ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit fe3576e04e90396a6455ff69235e8e5cdf40b125
parent c5db8ffc0f78e8b8bcfe856cb4a52e8948438890
Author: miksa234 <milutin@popovic.xyz>
Date:   Sun, 16 May 2021 16:28:49 +0200

environment change from align* to align

Diffstat:
Mpdfs/pres.pdf | 0
Mpdfs/week1.pdf | 0
Mpdfs/week2.pdf | 0
Mpdfs/week3.pdf | 0
Mpdfs/week4.pdf | 0
Mpdfs/week5.pdf | 0
Mpdfs/week6.pdf | 0
Mpdfs/week7.pdf | 0
Mpdfs/week8.pdf | 0
Msrc/week1.tex | 44++++++++++++++++++++++----------------------
Msrc/week2.tex | 64++++++++++++++++++++++++++++++++--------------------------------
Msrc/week3.tex | 18+++++++++---------
Msrc/week4.tex | 40++++++++++++++++++++--------------------
Msrc/week5.tex | 64++++++++++++++++++++++++++++++++--------------------------------
Msrc/week6.tex | 32++++++++++++++++----------------
Msrc/week7.tex | 4++--
16 files changed, 133 insertions(+), 133 deletions(-)

diff --git a/pdfs/pres.pdf b/pdfs/pres.pdf Binary files differ. diff --git a/pdfs/week1.pdf b/pdfs/week1.pdf Binary files differ. diff --git a/pdfs/week2.pdf b/pdfs/week2.pdf Binary files differ. diff --git a/pdfs/week3.pdf b/pdfs/week3.pdf Binary files differ. diff --git a/pdfs/week4.pdf b/pdfs/week4.pdf Binary files differ. diff --git a/pdfs/week5.pdf b/pdfs/week5.pdf Binary files differ. diff --git a/pdfs/week6.pdf b/pdfs/week6.pdf Binary files differ. diff --git a/pdfs/week7.pdf b/pdfs/week7.pdf Binary files differ. diff --git a/pdfs/week8.pdf b/pdfs/week8.pdf Binary files differ. diff --git a/src/week1.tex b/src/week1.tex @@ -200,9 +200,9 @@ Under the pointwise product: \subsubsection{Matrix Algebras} \begin{definition} A \textit{(complex) matrix algebra} A is a direct sum, for $n_i, N \in \mathbb{N}$. - \begin{align*} + \begin{align} A = \bigoplus _{i=1}^{N} M_{n_i}(\mathbb{C}) - \end{align*} + \end{align} The involution is the hermitian conjugate, a $*$ algebra with involution is referred to as a matrix algebra \end{definition} @@ -227,18 +227,18 @@ finite dimensional inner product space $H$ (finite Hilbert-spaces), with inner p $(\cdot,\cdot)\rightarrow \mathbb{C}$. $L(H)$ is the $*$-algebra of operators on $H$ with product given by composition and involution given by the adjoint, $T \mapsto T^*$. $L(H)$ is a \textit{normed vector space} with -\begin{align*} +\begin{align} &\|T\|^2 = \text{sup}_{h \in H}\{(Th,Th): (h,h) \leq 1\} \hspace{0.1\textwidth} T \in L(H) \\ &\|T\| = \text{sup}\{\sqrt{\lambda}: \lambda \text{ eigenvalue of } T\} -\end{align*} +\end{align} \begin{definition} The \textit{representation} of a finite dimensional $*$-algebra A is a pair $(H, \pi)$. $H$ is a finite, dimensional inner product space and $\pi$ is a $*$-\textit{algebra map} - \begin{align*} + \begin{align} \pi:A\ \rightarrow \ L(H) - \end{align*} + \end{align} \end{definition} \begin{definition} $(H, \pi)$ is called \textit{irreducible} if: @@ -260,9 +260,9 @@ Examples for reducible and irreducible representations \begin{definition} Let $(H_1, \pi _1)$ and $(H_2, \pi _2)$ be representations of a $*$-algebra $A$. They are called \textit{unitary equivalent} if there exists a map $U: H_1 \rightarrow H_2$ such that. - \begin{align*} + \begin{align} \pi _1(a) = U^* \pi _2(a) U - \end{align*} + \end{align} \end{definition} \begin{question} @@ -285,9 +285,9 @@ More on that in later chapters. \textbf{ Given $(H, \pi)$ of a $*$-algebra $A$, the \textbf{commutant} $\pi (A)'$ of $\pi (A)$ is defined as a set of operators in $L(H)$ that commute with all $\pi (a)$ - \begin{align*} + \begin{align} \pi (A)' = \{T \in L(H):\pi (a)T = T\pi (a) \;\;\; \forall a\in A\} - \end{align*} + \end{align} \begin{enumerate} \item Show that $\pi (A)'$ is a $*$-algebra. \item Show that a representation $(H, \pi)$ of $A$ is irreducible iff