tprak

Theoretical Physics Practical Training
git clone git://popovic.xyz/tprak.git
Log | Files | Refs

commit 3cda5b4dc5ae7e05dee895d499cb65cb2f53150d
parent 378a5773505f76c27b2e163dcc4100778232efc3
Author: miksa <milutin@popovic.xyz>
Date:   Sat,  8 May 2021 17:09:49 +0200

done my part

Diffstat:
Msesh2/src/main.pdf | 0
Msesh2/src/main.tex | 127+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++--------
Msesh2/src/uni.bib | 29+++++++++++++++++++++++++++++
3 files changed, 144 insertions(+), 12 deletions(-)

diff --git a/sesh2/src/main.pdf b/sesh2/src/main.pdf Binary files differ. diff --git a/sesh2/src/main.tex b/sesh2/src/main.tex @@ -21,14 +21,20 @@ \pagestyle{myheadings} \markright{Popovic, Vogel\hfill Unbiased Fitting \hfill} -\title{Theoretical Physics Lab-Course 2021S\\ University of Vienna \vspace{1.25cm}\\ +\title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm} Theoretical Physics Lab-Course 2021S\\ Quantum Entanglement at High Energies} -\author{Milutin Popovic \\ Tim Vogel \vspace{1cm}\\ Supervisor: Prof. Dr. Beatrix C. +\author{Milutin Popovic \& Tim Vogel \vspace{1cm}\\ Supervisor: Prof. Dr. Beatrix C. Hiesmayr} -\date{April 18, 2021} +\date{May the 9th, 2021} \begin{document} \maketitle +\noindent\rule[0.5ex]{\linewidth}{1pt} +\begin{abstract} +Some text in the abstract +\end{abstract} +\noindent\rule[0.5ex]{\linewidth}{1pt} + \tableofcontents \section{Bell Theorem and Bell Inequality} @@ -37,7 +43,7 @@ not considered, quantum mechanics is incomplete. J.S. Bell in his paper \cite{be published in 1964 discovered what is known as the Bell's Theorem. The theorem states in short that "In certain experiments all local realistic theories are incompatible with quantum mechanics" \cite{bell}. This is achieved by -establishing a so called Bell inequality which satysiefs the local realistic +establishing a so called Bell inequality which satisfies the local realistic theories but violates quantum mechanics. To demonstrate the results of Bell, we consider a Wiegner-type Bell inequality @@ -49,7 +55,7 @@ for spin-$\frac{1}{2}$ particles with a source that generates a Bell state here we denote the joint probability, of say Alice and Bob to find their particles in the spin-up state, with respect to their orientation $\vec{a}, -\vec{b}$, $P(\Uparrow \vec{a}, \Uparrow \vec{b})$.For the source we consider +\vec{b}$, $P(\Uparrow \vec{a}, \Uparrow \vec{b})$. For the source we consider an antisymmetric Bell state $|\psi ^-\rangle$ in terms of $\vec{a}$. \begin{align} |\psi ^-\rangle = \frac{1}{\sqrt{2}}(|\Uparrow \vec{a}; \Downarrow @@ -73,7 +79,7 @@ way around. \vec{b}\rangle \end{align} -where $\theta_{ab}$ is an unphysical phase and can be set to zero. +where $\theta_{ab}$ is an unphysical phase in this case and is set to zero. With this information we can derive the following results for the probability in Equation \ref{eq:prob} (Task 1) @@ -187,8 +193,7 @@ terms of $|K^0\rangle$ and $|\bar{K^0}\rangle$ as follows, |K_S\rangle &= \frac{1}{N}(p|K^0\rangle - q|\bar{K}^0\rangle) \\ |K_L\rangle &= \frac{1}{N}(p|K^0\rangle + q|\bar{K}^0\rangle) \end{align} - -Where $p = 1+\varepsilon$, $q=1-\varepsilon$ and $N^2 = |p|^2 + |q|^2$, +where $p = 1+\varepsilon$, $q=1-\varepsilon$ and $N^2 = |p|^2 + |q|^2$, $\varepsilon$ is called the $CP$ violating parameter and can be measured, with a magnitude of $|\varepsilon| \approx 10^{-3}$ \cite{Bertlmann} . Note that these two states are NOT orthogonal