(fu^I + \mathcal{A}^I_k(D))\right). +\end{align} +We denote $\mathcal{A}^I_k$ as all possible independent invariants of +dimension $k$, and $u^I$ are constants. The invariants are constructed from +$E, \Omega, R_{\mu\nu\varrho\sigma}$ and their derivatives If $E$ has +dimension two, then the derivative has dimension one. So if $k=2$ there are +only two independent invariants, $E$ and $R$. This corresponds to the statement $a_{2j+1}=0$. If we consider $M = M_1 \times M_2$ with coordinates $x_1$ and $x_2$ and a decomposed Laplace style operator $D = D_1 \otimes 1 + 1 \otimes D_2$ we can -separate everything, i.e. +separate functions acting on operators and on coordinates linearly by the +following +\begin{align} + e^{-tD} &= e^{-tD_1} \otimes e^{-tD_2},\\ + f(x_1, x_2) &= f_1(x_1)f_2(x_2),\\ +\end{align} +thus the heat kernel coefficients are separated by \begin{align} - e^{-tD} &= e^{-tD_1} \otimes e^{-tD_2}\\ - f(x_1, x_2) &= f_1(x_1)f_2(x_2)\\ a_k(x;D) &= \sum_{p+q=k} a_p(x_1; D_1)a_q(x_2;D_2) \end{align} -Say the spectrum of $D_1$ is known, $l^2, l\in \mathbb{Z}$. We obtain the heat -kernel asymmetries with the Poisson Summation formula +If we know the eigenvalues of $D_1$ are known, $l^2, l\in \mathbb{Z}$, we +can obtain the heat kernel asymmetries with the Poisson summation formula +giving us an approximation in the order of $e^{-1/t}$ \begin{align} K(t, D_1) &= \sum_{l\in\mathbb{Z}} e^{-tl^2} = \sqrt{\frac{\pi}{t}} \sum_{l\in\mathbb{Z}} e^{-\frac{\pi^2l^2}{t}} = \\ &\simeq \sqrt{\frac{\pi}{t}} + \mathcal{O}(e^{-1/t}). \end{align} -Note that the exponentially small terms have no effect on the heat kernel +The exponentially small terms have no effect on the heat kernel coefficients and that the only nonzero coefficient is $a_0(1, D_1) = -\sqrt{\pi}$. Therefore we can write +\sqrt{\pi}$, therefore the heat coefficients can be written as \begin{align} a_k(f(x^2), D) = \sqrt{\pi}\int_{M_2} d^{n-1}x\sqrt{g}\sum_I\text{Tr}_V\left(f(x^2)u^I_{(n-1)} \mathcal{A}^I_n(D_2)\right). \end{align} -On the other had all geometric invariants associated with $D$ are in the $D_2$ -part. Thus all invariants are independent of $x_1$, so we can choose for $M_1$. -Say $M_1 = S^1$ with $x\in (0, 2\pi)$ and $D_1=-\partial_{x_1}^2$ we may -rewrite the heat kernel coefficients in +Because all of the geometric invariants associated with $D$ are in the $D_2$ +part, they are independent of $x_1$. Ultimately meaning we are free to choose +$M_1$. For $M_1 = S^1$ with $x\in (0, 2\pi)$ and $D_1=-\partial_{x_1}^2$ +we can rewrite the heat kernel coefficients into \begin{align} a_k(f(x_2), D) &= \int_{S^1\times M_2}d^nx \sqrt{g} \sum_I \text{Tr}_V(f(x_2) u_{(n)}^I \mathcal{A}^I_k(D_2))=\\ @@ -197,82 +196,87 @@ Computing the two equations above we see that To calculate the heat kernel coefficients we need the following variational equations \begin{align} - &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(1, e^{-2\varepsilon f}D) = + &\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_k(1, e^{-2\varepsilon f}D) = (n-k) a_k(f, D),\label{eq:var1}\\ - &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(1, D-\varepsilon F) = + &\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_k(1, D-\varepsilon F) = a_{k-2}(F,D),\label{eq:var2}\\ - &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(e^{-2\varepsilon f}F, + &\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_k(e^{-2\varepsilon f}F, e^{-2\varepsilon f}D) = 0\label{eq:var3}. \end{align} -To prove the equation \ref{eq:var1} we differentiate -\begin{align} - \frac{d}{d\varepsilon}|_{\varepsilon=0} \text{Tr}(\exp(-e^{-2\varepsilon +Let us explain the equations above. To get the first equation \ref{eq:var1} +we differentiate \begin{align} + \frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} \text{Tr}(\exp(-e^{-2\varepsilon f}tD) = \text{Tr}(2ftDe^{-tD}) = -2t\frac{d}{dt}\text{Tr}(fe^{-tD})) \end{align} -then we expand both sides in $t$ and get \ref{eq:var1}. Equation \ref{eq:var2} -is derived similarly. For equation \ref{eq:var3} we consider the following -operator +then we expand both sides in $t$ and get \ref{eq:var1}. Equation \ref{eq:var2} is derived similarly. + +For equation \ref{eq:var3} we consider the following operator \begin{align} D(\varepsilon,\delta) = e^{-2\varepsilon f}(D-\delta F) \end{align} for $k=n$ we use equation \ref{eq:var1} and we get \begin{align} - \frac{d}{d\varepsilon}|_{\varepsilon=0}a_n(1,D(\varepsilon,\delta)) =0 + \frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_n(1,D(\varepsilon,\delta)) + =0, \end{align} then we take the variation in terms of $\delta$, evaluated at $\delta =0$ and swap the differentiation, allowed by theorem of Schwarz \begin{align} 0 &= - \frac{d}{d\delta}|_{\delta=0}\frac{d}{d\varepsilon}|_{\varepsilon=0}a_n(1, - D(\varepsilon,\delta)) = - \frac{d}{d\varepsilon}|_{\varepsilon=0}\frac{d}{d\delta}|_{\delta=0}a_n(1, + \frac{d}{d\delta}\bigg|_{\delta=0}\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_n(1, D(\varepsilon,\delta)) =\\ - &=a_{n-2} ( e^{-2\varepsilon f}F, e^{-2\varepsilon f}D) + &=\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}\frac{d}{d\delta}\bigg|_{\delta=0}a_n(1, + D(\varepsilon,\delta)) =\\ + &=a_{n-2} ( e^{-2\varepsilon f}F, e^{-2\varepsilon f}D), \end{align} -which proves equation \ref{eq:var3}. With this we calculate the constants $u^I$ -and we can write the first three heat kernel coefficients as +which gives us equation \ref{eq:var3}. + +Now that we have established the ground basis, we can calculate the constants +$u^I$, and by that the first three heat kernel coefficients read \begin{align} - a_0(f, D) &= (4\pi)^{-n/2}\int_Md^n x\sqrt{g} \text{Tr}_V(a_0 f)\\ + a_0(f, D) &= (4\pi)^{-n/2}\int_Md^n x\sqrt{g} \text{Tr}_V(a_0 f),\\ a_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_Md^n - x\sqrt{g}\text{Tr}_V)(f\alpha _1 E+\alpha _2 R)\\ + x\sqrt{g}\text{Tr}_V)(f\alpha _1 E+\alpha _2 R),\\ a_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_Md^n - x\sqrt{g}\text{Tr}_V(f(\alpha_3 E_{,kk} + \alpha_4 RE + \alpha_5 E^2 + x\sqrt{g}\text{Tr}_V(f(\alpha_3 E_{,kk} + \alpha_4\ R\ E + \alpha_5 E^2 \alpha_6 R_{,kk} + \\ &+\alpha_7 R^2 + \alpha_8 R_{ij}R_{ij} + \alpha_9 - R_{ijkl}R_{ijkl} +\alpha_{10} \Omega_{ij}\Omega{ij})). + R_{ijkl}R_{ijkl} +\alpha_{10} \Omega_{ij}\Omega{ij})), \end{align} -The constants $\alpha_I$ do not depend on the dimension $n$ of the Manifold and -we can compute them with our variational identities. +where the comma subscript $,$ denotes the derivative and constants $\alpha_I$ +do not depend on the dimension of the Manifold and we can compute them with +our variational identities. -The first coefficient $\alpha_0$ can be seen from the heat kernel expanion of +The first coefficient $\alpha_0$ can be read from the heat kernel expansion of the Laplacian on $S^1$ (above), $\alpha_0 = 1$. For $\alpha_1$ we use -\ref{eq:var2}, for $k = 2$ +\ref{eq:var2}, the coefficient $k = 2$ is \begin{align} \frac{1}{6} \int_M d^n x\sqrt{g} \text{Tr}_V(\alpha_1F) = \int_M d^n x\sqrt{g} \text{Tr}_V(F), \end{align} -thus we conclude that $\alpha_1 = 6$. Now we take $k=4$ +which means $\alpha_1 = 6$. Looking at the coefficient $k=4$ we have \begin{align} - \frac{1}{360}\int_Md^n x \sqrt{g}\text{Tr}_V(\alpha_4 F R + 2\alpha_5 F E) - = \frac{1}{6} \int_Md^n x\sqrt{g}\text{Tr}_V(\alpha_1 FE + \alpha_2 FR), + \frac{1}{360}\int_Md^n x \sqrt{g}\text{Tr}_V(\alpha_4\ F\ R + 2\alpha_5\ F\ E) + = \frac{1}{6} \int_Md^n x\sqrt{g}\text{Tr}_V(\alpha_1\ F\ E + \alpha_2\ F\ R), \end{align} thus $\alpha_4 = 60\alpha_2$ and $\alpha_5 = 180$. -Furthermore we apply \ref{eq:var3} to $n=4$ +By applying \ref{eq:var3} to $n=4$ we get \begin{align} \frac{d}{d\varepsilon}|_{\varepsilon=0} a_2(e^{-2\varepsilon f}F, e^{-2\varepsilon f}D) = 0. \end{align} -By collecting the terms with $\text{Tr}_V(\int_Md^nx\sqrt{g}(Ff_{,jj}))$ we +Collecting the terms with $\text{Tr}_V(\int_Md^nx\sqrt{g}(Ff_{,jj}))$ we obtain $\alpha_1 = 6\alpha_2$, that is $\alpha_2 = 1$, so $\alpha_4 = 60$. Now we let $M=M_1\times M_2$ and split $D = -\Delta_1 -\Delta_2$, where -$\Delta_{1/2}$ are Laplacians for $M_1, M_2$, then we can decompose the heat -kernel coefficients for $k=4$ +$\Delta_{1/2}$ are Laplacians for $M_1, M_2$. This allows us to decompose the heat +kernel coefficient for $k=4$ into \begin{align} a_4(1,-\Delta_1-\Delta_2) =& a_4(1, -\Delta_1) a_0(1, -\Delta_2) - +a_2(1,-\Delta_1) a_2(1,-\Delta_2) \\&+ a_0(1,-\Delta_1) a_4(1,-\Delta_2) + +a_2(1,-\Delta_1) a_2(1,-\Delta_2) \\&+ a_0(1,-\Delta_1) + a_4(1,-\Delta_2), \end{align} with $E=0$ and $\Omega =0$ and by calculating the terms with $R_1R_2$ (scalar curvature of $M_{1/2}$) we obtain $\frac{2}{360}\alpha_7 = @@ -288,17 +292,19 @@ For $n=6$ we get \end{align} we obtain $\alpha_3 = 60$, $\alpha_6=12$, $\alpha_8 = -2$ and $\alpha_9 = 2$ -For $\alpha_{10}$ we use the Gauss-Bonnet theorem to get $\alpha_{10}=30$, -which is left out because it is a lengthy computation. +To get $\alpha_{10}$ we use the Gauss-Bonnet theorem, ultimately giving us +$\alpha_{10}=30$. We leave out this lengthy calculation and refer to +\cite{heatkernel} for further reading. -Summarizing we get for the heat kernel coefficients +Let us summarize our calculations which ultimately give us the following heat kernel +coefficients \begin{align} - \alpha_0(f, D) &= (4\pi)^{-n/2}\int_M d^n x \sqrt{g} \text{Tr}_V(f)\\ + \alpha_0(f, D) &= (4\pi)^{-n/2}\int_M d^n x \sqrt{g} \text{Tr}_V(f),\\ \alpha_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_M d^n x \sqrt{g} - \text{Tr}_V(f(6E+R))\\ + \text{Tr}_V(f(6E+R)),\\ \alpha_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_M d^n x \sqrt{g} \text{Tr}_V(f(60E_{,kk}+60RE+ 180E^2 +\\ &+12R_{,kk} + 5R^2 - 2 R_{ij}R_{ij} - 2R_{ijkl}R_{ijkl} +30\Omega_{ij}\Omega_{ij}))\\ + 2R_{ijkl}R_{ijkl} +30\Omega_{ij}\Omega_{ij})).\\ \end{align} diff --git a/src/thesis/main.pdf b/src/thesis/main.pdf Binary files differ. diff --git a/src/thesis/main.tex b/src/thesis/main.tex @@ -1,5 +1,7 @@ \documentclass[12pt]{article} +%-------------------- BACKHAND --------------------- + \input{back/packages} \begin{document} @@ -7,10 +9,11 @@ \input{back/title} \newpage -%-------------------- BACKHAND --------------------- \input{back/abstract} +%------------------- INTRO ------------------------- + \input{chapters/intro} %----------------- MAIN SECTION -------------------- @@ -25,12 +28,14 @@ \input{chapters/electroncg} -%------------------- BACKHAND --------------------- +%------------------ OUTRO ------------------------- \input{chapters/conclusion} \input{chapters/acknowledgment} +%------------------- BACKHAND --------------------- + \input{back/refs} \end{document}