the commutant $\pi (A)'$ @@ -354,26 +354,26 @@ of matrix algebras, to preserve general non-commutivity of matrices. \begin{enumerate} \item \textit{left} A-module is a vector space $E$, that carries a left representation of $A$, that is $\exists$ a bilinear map $\gamma: A \times E \rightarrow E$ with - \begin{align*} + \begin{align} (a_1a_2)\cdot e = a_1 \cdot (a_2 \cdot e);\;\;\; a_1, a_2 \in A, e \in E - \end{align*} + \end{align} \item \textit{right} B-module is a vector space $F$, that carries a right representation of $A$, that is $\exists$ a bilinear map $\gamma: F \times B \rightarrow F$ with - \begin{align*} + \begin{align} f \cdot (b_1b_2)= (f \cdot b_1) \cdot b_2;\;\;\; b_1, b_2 \in B, f \in F - \end{align*} + \end{align} \item \textit{left} A-module and \textit{right} B-module is a \textit{bimodule}, a vector space $E$ satisfying - \begin{align*} + \begin{align} a \cdot (e \cdot b)= (a \cdot e) \cdot b;\;\;\; a \in A, b \in B, e \in E - \end{align*} + \end{align} \end{enumerate} \end{definition} Notion of A-\textbf{module homomorphism} as linear map $\phi: E\rightarrow F$ which respects the representation of A, e.g. for left module. -\begin{align*} +\begin{align} \phi (ae) = a \phi (e); \;\;\; a \in A, e \in E. -\end{align*} +\end{align} Remark on the notation \begin{itemize} \item ${}_A E$ left $A$-module $E$; @@ -389,15 +389,15 @@ Remark on the notation Not quite sure but \\ $a \in A$, $h_1, h_2 \in H$, we know $\pi (a) = T \in L(H)$ than - \begin{align*} + \begin{align} \langle \pi (a) h_1, \pi (a) h_2\rangle = \langle T h_1, T h_2\rangle = \langle T^*T h_1, h_2\rangle = \langle h_1, h_2\rangle - \end{align*} + \end{align} Or maybe this \\ If $_A H$ than $(a_1a_2) h = a_1 (a_2 h)$ for $a_1, a_2 \in A$ and $h \in H$.\\ Then we take the representation of an $a \in A$, $\pi (a)$: - \begin{align*} + \begin{align} (\pi(a_1)\pi(a_2))h = \pi(a_1)(\pi(a_2) h) = (T_1T_2) h = T_1 (T_2 h) - \end{align*} + \end{align} For $T_1, T_2 \in L(H)$, which operate naturally from the left on $h$. \end{MyExercise} diff --git a/src/week2.tex b/src/week2.tex @@ -89,10 +89,10 @@ \begin{definition} Let $A$ be an algebra, $E$ be a \textit{right} $A$-module and $F$ be a \textit{left} $A$-module. The \textit{balanced tensor product} of $E$ and $F$ forms a $A$-bimodule. - \begin{align*} + \begin{align} E \otimes _A F := E \otimes F / \left\{\sum _i e_i a_i \otimes f_i - e_i \otimes a_i f_i : \;\;\; a_i \in A,\ e_i \in E,\ f_i \in F \right\} - \end{align*} + \end{align} \end{definition} Note $/$ denotes the quotient space. So $\otimes _A$ takes two left/right modules and makes a bimodule with the help the tensor product of the two modules and the quotient space that takes @@ -105,12 +105,12 @@ are duplicates. \item an $B$-valued \textit{inner product} $\langle \cdot,\cdot\rangle_E: E\times E \rightarrow B$ \end{itemize} $\langle \cdot,\cdot\rangle_E$ needs to satisfy the following for $e, e_1, e_2 \in E,\ a \in A$ and $b \in B$. -\begin{align*} +\begin{align} \langle e_1, a\cdot e_2\rangle_E &= \langle a^*\cdot e_1, e_2\rangle_E \;\;\;\; & \text{sesquilinear in $A$}\\ \langle e_1, e_2 \cdot b\rangle_E &= \langle e_1, e_2\rangle_E b \;\;\;\; & \text{scalar in $B$} \\ \langle e_1, e_2\rangle_E &= \langle e_2,e_1\rangle^*_E \;\;\;\; & \text{hermitian} \\ \langle e, e\rangle_E &\ge 0 \;\;\;\; & \text{equality holds iff $e=0$} -\end{align*} +\end{align} \end{definition} @@ -140,9 +140,9 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \textbf{ Show that the $A-A$ bimodule given by $A$ is in $KK_f(A,A)$ by taking the following inner product $\langle \cdot,\cdot\rangle_A:A \times A \rightarrow A$: - \begin{align*} + \begin{align} \langle a, a\rangle_A = a^*a' \;\;\;\; a,a'\in A - \end{align*} + \end{align} \label{exercise: inner-product} }\newline @@ -160,9 +160,9 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. From it we can construct a Hilbert bimodule $E_{\phi} \in KK_f(A, B)$ in the following way. We let $E_{\phi}$ be $B$ in the vector space sense and an inner product from the above Exercise \ref{exercise: inner-product}, with $A$ acting on the left with $\phi$. - \begin{align*} + \begin{align} a\cdot b = \phi(a)b \;\;\;\; a\in A, b\in E_{\phi} - \end{align*} + \end{align} \end{example} @@ -171,13 +171,13 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \begin{definition} Let $E \in KK_f(A, B)$ and $F \in KK_F(B, D)$ the \textit{Kasparov product} is defined as with the balanced tensor product - \begin{align*} + \begin{align} F \circ E := E \otimes _B F - \end{align*} + \end{align} Such that $F\circ E \in KK_f(A,D)$ with a $D$-valued inner product. - \begin{align*} + \begin{align} \langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle f_1,\langle e_1, e_2\rangle _E f_2\rangle _F - \end{align*} + \end{align} \end{definition} \begin{question} @@ -198,10 +198,10 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \item $E_{\text{id}_A} \simeq A \in KK_f(A,A)$ \item for $*$-algebra homomorphism $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$ we have an isomorphism - \begin{align*} + \begin{align} E_{\psi} \circ E_{\phi}\ \equiv\ E_{\phi} \otimes _B E_{\psi}\ \simeq\ E_{\psi \circ \phi} \in KK_f(A,C) - \end{align*} + \end{align} \end{enumerate} } \begin{enumerate} @@ -242,9 +242,9 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \begin{definition} Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita equivalent} if there exists an $E \in KK_f(A, B)$ and an $F \in KK_f(B, A)$ such that: - \begin{align*} + \begin{align} E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq B - \end{align*} + \end{align} Where $\simeq$ denotes the isomorphism between Hilbert bimodules, note that $A$ or $B$ is a bimodule by itself. \end{definition} @@ -270,9 +270,9 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. standard $\mathbb{C}$ inner product.\\ On the other hand let $F = \mathbb{C}^n$, which is a $(\mathbb{C}, M_n(\mathbb{C}))$ Hilbert bimodule by right matrix multiplication with $M_n(\mathbb{C})$ valued inner product: - \begin{align*} + \begin{align} \langle v_1, v_2\rangle =\bar{v_1}v_2^t \;\; \in M_n(\mathbb{C}) - \end{align*} + \end{align} Now we take the Kasparov product of $E$ and $F$: \begin{itemize} \item $F\circ E\ =\ E\otimes _{\mathbb{C}}F\ \;\;\;\;\;\; \simeq \ M_n(\mathbb{C})$ @@ -287,13 +287,13 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \end{theorem} \begin{proof} Let $A$, $B$ be \textit{Morita equivalent}. So there exists $_A E_B$ and $_B F_A$ with - \begin{align*} + \begin{align} E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq B - \end{align*} + \end{align} Consider $[(\pi _B, H)] \in \hat{B}$ than we construct a representation of $A$, - \begin{align*} + \begin{align} \pi _A \rightarrow L(E \otimes _B H)\;\;\; \text{with} \;\;\; \pi _A(a) (e \otimes v) = a e \otimes w - \end{align*} + \end{align} \begin{question} Is $E \simeq H$ and $F \simeq W$? \\ Not in particular, there is a theorem that all infinite dimensional Hilbert spaces are isomorphic. @@ -303,9 +303,9 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. the same. \end{question} \textit{vice versa}, consider $[(\pi _A, W)] \in \hat{A}$ we can construct $\pi _B$ - \begin{align*} + \begin{align} \pi _B: B \rightarrow L(F \otimes _A W) \;\;\; \text{and}\;\;\; \pi _B(b) (f\otimes w) = bf\otimes w - \end{align*} + \end{align} These maps are each others inverses, thus $\hat{A} \simeq \hat{B}$ \end{proof} @@ -337,10 +337,10 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \begin{proof} We know $\mathbb{C}^n$ is a irreducible representation of $A= M_n(\mathbb{C})$. Let $H$ be irreducible and of dimension $k$, then we define a map - \begin{align*} + \begin{align} \phi : A\oplus...