due to the $CP$ violation. @@ -199,7 +204,7 @@ Furthermore the connection to the $CP$ basis is, |K_1\rangle &= \frac{1}{\sqrt{2}}(|K^0\rangle - e^{i\alpha}|\bar{K}^0\rangle) \\ |K_2\rangle &= \frac{1}{\sqrt{2}}(|K^0\rangle + e^{i\alpha}|\bar{K}^0\rangle) \\ \end{align} -where $\alpha$ is an unphysical phase and is conventionally set to zero. +here $\alpha$ is an unphysical phase and is conventionally set to zero. \subsection{CP-Symmetry violation} @@ -217,10 +222,10 @@ the tools to calculate these probabilities, the calculation gives \end{align} Changing the choice of $\bar{K}^0$ and $K^0$ in equation \ref{eq:leqk} we -calculate the probabilities: +calculate the probabilities again: \begin{align} P^{QM}(K_S, K^0)&=\left\|\langle K_S, K^0|\psi ^-\rangle\right\| - ^2=\frac{1}{2}\frac{|q|^2}{2N^2} \\ + ^2=\frac{|q|^2}{4N^2} \\ P^{QM}(K_S, K_1)&= \left\|\langle K_S, K_1|\psi ^-\rangle\right\|^2= \frac{1}{4N^2}\left|q-pe^{i\alpha}\right|\\ P^{QM}(K_1, K^0)&=\left\|\langle K_1, K^0|\psi ^-\rangle\right\| ^2= @@ -236,7 +241,7 @@ implying a strict equality \begin{align} \delta = 0. \end{align} -This contradicts the experimental value of $\delta$. +This contradicts the experimental value of $\delta$ (citation from slides). \begin{align} \delta_{exp} = (3.27\pm 0.12)\cdot 10^{-1}. \end{align} @@ -249,9 +254,107 @@ according to the Big-Bang-Theory the amount of matter and antimatter initially created is equal, but according to experimental results CP-asymmetry means that there is an imbalance in matter and that physics differs for particles and antiparticles. +\subsection{Density Matrix Approach for decaying Quantum Systems} +In this section we describe an open quantum system with unstable particles +(e.g. K-mesons) with the Lindbad-Gorini-Kossakowsky-Sudarhasanan master equation, +an density matrix approach, by enlarging the Hilbertspace\cite{bgh}. With this +larger Hilbertspace $\textbf{H}_{tot} = \textbf{H}_s \oplus \textbf{H}_f$ we take +into consideration both the "surviving"($\textbf{H}_s$) and the "decaying" or +"final" ($\textbf{H}_f$) +states and thus get a positive time evolution described by a non-hermitian +Hamiltonian $H_{eff}$ and a dissipator $\mathcal{D}$ of the Lindbad operator +$L$. The time evolution of the density matrix $\varrho \in \mathbf{H}_{tot}$ is given by the master +equation in the Lindbad form +\begin{align}\label{eq:master} + \frac{d\varrho}{dt} &= -[H, \varrho] - \mathcal{D}[\varrho]\\ + \text{with}\;\;\;\; \mathcal{D}[\varrho] &= \frac{1}{2} \sum_{j=0} (L^{\dagger}_j L_j \varrho + \varrho + L^{\dagger}_j L_j - L_j \varrho L^{\dagger}_j) +\end{align} +where the density matrix $\varrho$ is a $4x4$ matrix with components +$\varrho_{ij}$ ($i,j = s,f$) which are $2x2$ matrices, with the property +$\varrho^\dagger_{sf} = \varrho_{fs}$ +\begin{align} + \varrho = + \begin{pmatrix} + \varrho_{ss} & \varrho_{sf} \\ + \varrho_{fs} & \varrho_{ff} + \end{pmatrix}. +\end{align} +The Hamiltonian $H$ is an extension of the effective Hamiltonian $H_{eff}$ on +the total Hilbertspace $\textbf{H}_{tot}$ +\begin{align} + H = + \begin{pmatrix} + H_{eff} & 0 \\ + 0 & 0 + \end{pmatrix}. +\end{align} +Furthermore the Lindbad generator $L_0$ is defined with +$B:\textbf{H}_s \rightarrow \textbf{H}_f$, where $B^\dagger B = \Gamma$, decay +matrix $\Gamma$ from the effective Hamiltonian $H_{eff}$, +\begin{align} + L_0 = + \begin{pmatrix} + 0 & 0 \\ + B & 0 + \end{pmatrix} \;\;\;\; + L_j = + \begin{pmatrix} + A_j & 0 \\ + 0 & 0 + \end{pmatrix} \;\;\;\;\; (\text{with}\; j > 0). +\end{align} +Rewriting the master equation in \ref{eq:master} we get the following +differential equations for the density matrix components +\begin{align} + \dot{\varrho}_{ss} &= -i[H_{eff},\varrho{ss}] - \frac{1}{2}\{B^\dagger + B,\varrho_{ss} \} - \tilde{D}[\varrho_{ss}],\\ + \dot{\varrho}_{sf} &= -iH_{eff}\varrho_{sf} - \frac{1}{2} B^\dagger B \varrho_{sf} + -\frac{1}{2}\sum_j A_j^\dagger A_j \varrho_{sf},\\ + \dot{\varrho}_{ff} &=B\varrho_{ss}B^\dagger . +\end{align} +with $\tilde{D}[\varrho_{ss}] = \frac{1}{2} \sum_{j=0} (A^{\dagger}_j A_j +\varrho_{ss} + \varrho_{ss} + A^{\dagger}_j A_j - A_j \varrho_{ss} A^{\dagger}_j)$.\newline +Now we solve these equations for the case without decoherence, meaning the +Lindbad Operators operators $A_j$ disappear and we can rewrite the equations +for $\varrho_{ss}$ above in +\begin{align} + \dot{\varrho_{ss}} &= -[H_{eff}, \varrho_{ss}] - \frac{1}{2} \{\Gamma, + \varrho_{ss}\}=\\ + &=-i((M-\frac{i}{2}\Gamma)\varrho_{ss} - \varrho_{ss}(M-\frac{i}{2}\Gamma)) + -\frac{1}{2}(\Gamma \varrho_{ss} + \varrho_{ss}\Gamma)\\ + &= -i\underbrace{[M, \varrho_{ss}]}_{=0} - \varrho_{ss} \Gamma\\ + &= -\varrho_{ss}\Gamma \\ + \Rightarrow \;\;\; \varrho_{ss} &= \varrho_{ss}(0) e^{-\Gamma t}. +\end{align} +For $\varrho_{sf}$ we get +\begin{align} + \dot{\varrho}_{sf} &= -i H_{eff} \varrho_{sf} - \frac{1}{2} \Gamma + \varrho_{sf} =\\ + &= -iM\varrho_{sf}\\ + \Rightarrow \;\;\; \varrho_{sf} &= \varrho_{sf}(0) e^{-iM t}. +\end{align} +And for $\varrho_{ff}$ +\begin{align} + \dot{\varrho}_{ff} &= B\varrho_{ss}B^\dagger \\ + \Rightarrow \;\;\; \varrho_{ff}&= B\int \varrho_{ss}dt B^\dagger \\ + &= -B\varrho_{ss}(0) \Gamma^{-1} e^{-\Gamma t} B^\dagger + \varrho_{ff}(0) +\end{align} +In reality the decay rates of particles differ e.g. $K_S$ and $K_L$, the +density matrix allows such things to be taken care of by mathematically +extending the Hilbertspace and including the Lindbad operator. We could also +consider a particle with three different decay rates, though the Hamiltonian +would be a nine dimensional. In this regard we might say that the master +equation \ref{eq:master} is a more general Schrödinger equation, +because it not only describes pure quantum states but +also mixed states. +\nocite{carla} +\nocite{bgh} +\nocite{mexico} \printbibliography \end{document} diff --git a/sesh2/src/uni.bib b/sesh2/src/uni.bib @@ -22,3 +22,32 @@ doi = {10.1103/PhysicsPhysiqueFizika.1.195}, url = {https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195} } +@article{carla, + title = {Entanglement, Bell Inequalities and Decoherence in Neutral K-Meson Systems}, + author = {Carla Schuler}, + year = {2014}, + url = {https://homepage.univie.ac.at/reinhold.bertlmann/pdfs/dipl_diss/CarlaSchuler_BA_v2.pdf} +} +@article{bgh, + title = {Open-quantum-system formulation of particle decay}, + author = {Bertlmann, Reinhold A. and Grimus, Walter and Hiesmayr, Beatrix C.}, + journal = {Phys. Rev. A}, + volume = {73}, + issue = {5}, + pages = {054101}, + numpages = {4}, + year = {2006}, + month = {May}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevA.73.054101}, + url = {https://link.aps.org/doi/10.1103/PhysRevA.73.054101} +} +@article{mexico, +author = {Socolovsky, Miguel}, +year = {2002}, +month = {08}, +pages = {384-390}, +title = {On Bell's theorem}, +volume = {48}, +journal = {Revista Mexicana De Fisica - REV MEX FIS} +}