\oplus A &\rightarrow H^* \\ (a_1,...,a_k) &\mapsto e^1\circ a_1^t+...+e^k\circ a_k^t - \end{align*} + \end{align} With $\{e^1,...,e^k\}$ being the basis of the dual space $H^*$ and $(\circ)$ being the pre-composition of elements in $H^*$ and $A$ acting on $H$. This forms a morphism of $M_n(\mathbb{C})$ modules, provided a matrix $a \in A$ acts on $H^*$ with $v\mapsto v\circ a^t$ ($v\in H^*$). @@ -353,24 +353,24 @@ We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$. \begin{example} Consider two matrix algebras $A$, and $B$. - \begin{align*} + \begin{align} A = \bigoplus ^N_{i=1} M_{n_i}(\mathbb{C}) \;\;\; B = \bigoplus ^M_{j=1} M_{m_j}(\mathbb{C}) - \end{align*} + \end{align} Let $\hat{A} \simeq \hat{B}$ that implies $N=M$ and define $E$ with $A$ acting by block-diagonal matrices on the first tensor and B acting in the same way on the second tensor. Define $F$ vice versa. - \begin{align*} + \begin{align} E:= \bigoplus _{i=1}^N \mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i} \;\;\; F:= \bigoplus _{i=1}^N \mathbb{C}^{m_i} \otimes \mathbb{C}^{n_i} - \end{align*} + \end{align} Then we calculate the Kasparov product. - \begin{align*} + \begin{align} E \otimes _B F &\simeq \bigoplus _{i=1}^N (\mathbb{C}^{n_i}\otimes\mathbb{C}^{m_i}) \otimes _{M_{m_i}(\mathbb{C})} (\mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i}) \\ &\simeq \bigoplus _{i=1}^N \mathbb{C}^{n_i}\otimes \left(\mathbb{C}^{m_i}\otimes _{M_{m_i}(\mathbb{C})}\mathbb{C}^{m_i}\right) \oplus \mathbb{C}^{n_i} \\ &\simeq \bigoplus _{i=1}^N \mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i} \simeq A - \end{align*} + \end{align} and from $F \otimes _A E \simeq B$. \end{example} diff --git a/src/week3.tex b/src/week3.tex @@ -139,34 +139,34 @@ \end{align} To further examine the exponent we rewrite the expression and Taylor expand $ln(1+K)$ to the second of $K = e^{i\alpha_a X_a} e^{i\beta_b X_b} -1$ - \begin{align*} + \begin{align} i\delta _a X_a =& ln(1 + K) = K - \frac{K^2}{2} + \cdots \\ \text{and}\;\;\; K =&\ e^{i\alpha_a X_a} e^{i\beta_b X_b} -1 \\ =&\ (1 + i\alpha _a X_a - \frac{1}{2}(\alpha _a X_a)^2 + \cdots) \\ \cdot&\ (1 + i\beta _b X_b - \frac{1}{2}(\beta _b X_b)^2 + \cdots) -1 \\ =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\ -&\ \frac{1}{2}(\alpha _a X_a)^2 - \frac{1}{2}(\beta _b X_b)^2 + \cdots - \end{align*} + \end{align} So: - \begin{align*} + \begin{align} i\delta _a X_a =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\ -&\ \frac{1}{2}(\alpha _a X_a)^2 - \frac{1}{2}(\beta _b X_b)^2 \\ - +&\ \frac{1}{2}(\ai\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b)^2 \\ + +&\ \frac{1}{2}(\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b)^2 \\ =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\ -&\ \frac{1}{2}(\alpha _a X_a)^2 - \frac{1}{2}(\beta _b X_b)^2 \\ +&\ \frac{1}{2}(\alpha _a X_a)^2 + \frac{1}{2}(\beta _b X_b)^2 \\ +& \frac{1}{2}\alpha _a X_a \beta _b X_b + \frac{1}{2}\beta _b X_b \alpha _a X_a - \end{align*} + \end{align} Because $X$'s are linear operators $\alpha _a X_a \beta _b X_b \neq \beta _b X_b \alpha _a X_a$. These generators form an \textit{algebra under commutation} and we get - \begin{align*} + \begin{align} i\delta _a X_a =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\ -&\ \frac{1}{2}[\alpha _a X_a, \beta _b X_b] + \cdots - \end{align*} + \end{align} Thus rewriting the equation gives us - \begin{align*} + \begin{align} [\alpha _a X_a, \beta _b X_b] = -2i(\delta _c -\alpha _c -\beta _c) X_c \cdots \equiv i\gamma _c X_c - \end{align*} + \end{align} Because this is true for all $\alpha$ and $\beta$, and considering the group closure, there exists some \textit{real} $f_{abc}$ called the \textit{structure constant} satisfying. \begin{equation} diff --git a/src/week4.tex b/src/week4.tex @@ -62,21 +62,21 @@ Advantages of the characters are: \item characters are different for inequivalent irreducible representation, say $D_a$ and $D_b$ then there is a orthogonality relation up to $N$ (number of elements in the group): - \begin{align*} + \begin{align} \frac{1}{N} \sum _{g\in G} \chi _{D_a}(g)^*\chi_{D_b}(g) = \delta _{ab} - \end{align*} + \end{align} \end{itemize} Furthermore characters are a \textit{complete} basis for functions that are constant on the conjugacy class. Suppose $F(g_1)$ is such a function. We can expand this function in terms of matrix elements of irreducible representations. - \begin{align*} + \begin{align} F(g_1) &= \sum_{a,j,l}\frac{1}{n_a} c_{jk}^{a} (D_a(g_1))_{jk} \\ &= \sum_{a,j,l}\frac{1}{n_a} c_{jk}^{a} (D_a(g^{-1}g_1g))_{jk} \\ &= \sum_{a,j,k,g,l,m}\frac{1}{n_a} c_{jk}^{a} (D_a(g^{-1}))_{jl}(D_a(g_1))_{lm}(D_a(g))_{mk} \\ &= \sum_{a,j,l}\frac{1}{n_a} c_{jk}^{a} (D_a(g_1))_{lm} \delta _{jk} \delta _{lm} \\ &= \sum_{a,j,l}\frac{1}{n_a} c_{jj}^{a} (D_a(g_1))_{ll} \\ &= \sum_{a,j,l}\frac{1}{n_a} c_{jj}^{a} \chi _a (g_1) - \end{align*} + \end{align} where $n_a$ denotes the dimension of the representation $D_a$. \newline @@ -114,12 +114,12 @@ First we will see what we can find just by looking at the symmetries of the syst The 6 degrees of freedom means that the system can be described with a 6 dimensional space. This is a tensor product of a 2 dimensional space of $x$ and $y$ coordinates and a 3 dimensional space of the masses (blocks). -\begin{align*} +\begin{align} (x_1, y_1, x_2, y_2,x_3, y_3) -\end{align*} +\end{align} The 3 dimensional space has $S_3$ symmetry (Group of all permutations of a three-element set), it can be represented with $D_3$ the dihedral group. -\begin{align*} +\begin{align} D_3(e) = \begin{pmatrix} 1 & 0 & 0 \\ @@ -154,9 +154,9 @@ it can be represented with $D_3$ the dihedral group. 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix} \;\;\;\; -\end{align*} +\end{align} The 2 dimensional space also transforms under $S_3$, under a representation $D_2$ -\begin{align*} +\begin{align} D_2(e) = \begin{pmatrix} 1 & 0 \\ @@ -185,20 +185,20 @@ The 2 dimensional space also transforms under $S_3$, under a representation $D_2 \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \end{pmatrix} \;\;\;\; -\end{align*} +\end{align} Then $D_6$ is the tensor product of $D_3$ and $D_2$: \begin{equation} (D_6(g))_{i\mu k\nu}=(D_3(g))_{ij}(D_2(g)_{\mu \nu} \end{equation} For $a_2$ we would than have block matrices instead of $1$ in $D_3$: -\begin{align*} +\begin{align} D_6(a_2) = \begin{pmatrix} 0 & D_2(a_2) & 0 \\ 0 & 0 & D_2(a_2) \\ D_2(a_2) & 0 & 0 \\ \end{pmatrix} -\end{align*} +\end{align} All other elements follow accordingly. Now $S_3$ has two 1 dimensional irreducible representations which are trivial because they map to the @@ -285,7 +285,7 @@ And for $D_2$ we get: \end{align} And the nontrivial modes provided by $P_2$ can be calculated by including translation in $x$ and $y$ direction $T_x$ and $T_y$: -\begin{align*} +\begin{align} T_x = \frac{1}{3} \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ @@ -305,7 +305,7 @@ direction $T_x$ and $T_y$: 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ \end{pmatrix} -\end{align*} +\end{align} To see the modes we move mass $3$ in the $y$ direction which is the vector $\begin{pmatrix}0&0&0&0&0&1\end{pmatrix}$ and its mode can be get by appying it to $P_2 -T_x -T_y$: \begin{equation} \begin{pmatrix} @@ -401,21 +401,21 @@ mode from Eq. \ref{eig: 3}. The physical approach would be to construct the lagrangian $\mathfrak{L} = T - V$. Were $T$ is simply the kinetic energy of the system in $\eta = (x_1, y_1, x_2, y_2, x_3, y_3)$ coordinates and for simplicity we set all masses to $m$. -\begin{align*} +\begin{align} T = \frac{m}{2} \dot{\eta} _i \dot{\eta} ^i \;\;\;\; \text{for\footnote{Einstein Summation Convention}} \;\; i = 1,\dots,6 -\end{align*} +\end{align} For $V$ the potential energy we have three springs and \textit{small oscillations around equilibrium}, two of them are the offset of the one to the angle of $\theta = \pm \frac{\pi}{3}$, which is $\begin{pmatrix} cos(\theta) \\ sin(\theta)\end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \pm \frac{\sqrt{3}}{2}\end{pmatrix}$. Then $V$ is: -\begin{align*} +\begin{align} V &= \frac{k}{2} U^i_{\; j} \eta _i \eta ^j \\ &= \frac{k}{2} \bigg((x_1 - x_2)^2 +(\frac{1}{2}(x_2-x_3 + \frac{\sqrt{3}}{2} (y_2 - y_3))^2 +(\frac{1}{2}(x_1-x_3) + \frac{\sqrt{3}}{2}(y_1 - y_3))^2 \bigg) -\end{align*} +\end{align} Where $U$ is: -\begin{align*} +\begin{align} U = \frac{1}{4} \begin{pmatrix} 5 & \sqrt{3} & -4 & 0 & -1 & -\sqrt{3} \\ @@ -425,7 +425,7 @@ Where $U$ is: -1 & -\sqrt{3} & -1 & \sqrt{3} & 2 & 0 \\ -\sqrt{3} & -3 & \sqrt{3} & -3 & 0 & 6 \end{pmatrix} -\end{align*} +\end{align} The Euler-Lagrange equations then give us : \begin{equation} diff --git a/src/week5.tex b/src/week5.tex @@ -176,14 +176,14 @@ The metric is then: Compute the metric on the space of three points given by $d_{ij} = \sup_{a\in A}\{|a(i) - a(j)|: ||[D, \pi(a)]|| \leq 1\}$ for the set of data $A = \mathbb{C}^3$ acting in the defining representation $H = \mathbb{C}^3$, and - \begin{align*} + \begin{align} D = \begin{pmatrix} 0 & d^{-1} & 0 \\ d^{-1} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \end{align*} + \end{align} for some $d \in \mathbb{R}$ }\newline @@ -223,11 +223,11 @@ The metric is then: }\newline For Equation \ref{metric 1} set $i=j$ in \ref{ext metric}. -\begin{align*} +\begin{align} d_{ii} &= \sup_{a \in A}\{|\text{Tr}(a(i)) - \text{Tr}((a(i))|: ||[D, a]|| \leq 1\big\} \\ &= \sup_{a \in A}\{0: ||[D, a]|| \leq 1\big\} = 0 -\end{align*} +\end{align} For Equation \ref{metric 2} obviously we have the commuting property of addition. \newline @@ -295,44 +295,44 @@ Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$. \begin{MyExercise} \textbf{ Verify that 'd` is a derivation of the C* algebra - \begin{align*} + \begin{align} d(ab) = d(a)b + ad(b) \\ d(a^*) = -d(a)^* - \end{align*} + \end{align} }\newline For the record $d(\cdot) = [D, \cdot]$, then we have \begin{enumerate} \item - \begin{align*} + \begin{align} d(ab) &= [D, ab] = [D, a]b + a[D,b]\\ &= d(a)b + ad(b) - \end{align*} + \end{align} \item - \begin{align*} + \begin{align} d(a^*) &= [D, a^*] = Da^* - a^*D \\ &=-(D^*a - aD^*) = -[D^*, a] \\ &= -d(a)^* - \end{align*} + \end{align} \end{enumerate} \end{MyExercise} \begin{MyExercise} \textbf{ Verify that $\Omega _D^1 (A)$ is an $A$-bimodule by rewriting } - \begin{align*} + \begin{align} a(a_k[D, b_k])b = \sum_k a'_k[D, b'_k] \;\;\;\; a'_k, b'_k \in A - \end{align*} + \end{align} \newline Begin - \begin{align*} + \begin{align} a(a_k[D, b_k])b &= aa_k(Db_k - b_k D) b = \\ &= aa_k(Db_k b - b_k D b) = aa_k(Db_k b - b_k Db - b_kbD +b_kbD)=\\ &= aa_k(Db_kb-b_kbD + b_k b D - b_k D b) = \\ &= aa_k [D, b_kb] + aa_k b [D, b]=\\ &= \sum _k a_k' [D, b_k'] - \end{align*} + \end{align} \end{MyExercise} @@ -414,34 +414,34 @@ Some remarks \newline For symmetry we need - \begin{align*} + \begin{align} (A_1, H_1, D_1) \sim (A_2, H_2, D_2) \Leftrightarrow (A_2, H_2, D_2) \sim (A_1, H_1, D_1) - \end{align*} + \end{align} because $U$ is unitary: - \begin{align*} + \begin{align} &U\pi_1(a)U^* = \pi_2(a) \;\;\; | \cdot U^*\boxdot U \\ &U^*U\pi_1(a)U^*U = \pi_1(a) = U^*\pi_2(a)U \\ - \end{align*} + \end{align} The same with the symmetric operator $D$. \newline For transitivity we need - \begin{align*} + \begin{align} (A_1, H_1, D_1) &\sim (A_2, H_2, D_2) \;\;\; \text{and} \;\;\; (A_2, H_2, D_2) \sim (A_3, H_3, D_3) \\ &\Rightarrow (A_1, H_1, D_1) \sim (A_3, H_3, D_3) - \end{align*} + \end{align} There are two unitary maps $U_{12}:H_1 \rightarrow H_2$ and $U_{23}: H_2 \rightarrow H_3$ then - \begin{align*} + \begin{align} U_{23}U_{12} \pi_1(a) U^*_{12}U^*_{23} &= U_{23} \pi_2(a) U_23^* \\ &= \pi_3(a) \\ U_{23}U_{12} D_1U^*_{12}U^*_{23} &= U_{23} D_2 U_23^* \\ &= D_3 - \end{align*} + \end{align} \end{MyExercise} Extending the this relation we look again at the notion of equivalence from @@ -478,13 +478,13 @@ associated with the derivation $d=[D, \cdot]$ and satisfying the \nabla(ae) = \nabla(e)a + e \otimes [D, a] \;\;\;\;\; e\in E,\; a\in A \end{equation} Then $D'$ is well defined on $E \otimes _A H$: -\begin{align*} +\begin{align} D'(ea \otimes \xi - e \otimes a \xi) &= D'(ea \otimes \xi) - D'(e \otimes \xi) \\ &= ea\otimes D\xi + \nabla(ae) \xi - e \otimes D(a\xi ) - \nabla (e)a \xi \\ &= 0. -\end{align*} +\end{align} With the information thus far we can prove the following theorem \begin{theorem} If $(A, H, D)$ a finite spectral triple, $E \in KK_f(B, A)$. @@ -500,7 +500,7 @@ With the information thus far we can prove the following theorem theorem). The only thing left is to show that $D'$ is a symmetric operator, this we can just compute. Let $e_1, e_2 \in E$ and $\xi _1, \xi _2 \in H$ then - \begin{align*} + \begin{align} \langle e_1 \otimes \xi _1, D'(e_2 \otimes \xi_2)\rangle _{E\otimes _A H} &= \langle \xi _1, \langle e_1, \nabla e_2\rangle _E \xi _2\rangle + \langle \xi _1 , \langle e_1, e_2\rangle _E D\xi _2\rangle _H \\ @@ -509,7 +509,7 @@ With the information thus far we can prove the following theorem &+ \langle D\xi _1,\langle e_1, e_2\rangle _E \xi _2\rangle _H - \langle \xi _1, [D, \langle e_1, e_2\rangle _E] \xi _2 \rangle _H \\ &= \langle D'(e_1 \otimes \xi _1), e_2 \otimes \xi _2\rangle _{E \otimes _A H} - \end{align*} + \end{align} \end{proof} \begin{MyExercise} @@ -522,14 +522,14 @@ With the information thus far we can prove the following theorem Both $\nabla$ and $\nabla'$ need to satisfy the Leiblitz rule, so let's see if $\nabla - \nabla'$ does. - \begin{align*} + \begin{align} \nabla(ea)-\nabla'(ea)&=\nabla(e) + e\otimes[D, a]\\ &-(\nabla'(e)a + e\otimes[D',a])\\ &=\bar{\nabla}a + e\otimes(Da-aD-D'a+aD')\\ &=\bar{\nabla}a + e\otimes((D-D')a-a(D-D'))\\ &=\bar{\nabla}a + e\otimes[D', a]\\ &=\bar{\nabla}(ea) - \end{align*} + \end{align} Therefore $\nabla-\nabla'$ is a linear map. \end{MyExercise} @@ -544,9 +544,9 @@ With the information thus far we can prove the following theorem when the connection is $d(\cdot)$. \item Use 1) and 2) to show that any connection $\nabla: A\rightarrow A\otimes_A \Omega_D^1(A)$ is given by - \begin{align*} + \begin{align} \nabla = d + \omega - \end{align*} + \end{align} where $\omega \in \Omega_D^1(A)$ \item Upon identifying $A\otimes_A H \simeq H$, what is the difference operator $D'$ with the connection on $A$ given by @@ -634,10 +634,10 @@ With the information thus far we can prove the following theorem The operator $D_e$ between $\textbf{n}_i$ and $\textbf{n}_j$ add up to $D_{ij}$ -\begin{align*} +\begin{align} D_{ij} = \sum\limits_{\substack{e = (\nu _1, \nu _2) \\ n(\nu _1) = \textbf{n}_i \\ n(\nu _2) = \textbf{n}_j}} D_e -\end{align*} +\end{align} \begin{theorem} There is a on to one correspondence between finite spectral triples diff --git a/src/week6.tex b/src/week6.tex @@ -179,9 +179,9 @@ vector space with the opposite product is given by right matrix multiplication. }\newline - \begin{align*} + \begin{align} a^\circ \xi = J a^* J^{-1}\xi = Ja^* \xi^* = J\xi a=\xi^* a - \end{align*} + \end{align} \end{MyExercise} \begin{MyExercise} \textbf{ @@ -230,13 +230,13 @@ vector space with the opposite product for $S^{-1}$ if not then $\xi$ wouldn't exist. $S^{-1}(A*\xi) = S^{-1}(H) = H$. \item Since $S$ is bijective then $\Delta ^{1/2}$ and $J$ need to be bijective.\\ Now let $\xi _1 , \xi _2 \in H$.\\ - \begin{align*} + \begin{align} <J \xi _1 , J \xi _2 > &= < J^*J\xi_1 , \xi_2>^* =\\ &= <(\Delta ^{1/2})^* S^* S \Delta ^{1/2} \xi_1, \xi_2>^* = \\ &= <(SS^*)^{1/2}S^*S(SS^*) \xi_1, \xi_2>^* =\\ &= <(SS^*SS^*)^{1/2} \xi_1, \xi_2>^* = \\ &= <\xi _1, \xi_2>^* = <\xi_2 , \xi_1>. - \end{align*} + \end{align} \end{enumerate} \end{MyExercise} \subsection{Morphisms Between Finite Real Spectral Triples} @@ -288,26 +288,26 @@ and linearity in $A$: Straightforward show properties of the Hilbert bimodule and its $B^{\circ}$ valued inner product. Let $\bar{e}_1, \bar{e}_2 \in E^{\circ}$ and $a^\circ \in A, b^\circ \in B$. \\ - \begin{align*} + \begin{align} <\bar{e}_1, a^\circ \bar{e}_2> &= <\bar{e}_1, Ja^*J^{-1} \bar{e}_2>=\\ &= <\bar{e}_1 , J a^* e_2> = \\ &= <J^{-1} e_1, a^* e_2> =\\ & = <a^* e_1, e_2>= <J^{-1}(a^\circ)^* J e_1, e_2> = \\ & = <J^{-1} (a^\circ)^* \bar{e}_1, e_2> =\\ & = <(a^\circ)^* \bar{e}_1 , \bar{e}_2>. - \end{align*} + \end{align} Next $<\bar{e}_1, \bar{e}_2 b^\circ> = <\bar{e}_1, \bar{e_2}> b^\circ$. - \begin{align*} + \begin{align} <\bar{e}_1, \bar{e}_2 b^\circ> &= <\bar{e}_1, \bar{e}_2 Jb^*J^{-1}> =\\ &= <\bar{e}_1, \bar{e_2}> Jb^*J^{-1} = \\ &= <\bar{e}_1, \bar{e}_2> b^\circ. - \end{align*} + \end{align} Then: - \begin{align*} + \begin{align} (<\bar{e}_1, \bar{e}_2)>_{E^\circ})^* &= (<e_2, e_1>_E)^* =\\ &= <e_1, e_2>_E^* = <\bar{e}_2, \bar{e}_2>_{E^\circ} - \end{align*} + \end{align} And of course $<\bar{e}, \bar{e}> = <e, e> \geq 0$ \end{MyExercise} @@ -356,14 +356,14 @@ with $b^\circ = J' b^* (J')^{-1}$, $b^* \in B$ action on $H'$. Hagime: - \begin{align*} + \begin{align} &\text{For one:}\\ &\tau \circ \nabla(ae) = \bar{\nabla}(a\bar{e}) = \bar{\nabla}(a^* \bar{e})\\ &\text{For two:}\\ &\tau \circ \nabla(ae) = \tau(\nabla(e)a) + \tau \circ(e \otimes d(a))=\\ &=a^*\bar{\nabla}(\bar{e}) - d(a)^* \otimes \bar{e}. \\ &= a^*\bar{\nabla}(\bar{e}) + d(a^*) \otimes \bar{e}. - \end{align*} + \end{align} \end{MyExercise} Then the connections \begin{align} @@ -400,18 +400,18 @@ Finally for the grading \begin{proof} The only thing left is to check if the $KO$-dimension is preserved, for this we check if the $\epsilon$'s are the same. - \begin{align*} + \begin{align} &(J')^2 = 1 \otimes J^2 \otimes 1 = \epsilon\\ &J' \gamma '= \epsilon ''\gamma'J' - \end{align*} + \end{align} and for $\epsilon '$ - \begin{align*} + \begin{align} J'D'(e_1 \otimes \xi \otimes \bar{e}_2)&=J'((\nabla e_1) \xi \otimes \bar{e_2} + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau \nabla e_2))\\ &= \epsilon' D'(e_2 \otimes J\xi \otimes \bar{e}_2)\\ &= \epsilon' D'J'(e_1 \otimes \xi \bar{e}_2) - \end{align*} + \end{align} \end{proof} \end{document} diff --git a/src/week7.tex b/src/week7.tex @@ -347,12 +347,12 @@ or a $-$ sign. $v'$ implies that either $n(v) = n(v')$ or $m(v) = m('v)$ or both \item of $e = (v_1, v_2) \in \Gamma^{(1)}$ edges with non-zero operators $D_e$ and their adjoints $D_e^*$: - \begin{align*} + \begin{align} &D_e:\mathbb{C}^{n(v_1)} \rightarrow \mathbb{C}^{n(v_2)}\;\;\;\;\; &\text{if} \;\;\;\; m(v_1) = m(v_2)\\ &D_e:\mathbb{C}^{m(v_1)} \rightarrow \mathbb{C}^{m(v_2)}\;\;\;\;\; &\text{if} \;\;\;\; n(v_1) = n(v_2) - \end{align*} + \end{align} \end{itemize} Together with an involutive graph automorphism $j:\Gamma \Rightarrow \Gamma$ such that the following conditions hold: