notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

commit 4f4ab27f2fff4eeb493417d60e4cd49fce763e07
parent 8ce911ece70e6d388d9cd789443ae126f7eddedd
Author: miksa <milutin@popovic.xyz>
Date:   Sun,  5 Jun 2022 13:38:57 +0200

done with basics

Diffstat:
Dapp_pde/basics_fluids.tex | 955-------------------------------------------------------------------------------
Dapp_pde/build/basics_fluids.pdf | 0
Aapp_pde/build/main.pdf | 0
Aapp_pde/chap1.tex | 544+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aapp_pde/chap2.tex | 215+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aapp_pde/chap3.tex | 508+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aapp_pde/main.tex | 28++++++++++++++++++++++++++++
7 files changed, 1295 insertions(+), 955 deletions(-)

diff --git a/app_pde/basics_fluids.tex b/app_pde/basics_fluids.tex @@ -1,955 +0,0 @@ -\include{./preamble.tex} - -\usepackage{amsmath} -\numberwithin{equation}{section} - -\begin{document} - -\maketitle -\tableofcontents - -\section{Governing Equations of Fluid Dynamics} -We first start of with a fluid with a density -\begin{align} - \rho(\mathbf{x}, t), -\end{align} -in three dimensional Cartesian coordinates $\mathbf{x} = (x, y, z)$ at time -$t$. For water-wave applications, we should note that we take -$\rho=\text{constant}$, but we will go into this fact later. The fluid moves -in time and space with a velocity field -\begin{align} - \mathbf{u}(\mathbf{x}, t) = (u, v, w). -\end{align} -Additionally it is also described by its pressure -\begin{align} - P(\mathbf{x}, t), -\end{align} -generally depending on time and position. When thinking of e.g. water the -pressure increases the deeper we go, that is with decreasing or increasing $z$ -direction (depending how we set up our system $z$ pointing up or down -respectively). - -The general assumption in fluid dynamics is the \textbf{Continuum -Hypothesis}, which assumes continuity of $\textbf{u}, \rho$ and $P$ in -$\mathbf{x}$ and $t$. In other words, we premise that the velocity field, -density and pressure are ''nice enough`` functions of position and time, such -that we can do all the differential operations we desire in the framework of -differential analysis. -\subsection{Mass Conservation} -Our aim is to derive a model of the fluid and its dynamics, with respect to -time and position, in the most general way. This is usually done thinking -of the density of a given fluid, which is a unit mass per unit volume, -intrinsically an integral representation to derive these equations suggests -by itself. - -Let us now thing of an arbitrary fluid. Within this fluid we define a fixed -volume $V$ relative to a chosen inertial frame and bound it by a surface $S$ -within the fluid, such that the fluid motion $\mathbf{u}(\mathbf{x}, t)$ may -cross the surface $S$. The fluid density is given by $\rho(\mathbf{x}, t)$, -thereby the mass of the fluid in the defined Volume $V$ is an integral -expression -\begin{align} - m = \int_V \rho(\mathbf{x}, t) dV. -\end{align} -The figure bellow \ref{fig:volume}, expresses the above described picture. -\begin{figure}[H] - \centering - \begin{tikzpicture}[>=latex,scale=1, xscale=1, opacity=.8] -% second sphere - \begin{scope}[rotate=10, xscale=3, yscale=2, shift={(2.3,-0.2)}] - \coordinate (O) at (0,0); - \shade[ball color=gray!10!] (0,0) coordinate(Hp) circle (1) ; - - \draw[thick] (O) circle (1); - \draw[rotate=5] (O) ellipse (1cm and 0.66cm); - \draw[rotate=90] (O) ellipse (1cm and 0.33cm); -\node[circle, fill=black, inner sep=1pt] at (0.15, 0.25) {} ; \draw[-latex, thick] (0.15, 0.25) -- (1, 1) ; - \node[right] at (1, 1) {$\mathbf{u}(\mathbf{x}, t)$}; - - \node[] at (O) {$V$}; - \node[] at (0.55, -0.25) {$\rho(\mathbf{x}, t)$}; - - \draw[-] (0.76, -0.66) -- (1.2, -0.7); - \node[right] at (1.2, -0.7) {$S$}; - - \draw[-latex, thick] (-0.25, -0.65) -- (-1, -1); - \node[left] at (-1, -1) {$\mathbf{n}$}; - - \end{scope} - -% axis - \end{tikzpicture} - \caption{Volume bounded by a surface in a fluid with density and momentum, - with a surface normal vector $\mathbf{n}$ \label{fig:volume}} -\end{figure} - -Since we want to figure out the fluid's dynamics, we can consider the rate -of change in the completely arbitrary $V$. The rate of change of mass needs to -disappear, i.e. it is equal to zero since we cannot lose mass. Matter (mass) is -neither created nor destroyed anywhere in the fluid, leading us to -\begin{align} - \frac{d}{dt}\left( \int_V \rho(\mathbf{x}, t)\ dV \right) = 0. -\end{align} -\textbf{NOT SURE HERE YET!!!!!!!!!!!, CHECK LEIBINZ FORMULA} -To get more information we simply ''differentiate under the integral -sign``, also known as the Leibniz Rule of Integration, see appendix -\ref{appendix:leibniz}, the integral equation representing the rate of change -of mass reads -\begin{align}\label{eq:mass balance} - \frac{dm}{dt} = \int_V \frac{\partial \rho(\mathbf{x}, t)}{\partial t}\ dV - +\int_{\partial V} \rho(\mathbf{x}, t) \mathbf{u}\cdot\mathbf{n}\ dS - = 0. -\end{align} -\textbf{----------------------} -The above equation in \ref{eq:mass balance} is an underlying equation, describing that the rate of -change of mass in V is brought about, only by the rate of mass flowing into -V across S, and thus the mass does not change. - -For the second integral in \ref{eq:mass balance} we utilize the Gaussian -integration law to acquire an integral over the volume -\begin{align} - \int_{\partial V} \rho(\mathbf{x}, t) \mathbf{u} \cdot \mathbf{n} \ dS = - \int_V \nabla (\rho \mathbf{u})\ dV. -\end{align} -Thereby we can put everything inside the volume integral -\begin{align} - \frac{d m}{dt} = \int_V \left(\partial_t \rho + \nabla(\rho \mathbf{u}) \right) \ dV = 0. -\end{align} -Everything under the integral sign needs to be zero, thus we obtain -the \textbf{Equation of Mass Conservation} or in the general sense also -called the \textbf{Continuity Equation} -\begin{align}\label{eq:continuity} - \partial_t \rho + \nabla(\rho \mathbf{u}) = 0 -\end{align} - -In light of the results of the equation of mass conservation -in \ref{eq:continuity}, an product rule gives -\begin{align} - \partial_t \rho + (\nabla \rho)\mathbf{u} + \rho(\nabla \mathbf{u}), -\end{align} -for notational purposes, we define the \textbf{material/convective derivative} -as follows -\begin{align} - \frac{D}{Dt} = \partial_t + \mathbf{u}\nabla. -\end{align} -With the material derivative the equation of mass conservation reads -\begin{align} - \frac{D\rho}{Dt} + \rho \nabla\mathbf{u} = 0 -\end{align} -We may undertake the first case separation, initiating $\rho = \text{cosnt.}$ -called \textbf{incompressible flow} causes the material derivative of $\rho$ to -be zero, and thereby -\begin{align} - \frac{D\rho}{Dt} = 0 \quad \Rightarrow \quad \nabla \mathbf{u} = 0, -\end{align} -following that the divergence of the velocity field is zero, in this case -$\mathbf{u}$ is called \textbf{solenoidal}. -\subsection{Euler's Equation of Motion} -Additional consideration we undertake is the assumption of an -\textbf{inviscid} fluid, that is we set viscosity to zero. Otherwise we would -get a viscous contribution under the integral which results in the -Navier-Stokes equation. In this regard we apply Newton's second law to our -fluid in terms of infinitesimal pieces $\delta V$ of the fluid. The -acceleration divides into two terms, a \textbf{body force} given by gravity -of earth in the $z$ coordinate $\mathbf{F} = (0, 0, -g)$ and a -\textbf{local/short-rage force} described by the stress tensor in the fluid. -In the inviscid case we the local force retains the pressure $P$, producing a -normal force, with respect to the surface, acting onto any infinitesimal -element in the fluid. The integral formulation of the force would be -\begin{align} - \int_V \rho \mathbf{F}\ dV - \int_S P\mathbf{n}\ dV. -\end{align} -Now applying the Gaussian rule of integration on the second integral over the -surface, the resulting force in per unit volume is -\begin{align} - \int_V \left(\rho \mathbf{F} - \nabla P\right)\ dV. -\end{align} -The acceleration of the fluid particles is given by $\frac{D\mathbf{u}}{Dt}$, -and thus the total force per unit volume on the other hand is -\begin{align} - \int_V \rho \frac{D\mathbf{u}}{Dt}\ dV = - \int_V \left(\rho \mathbf{F} - \nabla P\right)\ dV. -\end{align} -Newton's Second Law for a fluid in an Volume is essentially saying that the -rate of change of momentum of the fluid in the fixed volume $V$, which is the particle -acceleration is the resulting force acting on V together with the rate of -flow of momentum across the surface $S$ into the volume $V$. Hence we arrive -at the \textbf{Euler's Equation(s) of Motion} -\begin{align} - \frac{D\mathbf{u}}{Dt} = \left(\frac{\partial \mathbf{u}}{\partial t} - (\mathbf{u}\nabla)\mathbf{u}\right) = - -\frac{1}{\rho}\nabla P + \mathbf{F}. -\end{align} -As a side note we have mentioned that there is another contribution if the -fluid is viscid. Indeed there is a tangential force due to the velocity -gradient, which into introduces the additional term -\begin{align} - \mu \nabla^2 \mathbf{u}, \qquad - \mu = \text{viscosity of the Fluid}. -\end{align} -Thereby the equations become -\begin{align} - \rho\frac{D\mathbf{u}}{Dt} - = -\nabla P + \rho \mathbf{F} + \mu \nabla^2 \mathbf{u}. -\end{align} - -For now we have separated two simplifications, that define an -\textbf{idealized/perfect fluid} -\begin{enumerate} - \item \textbf{incompressible} $\qquad \mu=0$ - \item \textbf{inviscid} $\quad \rho = \text{const.},\ \nabla \mathbf{u}= - 0$ -\end{enumerate} -\subsection{Vorticity and irrotational Flow} -The curl of the velocity field $\mathbf{\omega} = \nabla \times \mathbf{u}$ -of a fluid (i.e. the vorticity), describes a spinning motion of the fluid -near a position $\mathbf{x}$ at time $t$. The vorticity is an important -property of a fluid, flows or regions of flows where $\mathbf{\omega}=0$ are -\textbf{irrotational}, and thus can be modeled and analyzed following well -known routine methods. Even though real flows are rarely irrotational -anywhere (!), in water wave theory wave problems, from the classical aspect -of vorticity have a minor contribution. Hence we can assume irrotational flow -modeling water waves. To arrive at the vorticity in the equations of motions -derived in the last section we resort to a differential identity derived in appendix -\ref{appendix:diff identity}, which gives for the material derivative -\begin{align} - \frac{D\mathbf{u}}{Dt} = \frac{\partial \mathbf{u}}{\partial t} - \nabla(\frac{1}{2}\mathbf{u}\mathbf{u)} - - \left( \mathbf{u}\times (\nabla \times \mathbf{u} \right). -\end{align} -Thus the equations of motion become -\begin{align} - \frac{\partial \mathbf{u}}{\partial t} + \nabla\left( - \frac{1}{2}\mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega \right) - = \mathbf{u} \times \mathbf{\omega}, -\end{align} -where $\Omega$ is the force potential per -unite mass given by $\mathbf{F} = -\nabla \Omega$. - -At this point we may differentiate between \textbf{stead and unsteady flow}. -For \textbf{Steady Flow} we assume that $\mathbf{u}, P$ and $\Omega$ are time -independent, thus we get -\begin{align} - \nabla\left( \frac{1}{2}\mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega - \right) = \mathbf{u} \times \mathbf{\omega}. -\end{align} -It is general knowledge that the gradient of a function $\nabla f$ is -perpendicular the level sets of $f(\mathbf{x})$, where $f(\mathbf{x}) = -\text{const.}$. Thus $\mathbf{u} \times \mathbf{\omega}$ is orthogonal to -the surfaces where -\begin{align} \label{eq:bernoulli} - \frac{1}{2}\mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega = - \text{const.}, -\end{align} -The above equation is called \textbf{Bernoulli's Equation}. - -Secondly \textbf{Unsteady Flow} but irrotational (+ incompressible), first of -all gives us the condition for the existence of a velocity potential $\phi$ -in the sense -\begin{align} - \mathbf{\omega} = \nabla \times \mathbf{u} = 0 \quad \Rightarrow \quad - \mathbf{u} = \nabla \phi, -\end{align} -where $\phi$ needs to satisfy the Laplace equation -\begin{align} - \Delta \phi = 0. -\end{align} -According to the Theorem of Schwartz we may exchange $\frac{\partial -}{\partial t}$ and $\nabla$, giving us an expression for the material -derivative -\begin{align} - \nabla\left( \frac{\partial \phi}{\partial t} +\frac{1}{2} - \mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega \right) = 0 -\end{align} -Thus the expression differentiated by the $\nabla$ operator is an arbitrary -function $f(\mathbf{x}, t)$, writing -\begin{align} - \frac{\partial \phi}{\partial t} +\frac{1}{2} - \mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega = f(\mathbf{x}, t). -\end{align} -The function $f(\mathbf{x}, t)$ can be removed by gauge transformation of -$\phi \rightarrow \phi + \int f(\mathbf{x}, t)\ dt$, never the less this is -not further discussed and left to the reader in the reference. -\subsection{Boundary Conditions for water waves} -The boundary conditions for water-wave problems vary, generally on the -simplification we undertake. At the surface, called the free surface as in -free from the velocity conditions, we have the atmospheric stress on the -fluid. The stress component would again have a viscid component, this however -is only relevant when modeling surface wind, in this review we model the -fluid as unaffectedly and within reason as inviscid. The atmosphere employs -only a pressure on the surface, this pressure is taken to be the atmospheric -pressure, dependent on time and point in space. Thereby any surface tension -effects can also include a scenario at a curved surface (e.g. wave), giving -rise to the pressure difference across the surface. A more precise -description would use Thermodynamics to derive boundary conditions coupling -water surface and the air above it, yet the density component of air -compared to that of water makes our ansatz viable. The described conditions -are called the \textbf{dynamic conditions} - -An additional condition revolves around the fluid particles on the moving -surface, called the \textbf{kinematic condition}. This condition bounds -the vertical velocity component on the surface. - -The logical step now is to define boundary conditions on the bod of the -fluid, i.e. the bottom. If the viscid case bottom is impermeable, we a no -slip condition to all fluid particles $\mathbf{u}_\text{bottom}= 0$. If we -assume that the fluid is inviscid then the bottom becomes a surface of the -fluid in the sense that the fluid particles in contact with the bed move in -the surface, we more or less mirror the kinematic condition of the surface. -For many problems the condition is going to vary, in most cases the bottom -will be rigid and fixed not necessarily horizontal. This condition is simply -called the \textbf{bottom condition}. -\subsubsection{Kinematic Condition} -Obtaining the free surface is the primary objective in the theory of modeling -water waves, represented by -\begin{align} - z = h(\mathbf{x}_\perp, t), -\end{align} -where $\mathbf{x}_\perp = (x, y)$ in Cartesian, or $\mathbf{x}_\perp = (r, -\theta)$ in cylindrical coordinates. A surfaces that moves with the fluid, -always contains the same fluid particles, described as -\begin{align} - \frac{D}{Dt}\left(z - h(\mathbf{x}_\perp, t \right) = 0. -\end{align} -Upon expanding the derivative we get -\begin{align} - \frac{Dz}{Dt} - \frac{Dh}{Dt} - &= \frac{\partial z}{\partial t}+ - (\mathbf{u}\nabla)z - \frac{\partial h}{\partial t} -(\mathbf{u}\nabla)\\ - &= w - \left(h_t - (\mathbf{u}_\perp \nabla_\perp) h\right) = 0, -\end{align} -where the subscript $\perp$ describes the components with regard to -$\mathbf{x}_\perp$. The \textbf{kinematic condition} reads -\begin{align} - w = h_t - (\mathbf{u}_\perp \nabla_\perp) h \qquad \text{on}\;\; - z=h(\mathbf{u}_\perp, t). -\end{align} - -\subsubsection{Dynamic Condition} -As described in the prescript of this section, the case of an inviscid fluid, -requires that only the pressure $P$ needs to be described on the free surface -$z = h(\mathbf{x}_\perp, t)$. Assuming incompressible, irrotational, -unsteady flow and setting $P=P_a$ for atmospheric pressure and $\Omega = -g\cdot z$ for the force per unit mass potential the equations of motion are -\begin{align} - \frac{\partial \phi}{\partial t} +\frac{1}{2}\mathbf{u}\mathbf{u} - + P_\frac{a}{\rho}+gh = f(t) \qquad \text{on}\;\; on z=h. -\end{align} -Somewhere $\|\mathbf{x}_\perp\| \rightarrow \infty$ the fluid reaches -equilibrium and is thereby stationary, thereby has no motion and the pressure -is $P=P_a$ and the surface is a constant $h = h_0$ $f(t)$ is -\begin{align} - f(t) = \frac{P_a}{\rho}+gh_0. -\end{align} -The simplest description for the \textbf{dynamic condition} may be written as -\begin{align} - \frac{\partial \phi}{\partial t} - +\frac{1}{2}\mathbf{u}\mathbf{u}+g(h-h_0) = 0 \qquad \text{on}\;\; z=h. -\end{align} - -Regarding the pressure difference on a curved surface, we may expand the -dynamic condition by introducing the pressure difference known as the -\textbf{Young-Laplace Equation} -\begin{align} - \Delta P = \frac{\Gamma}{R}, -\end{align} -where $\Gamma>0$ is the coefficient of surface tension and $\frac{1}{R}$ is -the curvature representing an implicit function, in our case the implicit -function is $z - h(\mathbf{x}_\perp, t)$ for fixed time. The curvature in -Cartesian coordinates takes the form -\begin{align} - \frac{1}{R} = \frac{(1+h_y^2)h_{x x}+(1+h_y^2)h_{yy} - - 2h_xh_yh_{xy}}{\left( h_x^2+h_y^2+1 \right)^{\frac{3}{2}} }, -\end{align} -the derivation is precisely described in \ref{appendix:curvature} - - - -\subsubsection{The Bottom Condition} -The representation for the bottom is -\begin{align} - z = b(\mathbf{x}_\perp, t), -\end{align} -where the fluid surface needs to satisfy -\begin{align} - \frac{D}{Dt} \left(z - b(\mathbf{x}_\perp) \right) = 0. -\end{align} -Hence we arrive at the bottom boundary conditions -\begin{align} - w = b_t + (\mathbf{u}_\perp \nabla_\perp)b \qquad \text{on}\;\; z=b , -\end{align} -where $b(\mathbf{x}_\perp, t)$ is already known for most water wave -problems. If we consider a stationary bottom then the time derivative -vanishes, leaving us with the following condition -\begin{align} - w = (\mathbf{u}_\perp \nabla_\perp)b \qquad \text{on}\;\; z=b -\end{align} - - -\subsubsection{Integrated Mass Condition} -In this section we want to combine the kinematics of both the free and the -bottom surface with the mass conservation equation on the perpendicular -components -\begin{align} - \nabla \mathbf{u} = \nabla_\perp \mathbf{u}_\perp + w_z = 0 . -\end{align} -Integrating the above expression from bottom to surface, i.e. from -$z=b(\mathbf{x}_\perp,t)$ to $z = h (\mathbf{x},t)$ gives -\begin{align} - \int_b^h \nabla_\perp \mathbf{u}_\perp\ dz + w\bigg|_{z=b}^{z=h} = 0, -\end{align} -where we insert the conditions on the free surface and on the bottom surface -\begin{align} - w &= h_t + (\mathbf{u}_{\perp \text{s}} \nabla_\perp) h \quad - \text{on}\;\; z = h\\ - w &= b_t + (\mathbf{u}_{\perp \text{b}} \nabla_\perp) h \quad - \text{on}\;\; z =b, -\end{align} -with the subscript $s$ and $b$ indicating the evaluation of a quantity -on the free surface and the bottom surface respectively. Inserting the -boundary conditions we get -\begin{align} - \int_b^h \nabla_\perp \mathbf{u}_\perp - + h_t + (\mathbf{u}_{\perp \text{s}} \nabla_\perp) h - - b_t - (\mathbf{u}_{\perp \text{b}} \nabla_\perp) b= 0. -\end{align} -To simplify the equation we resort again to the Leibniz Rule of Integration -\begin{align} - \int_b^h \nabla_\perp\mathbf{u}_\perp = - \nabla_\perp \int_b^h \mathbf{u}_\perp\ dz - (\mathbf{u}_{\perp \text{s}} - \nabla_\perp)h - (\mathbf{u}_{\perp \text{b}})b. -\end{align} -As a consequence the \textbf{Integrated Mass Condition} is given by -\begin{align} - \nabla_\perp \int_b^h \mathbf{u}_\perp\ dz + \underbrace{h_t - - b_t}_{=d_t} = 0. -\end{align} -\subsection{Energy Equation} -To derive the energy equation we start off with Euler's Equation of Motion -\begin{align} - \mathbf{u} _t + \nabla - (\frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}+\Omega) = \mathbf{u}\times - \mathbf{w}, -\end{align} -multiplying the equation with $\mathbf{u}$ we get -\begin{align} - &\mathbf{u}\mathbf{u} _t \label{eq:energy1} \\ - &+(\mathbf{u}\nabla)(\frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}+\Omega)\label{eq:energy2}\\ - &= \mathbf{u}(\mathbf{u}\times - \mathbf{w})\label{eq:energy3}. -\end{align} -The first equation given in \ref{eq:energy1} can we rewritten using inverse -product rule of differentiation -\begin{align} - \mathbf{u}\frac{\partial \mathbf{u}}{\partial t} - &= \frac{\partial - }{\partial t} (\mathbf{u}\mathbf{u}) - \frac{\partial \mathbf{u}}{\partial t} - \mathbf{u} \\ - &= \frac{\partial - }{\partial t} (\mathbf{u}\mathbf{u}) - \mathbf{u}\frac{\partial - \mathbf{u}}{\partial t}\\ - \Rightarrow\quad & \mathbf{u} \frac{\partial \mathbf{u}}{\partial t} = - \frac{1}{2}\frac{\partial }{\partial t} (\mathbf{u}\mathbf{u}). -\end{align} -Then we may add -\begin{align} - \left(\frac{1}{2} \mathbf{u}\mathbf{u}+\frac{P}{\rho} +\Omega \right) - \underbrace{(\nabla u)}_{=0} = 0, -\end{align} -to above not changing anything. Thereby getting -\begin{align} - \frac{\partial }{\partial t} (\frac{1}{2}\mathbf{u}\mathbf{u}) - +(\mathbf{u}\nabla \mathbf{u})\left( - \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho} \right) - +\left( \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho} + \Omega \right) - (\nabla \mathbf{u}) = 0. -\end{align} -Applying the product rule we can simplify -\begin{align} - \frac{\partial }{\partial t} \left(\frac{1}{2}\mathbf{u}\mathbf{u}\right) - +\nabla \left(\mathbf{u}\left(\mathbf{u}( - \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}\right) \right) = 0, -\end{align} -additionally adding $\frac{\partial \Omega}{\partial t} =0$ leads us to -\begin{align} - \underbrace{\frac{\partial }{\partial t} \left(\frac{1}{2}\mathbf{u}\mathbf{u} - +\Omega\right)}_{\text{change of total energy density}} - +\underbrace{\nabla \left(\mathbf{u}\left(\mathbf{u}( - \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}\right) -\right)}_{\text{energy flow of the velocity field}} = 0.\label{eq:energy} -\end{align} -This is called the \textbf{energy equation} and is a general result for a -inviscid and incompressible fluids, which we can apply to study water waves. -We start off with replacing $\nabla = \nabla_\perp + \frac{\partial }{\partial -z} $ and $\Omega = g z$ and multiplying by $\rho$, then our energy equation -in \ref{eq:energy} becomes -\begin{align} - \frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho - g z\right) + \nabla_\perp\left( \mathbf{u}_\perp\left( - \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right) - \frac{\partial}{\partial z} \left( w\left( - \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho g z \right) \right) = 0. -\end{align} -Integrating from bottom to top, i.e. from bed to free surface gets us to -\begin{align} - &\int_b^h\frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho - g z\right)\ dz \label{eq:e-int1}\\ - &+ \int_b^h \nabla_\perp\left( \mathbf{u}_\perp\left( - \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right)\ - dz\label{eq:e-int2}\\ - &+ \left(\frac{\partial}{\partial z} \left( w\left( - \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho g z \right) -\right)\right)\Bigg|_b^h \label{eq:e-int3} - = 0. -\end{align} -For equation \ref{eq:e-int1} we use Leibniz Rule of Integration, leaving us -with -\begin{align} - \int_b^h\frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho - g z\right)\ dz - &= \frac{\partial }{\partial t} \int_b^h - \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho gz \ dz\\ - &+ \left( \frac{1}{2}\rho \mathbf{u}_s \mathbf{u}_s + \rho g h \right) - h_t\\ - &- \left( \frac{1}{2}\rho \mathbf{u}_b \mathbf{u}_b + \rho g b \right) - b_t -\end{align} -For equation \ref{eq:e-int2} we again take note of the Leibniz Rule of -Integration, getting -\begin{align} - \int_b^h \nabla_\perp\left( \mathbf{u}_\perp\left( - \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right)\ - dz - &= \nabla_\perp \int_b^h \mathbf{u}_\perp\left( - \frac{1}{2}\rho\mathbf{u}\mathbf{u} + P + \rho g z \right) \ dz\\ - &- \left( \frac{1}{2}\rho \mathbf{u}_s\mathbf{u}_s + P + \rho g h \right) - \left( \mathbf{u}_{\perp s} \nabla_\perp \right) h\\ - &+\left( \frac{1}{2}\rho \mathbf{u}_b\mathbf{u}_b + P + \rho g b \right) - \left( \mathbf{u}_{\perp b} \nabla_\perp \right) b -\end{align} -Thereby transforming our equation into -\begin{align} - \frac{\partial }{\partial t} \underbrace{\int_b^h \frac{1}{2}\rho - \mathbf{u}\mathbf{u}+\rho g z\ dz}_{=:\mathcal{E}} - + \nabla_\perp&\underbrace{\int_b^h - \mathbf{u}_\perp\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho g z -\right)\ dz}_{:=\mathcal{F}} -+ \underbrace{P_s h_t - P_b b_t}_{:=\mathcal{P}} = 0\\ -\nonumber\\ - &\frac{\partial \mathcal{E}}{\partial t} - + \nabla_\perp \mathcal{F} + \mathcal{P} = 0, -\end{align} -where $\mathcal{E}$ represents the energy in the flow per unit horizontal -area, since we are integrating from bed to free surface. Where $\mathcal{F}$ -is the horizontal energy flux vector and lastly $\mathcal{P} = P_s h_t - -P_b b_t$ is the net energy input due to the pressure forces doing work on the -upper and lower boundaries, i.e. bottom and free surface of the fluid. -Assuming stationary rigid bottom condition and constant surface pressure, we -can set $P_s=0$, such that $\mathcal{P} =0$ leaving us with the equation -\begin{align} - \frac{\partial \mathcal{E}}{\partial t} - + \nabla_\perp \mathcal{F} = 0. -\end{align} -We note that the assumption $P_s=0$ is only possible if the coefficient of -surface tension is set to 0, which usually is not the case. -\section{Dimensional Analysis} -Our derived model of fluid dynamics yields formal connections between -physical quantities. These quantities bear units, e.g. the velocity of fluid -particles $\mathbf{u}$ has the ``SI'' unites of $\frac{m}{s}$, meters per -second. The idea is the make use of these scales and formulate a model, where -the quantities are nondimensionalized, i.e. to get rid of physical units by -scaling each quantity appropriately. The appropriate length scales are that -of the typical water depth $h_0$ and the typical wavelength $\lambda$ of a -surface wave. - -\subsection{Nondimensionalisation} -In summary we use these adaptations -\begin{itemize} - \item $h_0$ for the typical water depth - \item $\lambda$ for the typical wavelength - \item $\frac{\lambda}{\sqrt{g h_0}}$ time scale of wave propagation - \item $\sqrt{g h_0}$ velocity scale of waves in $(x, y)$ - \item $\frac{h_0 \sqrt{g h_0} }{\lambda}$ velocity scale in the $z$ - direction. -\end{itemize} -$(x, z, t)$, then -\begin{align} - u = \psi _z, \qquad w = - \psi_x; -\end{align} -and the scale of $\psi$ must be $h_0\sqrt{g h_0}$. Additionally we write the -boundary condition on the free surface as follows -\begin{align} - h = h_0 + a \eta (\mathbf{x}_\perp, t) = z, -\end{align} -where $a$ is the typical amplitude and $\eta$ nondimensional function. All in -all we have the following scaling for the physical quantities of our context -\begin{align} - &x \rightarrow\ \lambda x, \quad u \rightarrow \sqrt{gh_0} u, \\ - &y \rightarrow\ \lambda y, \quad v \rightarrow \sqrt{gh_0} v, \qquad - t\rightarrow \frac{\lambda}{\sqrt{gh_0}}t,\\ - &z \rightarrow\ h_0 z, \quad w \rightarrow - \frac{h_0\sqrt{gh_0}}{\lambda} w. -\end{align} -with -\begin{align} - h = h_0 + a \eta, \qquad b \rightarrow h_0 b. -\end{align} -The pressure is also rewritten into -\begin{align} - P = P_a + \rho g(h_0 -z) + \rho g h_0 p, -\end{align} -where $P_a$ is the atmospheric pressure, the term $h_0-z$ represent the -hydrostatic pressure distribution, i.e. pressure at depth and the term with the pressure -variable $p$ measures the deviation from the hydrostatic pressure -distribution. Indeed $p\neq 0 $ for wave propagation. Now we can perform a -rescaling of the Euler's Equation of Motion, we introduce the notation -\begin{align} - &t = \frac{\lambda}{\sqrt{gh_0}}\tau,\quad x = \lambda \xi,\quad u = - \sqrt{gh_0} \tilde{u}\\ - &y = \lambda \chi,\quad v = \sqrt{gh_0} \tilde{v}\\ - &z = h_0 \zeta, \quad w = \frac{h_0\sqrt{gh_0} }{\lambda}\tilde{w}. -\end{align} -We start off with the $x$ coordinate, substitute and apply the chain rule -leading us to -\begin{align} - \frac{Du}{Dt} - &= \frac{\partial u}{\partial t} +u \frac{\partial - u}{\partial x} \\ - &= \sqrt{gh_{0}}\frac{\partial \tilde{u}}{\partial \tau} \frac{\partial - \tau}{\partial t} +gh_0 \tilde{u} \frac{\partial \tilde{u}}{\partial \xi} - \frac{\partial \xi}{\partial x} \\ - &= \frac{gh_0}{\lambda} \left( \frac{\partial \tilde{u}}{\partial \tau} - \tilde{u} \frac{\partial \tilde{u}}{\partial \xi} \right), -\end{align} -on the other hand -\begin{align} - \frac{gh_0}{\lambda} \left( \frac{\partial \tilde{u}}{\partial \tau} - \tilde{u} \frac{\partial \tilde{u}}{\partial \xi} \right) - &=-\frac{1}{\rho}\frac{1}{\lambda}\frac{\partial P}{\partial x} \\ - &=-\frac{ g h_0 }{\lambda}\rho \frac{\partial p}{\partial \xi}. -\end{align} -Thereby the rescaling evolves to -\begin{align} - \frac{D \tilde{u}}{D\tau} = -\frac{\partial p}{\partial \xi}. -\end{align} -Because of the same scaling in $y$ we get the same result as in $x$, that is -\begin{align} - \frac{D \tilde{v}}{D\tau} = -\frac{\partial p}{\partial \chi}. -\end{align} -In the $z$ coordinate we have -\begin{align} - \frac{Dw}{Dt} - &= \frac{\partial w}{\partial t} +w \frac{\partial - w}{\partial \zeta} \\ - &= \frac{h_0\sqrt{gh_0}}{\lambda} \frac{\sqrt{gh_0}}{\lambda} - \frac{\partial \tilde{w}}{\partial \tau} + \frac{1}{h_0} - \frac{h_0\sqrt{gh_0} }{\lambda} \frac{h_0\sqrt{gh_0}}{\lambda} - \tilde{w}\frac{\partial \tilde{v}}{\partial \zeta}\\ - &= \frac{h_0^2g}{\lambda}\left( \frac{\partial \tilde{w}}{\partial \tau} - + \tilde{w}\frac{\partial \tilde{w}}{\partial \zeta} \right) . -\end{align} -On the other side we have -\begin{align} - \frac{h_0^2g}{\lambda}\left( \frac{\partial \tilde{w}}{\partial \tau} - + \tilde{w}\frac{\partial \tilde{w}}{\partial \zeta} \right) - &= - -\frac{1}{h_0\rho} \frac{\partial P}{\partial z} +g \\ - &=-\frac{1}{h_0\rho}(-\rho gh_0 \frac{\partial \zeta}{\partial \zeta} - \rho gh_0 - \frac{\partial p}{\partial \zeta} ) + g \\ - &= -g \frac{\partial p}{\partial z}. -\end{align} -In total for the $z$ direction we get -\begin{align} - \underbrace{\left( \frac{h_0}{\lambda} \right)^2}_{=: \delta^2} - \frac{Dw}{Dt} = -\frac{\partial p}{\partial z}, -\end{align} -where $\delta$ is the \textbf{long wavelength} or \textbf{shallowness} -parameter, a very important constant for developing model hierarchies. For -clarity we resubstitute for $x, y, z, t, u, v$ and $w$, and for completeness -the we display the equations again, which are -\begin{align}\label{eq:nondim-motion} - \frac{Du}{Dt} = - \frac{\partial p}{\partial x}&, \quad - \frac{Dv}{Dt} = - \frac{\partial p}{\partial y}, \quad - \delta^2\frac{Dw}{Dt} = - \frac{\partial p}{\partial z}, \\ - &\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} - +\frac{\partial w}{\partial z} = 0. -\end{align} -We can now turn our attention to the boundary conditions, on both free -surface $z=h$ and the bottom $z=b$ we have $z \Rightarrow h_0 z$ and thereby -\begin{align} - z = 1+ - \underbrace{\frac{a}{h_0}}_{:=\varepsilon}\eta(\mathbf{x}_\perp,t) \quad - \text{and}\quad z= b, -\end{align} -where we arrive at our second very important parameter $\varepsilon$ called -the \textbf{amplitude} parameter. As for the kinematic condition, we -substitute the free surface $z=h = 1+\varepsilon \eta$ and get -\begin{align} - \frac{Dz}{Dt} = \varepsilon\left(\eta_t + (\mathbf{u}_\perp - \nabla_\perp)\eta\right) \qquad \text{on}\;\; z= 1+\varepsilon \eta. -\end{align} -Respectively the bottom condition is not changed -\begin{align} - w = b_t + (\mathbf{u}_\perp \nabla_\perp) b \quad \text{on}\;\; z= b. -\end{align} -The general dynamic condition for $h = h(x, y, t)$ yields a rescaling of the -curvature in terms of -\begin{align} - \frac{1}{R} - &= \frac{(1+h_y^2)h_{x x} + (1+h_x^2)h_yy - 2h_xh_yh_{xy} - }{\left(h_x^2+h_y^2 +1 \right)^{\frac{3}{2}} } \\ - &= -\frac{\varepsilon h_0}{\lambda^2} \frac{( - 1+\varepsilon^2\delta^2\eta_y^2 )\eta_{x x}+ - (1+\varepsilon^2\delta^2\eta_x^2)\eta_{yy} - - 2\varepsilon^2\delta^2\eta_x\eta_y\eta_{xy}}{\left( - 1+\varepsilon^2\delta^2\eta_x^2+\varepsilon^2\delta^2\eta_y^2 - \right)^{\frac{3}{2}} }, -\end{align} -together with the pressure difference -\begin{align} - \Delta P = \rho g h_0(p - \varepsilon \eta) = \frac{\Gamma}{R}, -\end{align} -leaving us ultimately with the dynamic condition -\begin{align} - p-\varepsilon\eta= \varepsilon\left( \frac{\Gamma}{\rho g\lambda^2} - \right) \left(\frac{\lambda^2}{\varepsilon h_0}\frac{1}{R}\right), -\end{align} -where $W_e = \frac{\Gamma}{\rho g h_0^2}$ is the \textbf{Weber number}. This -dimensionless parameter can be considered as a measure of the fluid's inertia -compered to its surface tension, which satisfies the relation -\begin{align} - \delta^2 W_e = \frac{\Gamma}{\rho g \lambda^2}. -\end{align} -\subsection{Scaling of Variables} -Admits a simple observation of the governing equations in the last chapter we -notice that $w$ and $p$ on the free surface $z = 1 + \varepsilon\eta$ are -directly proportional to $\varepsilon$. Hence we want to ''scale this way`` -by introducing the following transformation -\begin{align} - p \rightarrow \varepsilon p, \quad w \rightarrow \varepsilon w, \quad - \mathbf{u}_\perp \rightarrow \varepsilon \mathbf{u}_\perp. -\end{align} -Because of this scaling our material derivative changes slightly to -\begin{align}\label{eq:mod-material} - \frac{D}{Dt} = \frac{\partial }{\partial t} + \varepsilon\left(u - \frac{\partial }{\partial x} + v \frac{\partial }{\partial y} + w - \frac{\partial }{\partial z} \right) -\end{align} -A simple recalculation yields the rescaled, nondimensionalized Euler's -Equation of motion are the same as in equations \ref{eq:nondim-motion} with -the modified material derivative from \ref{eq:mod-material}, and the boundary -conditions are -\begin{align} - p &= \eta - \frac{\delta^2\varepsilon h_0}{\lambda^2} \frac{W_e}{R}\\ - w &= \frac{1}{\varepsilon}\eta_t + (\mathbf{u}_\perp \nabla_\perp)\eta - \quad \text{on}\;\; z = 1+\varepsilon\eta\\ - w &=\frac{1}{\varepsilon}b_t + (\mathbf{u}_\perp \nabla_\perp)b \quad - \text{on}\;\; z=b -\end{align} -\subsection{Model Hierarchies} -As we have derived a model of fluid dynamics, with small parameters -$\varepsilon$ and $\delta$, we can conduct a series of classifications and -perform asymptotic analysis on them. The main hierarchies important in this -review are derived from the following problem classifications -\begin{itemize} - \item $\varepsilon\rightarrow 0$: linearized problem, small amplitude - \item $\delta\rightarrow 0$: shallow Water, long-wave - \item$\delta \rightarrow 0;\; \varepsilon~1$: shallow Water, large - amplitude - \item $\delta\ll 1;\; \varepsilon~\delta$: shallow water, medium - amplitude - \item $\delta\ll 1;\; \varepsilon~\delta^2$: shallow water, small - amplitude - \item $\delta \gg 1;\; \varepsilon\delta\ll 1$: deep water, small - steepness. -\end{itemize} - -\section{The Solitary Wave and The KdV Equation} -The solitary wave is a wave of translation, it is stable and can travel long -distances additionally the speed depends on the size of the wave. An -interesting feature is that two solitary waves do not merge together to form -one solitary wave, rather the small wave is overtaken by a larger one. If a -solitary wave is too big for the depth it splits into two, a big and a small -one. Solitary waves arise in the region $\varepsilon=O(\delta^2)$. - - -\subsection{Solitary Wave} -To describe -a solitary wave we begin with Euler's Equation of Motion, where we assume -there is no surface tension we set $W_e = 0$ and additionally assume -irrotational flow $\mathbf{\omega}=\nabla \times \mathbf{u} = 0$. This means -that there exists a velocity potential $\phi(\mathbf{x},t)$ given -by$\mathbf{u} = \nabla \phi$ satisfying the Laplace equation. In regard of a -solitary wave being a plane wave, we rotate our coordinate system such that -the propagation is in the $x$-direction and a stationary \& fixed bottom -$b=0$. Ultimately leaving us with the following model -\begin{align}\label{eq:soliton} -\begin{drcases} - & \phi_{zz} + \delta \phi_{x x } = 0,\\ - &\text{with the boundary conditions}\\ - &\begin{drcases} - &\phi_z = \delta^2 (\eta_t + \varepsilon \phi_x \eta_x) \\ - &\phi_t + \eta + \frac{1}{2}\varepsilon\left( \frac{1}{\delta^2}\phi^2_z - + \phi_x^2\right) =0 - \end{drcases}\quad \text{on}\;\; z = 1+\varepsilon\eta,\\ - &\text{and}\\ - & \phi_z =0 \quad \text{on}\;\; z = b = 0. -\end{drcases} -\end{align} -Since the model arises $\varepsilon = O(\delta^2)$, for convince we set -$\varepsilon=1$. The fact of the matter is we are seeking a traveling wave -solution, thereby we can go into the coordinate system of the traveling wave, -one in the variable $\xi = x - ct$ for a from left to right traveling wave, -where $c$ is the nondimensional speed of the wave. Our goal is to find the -solution for the velocity potential $\phi(\xi, z)$ and the wave profile -$\eta(\xi)$. The chain rule gives us -\begin{align} - \frac{\partial }{\partial x} &= \frac{\partial \xi}{\partial x} - \frac{\partial }{\partial \xi} = \frac{\partial }{\partial \xi}, \\ - \frac{\partial }{\partial t} &= \frac{\partial \xi}{\partial t} - \frac{\partial }{\partial \xi} = -c\frac{\partial }{\partial \xi}. -\end{align} -Together with the equations in \ref{eq:soliton} we obtain -\begin{align}\label{eq:soliton-xi} - \begin{drcases} - & \phi_{zz} + \delta \phi_{\xi\xi} = 0,\\ - &\text{with the boundary conditions}\\ - &\begin{drcases} - &\phi_z = \delta^2 (\phi_\xi -c)\eta_\xi \\ - &-c\phi_\xi + \eta + \frac{1}{2}\varepsilon\left( \frac{1}{\delta^2}\phi^2_z - + \phi_\xi^2\right) =0 - \end{drcases}\quad \text{on}\;\; z = 1+\eta,\\ - &\text{and}\\ - & \phi_z =0 \quad \text{on}\;\; z = b = 0. - \end{drcases} -\end{align} -\subsubsection{Exponential Decay} -We would like to analyze if the equation in \ref{eq:soliton-xi} gives viable a -solution that decays exponentially, we make the ansatz -\begin{align} - \eta \simeq a e^{-\alpha |\psi|},\quad \phi \simeq \psi(z)e^{-\alpha - |\xi|}, \qquad \mid \xi \mid \rightarrow \infty, -\end{align} -where $\alpha>0$ is the exponent. The equations in \ref{eq:soliton-xi} -transforms to -\begin{align} - \psi'' + \alpha^2 \delta^2\psi = 0. -\end{align} -The above equation is a standard well known ordinary differential equation -reading -\begin{align} - \psi = A \cos(\alpha\delta z), -\end{align} -where $A$ is the integration constant. On the free surface $z\simeq 1$ gives -\begin{align} - &-cA\alpha\sin(\alpha\delta) = ca\alpha,\label{eq:sol1}\\ - &cA\alpha \cos(\alpha\delta) = -a \label{eq:sol2}. -\end{align} -Dividing equation \ref{eq:sol1} with equation \ref{eq:sol2} gives -\begin{align} \label{eq:soliton-dispersion} - c^2 = \frac{\tan\left(\alpha\delta \right) }{\alpha\delta}. -\end{align} -We conclude that the solution for such a wave exists provided that the -dispersion relation on the wave propagation speed holds, thereby all solitary -waves exhibit exponential decay in their tail and satisfy the dispersion -relation in equation \ref{eq:soliton-dispersion}. -\subsubsection{Asymptotic Analysis} -The underlining equations in \ref{eq:soliton} extend from $-\infty$ to -$\infty$, so the length scale is much greater than any finite depth of -water. Therefore the classification $\delta \rightarrow 0$ is appropriate for -a solitary wave, this however goes with the assumption -$\varepsilon\rightarrow 0$ otherwise we cannot make an appropriate expansion. -Let us look at the main equation -\begin{align}\label{eq:sol-laplace} - \phi_{zz} + \delta \phi_{x x} = 0. -\end{align} -For small $\delta$ we conduct the $\delta^2 = O(\varepsilon)$ standard ansatz -in asymptotic analysis -\begin{align} - \phi_{\delta}(x, t, z) \simeq \sum_{n=0}^{\infty} \delta^{2n}\phi_n(x, t, - z). -\end{align} -Substituting $\phi_\delta$ into equation \ref{eq:sol-laplace} we get -\begin{align} - \delta^{2\cdot 0}\left( \phi_{0zz} \right) + \delta^{2\cdot 1}\left( - \phi_{1zz}+\phi_{0 x x} \right) + \delta^{2\cdot 2}\left( \phi_{2zz}+ - \phi_{1 x x} \right) + O(\delta^{2\cdot 3}) = 0. -\end{align} -We start off with $O(\delta^{2\cdot0}) $, which gives us an arbitrary function -$\phi_{0} = \theta(x, t)$. Next we may generalize the results for all -$O(\delta^{2\cdot n})$ in the means of -\begin{align} - \phi_{n+1zz} = -\phi_{nx x}\qquad \forall n\in \mathbb{N} . -\end{align} -Therefore leaving us for $\phi_1$ and $\phi_2$ with -\begin{align} - &\phi_1 = -\frac{1}{2} z^2 \theta_0(x,t) + \theta(x, t),\\ - \Rightarrow& \phi_2 = - \frac{1}{24}z^4\theta_0(x,t)-\frac{1}{2}z^2\theta_1(x,t) + \theta_2(x,t). -\end{align} -The boundary condition on the bottom comes around to be -\begin{align} - \phi_{nz} =0 \quad \text{on}\;\; z=0. -\end{align} -The free surface boundary condition $z= 1+\varepsilon\eta$ n evolves more calculation, we consider -only terms up the order of $\delta^2$, initializing with -\begin{align} - &\phi_z = \delta^2(\eta_t + \varepsilon\phi_x \eta_x)\\ - \Leftrightarrow &\frac{1}{\delta}\phi_z = \eta_t + \varepsilon\phi_x - \eta_x, -\end{align} -substituting $\phi_\delta$ into the above proceeds to be -\begin{align} - \frac{1}{\delta^2}\underbrace{\phi_{0z}}_{=0} + \phi_{1z}+ \delta^2\phi_{zz} - O(\delta^{2\cdot 2}) - &= -z\theta_{x x} + \delta^2\left( \frac{1}{6}z^3\theta_{0 x x x x} - z - \theta_{0x x} \right) + O(\delta^{2\cdot 2})\\ - &=-(1+\varepsilon\eta)\theta_{0 x x} + \delta^2\left( - \frac{1}{6}(1+\varepsilon\eta)^3\theta_{0 x x} - -(1+\varepsilon\eta)\theta_{0 x x} \right) +O(\delta^{2\cdot 2})\\ - &= \eta_t + \varepsilon\eta_x \left( \theta_{0x} - \delta^2(\theta_{1x}-\frac{1}{2}( 1+ \varepsilon\eta)^2 \theta_{0x x x} -\right). -\end{align} -The second condition is -\begin{align} - \phi_t + \eta + \frac{1}{2}\varepsilon \left( \frac{1}{\delta}\phi^2_z - \phi_x^2\right) = 0, -\end{align} -becomes after substitution -\begin{align} - \theta_{0t}+ \delta^2\left( -\frac{1}{2}(1+\varepsilon\eta)^2\theta_{0 x xt} - + \theta_{1t}\right) + \eta + O(\delta^{2\cdot 2}) - &=-\frac{1}{2}\delta^2\varepsilon(-(1+\varepsilon\eta)\theta_{0 x x - })^2\\ - &-\frac{1}{2}\left( \theta_{0 x} + \delta^2\left( \theta_{1x} - - \frac{1}{2}(1+\varepsilon\eta)^2\theta_{0 x x x x} \right) \right) ^2 -\end{align} -The simplest case is $\varepsilon,\delta \rightarrow 0$. - - - - - - - - - - - - -\newpage -\include{appendix.tex} - - - -\nocite{johnson_1997} -\nocite{vallis_2017} -\nocite{constantin_tsunami} -\nocite{rupert_2009} -\nocite{mathe-physik} - -\printbibliography - -\end{document} diff --git a/app_pde/build/basics_fluids.pdf b/app_pde/build/basics_fluids.pdf Binary files differ. diff --git a/app_pde/build/main.pdf b/app_pde/build/main.pdf Binary files differ. diff --git a/app_pde/chap1.tex b/app_pde/chap1.tex @@ -0,0 +1,544 @@ +\section{Governing Equations of Fluid Dynamics} +We first start of with a fluid with a density +\begin{align} + \rho(\mathbf{x}, t), +\end{align} +in three dimensional Cartesian coordinates $\mathbf{x} = (x, y, z)$ at time +$t$. For water-wave applications, we should note that we take +$\rho=\text{constant}$, but we will go into this fact later. The fluid moves +in time and space with a velocity field +\begin{align} + \mathbf{u}(\mathbf{x}, t) = (u, v, w). +\end{align} +Additionally it is also described by its pressure +\begin{align} + P(\mathbf{x}, t), +\end{align} +generally depending on time and position. When thinking of e.g. water the +pressure increases the deeper we go, that is with decreasing or increasing $z$ +direction (depending how we set up our system $z$ pointing up or down +respectively). + +The general assumption in fluid dynamics is the \textbf{Continuum +Hypothesis}, which assumes continuity of $\textbf{u}, \rho$ and $P$ in +$\mathbf{x}$ and $t$. In other words, we premise that the velocity field, +density and pressure are ''nice enough`` functions of position and time, such +that we can do all the differential operations we desire in the framework of +differential analysis. +\subsection{Mass Conservation} +Our aim is to derive a model of the fluid and its dynamics, with respect to +time and position, in the most general way. This is usually done thinking +of the density of a given fluid, which is a unit mass per unit volume, +intrinsically an integral representation to derive these equations suggests +by itself. + +Let us now thing of an arbitrary fluid. Within this fluid we define a fixed +volume $V$ relative to a chosen inertial frame and bound it by a surface $S$ +within the fluid, such that the fluid motion $\mathbf{u}(\mathbf{x}, t)$ may +cross the surface $S$. The fluid density is given by $\rho(\mathbf{x}, t)$, +thereby the mass of the fluid in the defined Volume $V$ is an integral +expression +\begin{align} + m = \int_V \rho(\mathbf{x}, t) dV. +\end{align} +The figure bellow \ref{fig:volume}, expresses the above described picture. +\begin{figure}[H] + \centering + \begin{tikzpicture}[>=latex,scale=1, xscale=1, opacity=.8] +% second sphere + \begin{scope}[rotate=10, xscale=3, yscale=2, shift={(2.3,-0.2)}] + \coordinate (O) at (0,0); + \shade[ball color=gray!10!] (0,0) coordinate(Hp) circle (1) ; + + \draw[thick] (O) circle (1); + \draw[rotate=5] (O) ellipse (1cm and 0.66cm); + \draw[rotate=90] (O) ellipse (1cm and 0.33cm); +\node[circle, fill=black, inner sep=1pt] at (0.15, 0.25) {} ; \draw[-latex, thick] (0.15, 0.25) -- (1, 1) ; + \node[right] at (1, 1) {$\mathbf{u}(\mathbf{x}, t)$}; + + \node[] at (O) {$V$}; + \node[] at (0.55, -0.25) {$\rho(\mathbf{x}, t)$}; + + \draw[-] (0.76, -0.66) -- (1.2, -0.7); + \node[right] at (1.2, -0.7) {$S$}; + + \draw[-latex, thick] (-0.25, -0.65) -- (-1, -1); + \node[left] at (-1, -1) {$\mathbf{n}$}; + + \end{scope} + +% axis + \end{tikzpicture} + \caption{Volume bounded by a surface in a fluid with density and momentum, + with a surface normal vector $\mathbf{n}$ \label{fig:volume}} +\end{figure} + +Since we want to figure out the fluid's dynamics, we can consider the rate +of change in the completely arbitrary $V$. The rate of change of mass needs to +disappear, i.e. it is equal to zero since we cannot lose mass. Matter (mass) is +neither created nor destroyed anywhere in the fluid, leading us to +\begin{align} + \frac{d}{dt}\left( \int_V \rho(\mathbf{x}, t)\ dV \right) = 0. +\end{align} +\textbf{NOT SURE HERE YET!!!!!!!!!!!, CHECK LEIBINZ FORMULA} +To get more information we simply ''differentiate under the integral +sign``, also known as the Leibniz Rule of Integration, see appendix +\ref{appendix:leibniz}, the integral equation representing the rate of change +of mass reads +\begin{align}\label{eq:mass balance} + \frac{dm}{dt} = \int_V \frac{\partial \rho(\mathbf{x}, t)}{\partial t}\ dV + +\int_{\partial V} \rho(\mathbf{x}, t) \mathbf{u}\cdot\mathbf{n}\ dS + = 0. +\end{align} +\textbf{----------------------} +The above equation in \ref{eq:mass balance} is an underlying equation, describing that the rate of +change of mass in V is brought about, only by the rate of mass flowing into +V across S, and thus the mass does not change. + +For the second integral in \ref{eq:mass balance} we utilize the Gaussian +integration law to acquire an integral over the volume +\begin{align} + \int_{\partial V} \rho(\mathbf{x}, t) \mathbf{u} \cdot \mathbf{n} \ dS = + \int_V \nabla (\rho \mathbf{u})\ dV. +\end{align} +Thereby we can put everything inside the volume integral +\begin{align} + \frac{d m}{dt} = \int_V \left(\partial_t \rho + \nabla(\rho \mathbf{u}) \right) \ dV = 0. +\end{align} +Everything under the integral sign needs to be zero, thus we obtain +the \textbf{Equation of Mass Conservation} or in the general sense also +called the \textbf{Continuity Equation} +\begin{align}\label{eq:continuity} + \partial_t \rho + \nabla(\rho \mathbf{u}) = 0 +\end{align} + +In light of the results of the equation of mass conservation +in \ref{eq:continuity}, an product rule gives +\begin{align} + \partial_t \rho + (\nabla \rho)\mathbf{u} + \rho(\nabla \mathbf{u}), +\end{align} +for notational purposes, we define the \textbf{material/convective derivative} +as follows +\begin{align} + \frac{D}{Dt} = \partial_t + \mathbf{u}\nabla. +\end{align} +With the material derivative the equation of mass conservation reads +\begin{align} + \frac{D\rho}{Dt} + \rho \nabla\mathbf{u} = 0 +\end{align} +We may undertake the first case separation, initiating $\rho = \text{cosnt.}$ +called \textbf{incompressible flow} causes the material derivative of $\rho$ to +be zero, and thereby +\begin{align} + \frac{D\rho}{Dt} = 0 \quad \Rightarrow \quad \nabla \mathbf{u} = 0, +\end{align} +following that the divergence of the velocity field is zero, in this case +$\mathbf{u}$ is called \textbf{solenoidal}. +\subsection{Euler's Equation of Motion} +Additional consideration we undertake is the assumption of an +\textbf{inviscid} fluid, that is we set viscosity to zero. Otherwise we would +get a viscous contribution under the integral which results in the +Navier-Stokes equation. In this regard we apply Newton's second law to our +fluid in terms of infinitesimal pieces $\delta V$ of the fluid. The +acceleration divides into two terms, a \textbf{body force} given by gravity +of earth in the $z$ coordinate $\mathbf{F} = (0, 0, -g)$ and a +\textbf{local/short-rage force} described by the stress tensor in the fluid. +In the inviscid case we the local force retains the pressure $P$, producing a +normal force, with respect to the surface, acting onto any infinitesimal +element in the fluid. The integral formulation of the force would be +\begin{align} + \int_V \rho \mathbf{F}\ dV - \int_S P\mathbf{n}\ dV. +\end{align} +Now applying the Gaussian rule of integration on the second integral over the +surface, the resulting force in per unit volume is +\begin{align} + \int_V \left(\rho \mathbf{F} - \nabla P\right)\ dV. +\end{align} +The acceleration of the fluid particles is given by $\frac{D\mathbf{u}}{Dt}$, +and thus the total force per unit volume on the other hand is +\begin{align} + \int_V \rho \frac{D\mathbf{u}}{Dt}\ dV = + \int_V \left(\rho \mathbf{F} - \nabla P\right)\ dV. +\end{align} +Newton's Second Law for a fluid in an Volume is essentially saying that the +rate of change of momentum of the fluid in the fixed volume $V$, which is the particle +acceleration is the resulting force acting on V together with the rate of +flow of momentum across the surface $S$ into the volume $V$. Hence we arrive +at the \textbf{Euler's Equation(s) of Motion} +\begin{align} + \frac{D\mathbf{u}}{Dt} = \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u}\nabla)\mathbf{u}\right) = + -\frac{1}{\rho}\nabla P + \mathbf{F}. +\end{align} +As a side note we have mentioned that there is another contribution if the +fluid is viscid. Indeed there is a tangential force due to the velocity +gradient, which into introduces the additional term +\begin{align} + \mu \nabla^2 \mathbf{u}, \qquad + \mu = \text{viscosity of the Fluid}. +\end{align} +Thereby the equations become +\begin{align} + \rho\frac{D\mathbf{u}}{Dt} + = -\nabla P + \rho \mathbf{F} + \mu \nabla^2 \mathbf{u}. +\end{align} + +For now we have separated two simplifications, that define an +\textbf{idealized/perfect fluid} +\begin{enumerate} + \item \textbf{incompressible} $\qquad \mu=0$ + \item \textbf{inviscid} $\quad \rho = \text{const.},\ \nabla \mathbf{u}= + 0$ +\end{enumerate} +\subsection{Vorticity and irrotational Flow} +The curl of the velocity field $\mathbf{\omega} = \nabla \times \mathbf{u}$ +of a fluid (i.e. the vorticity), describes a spinning motion of the fluid +near a position $\mathbf{x}$ at time $t$. The vorticity is an important +property of a fluid, flows or regions of flows where $\mathbf{\omega}=0$ are +\textbf{irrotational}, and thus can be modeled and analyzed following well +known routine methods. Even though real flows are rarely irrotational +anywhere (!), in water wave theory wave problems, from the classical aspect +of vorticity have a minor contribution. Hence we can assume irrotational flow +modeling water waves. To arrive at the vorticity in the equations of motions +derived in the last section we resort to a differential identity derived in appendix +\ref{appendix:diff identity}, which gives for the material derivative +\begin{align} + \frac{D\mathbf{u}}{Dt} = \frac{\partial \mathbf{u}}{\partial t} + \nabla(\frac{1}{2}\mathbf{u}\mathbf{u)} + - \left( \mathbf{u}\times (\nabla \times \mathbf{u} \right). +\end{align} +Thus the equations of motion become +\begin{align} + \frac{\partial \mathbf{u}}{\partial t} + \nabla\left( + \frac{1}{2}\mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega \right) + = \mathbf{u} \times \mathbf{\omega}, +\end{align} +where $\Omega$ is the force potential per +unite mass given by $\mathbf{F} = -\nabla \Omega$. + +At this point we may differentiate between \textbf{stead and unsteady flow}. +For \textbf{Steady Flow} we assume that $\mathbf{u}, P$ and $\Omega$ are time +independent, thus we get +\begin{align} + \nabla\left( \frac{1}{2}\mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega + \right) = \mathbf{u} \times \mathbf{\omega}. +\end{align} +It is general knowledge that the gradient of a function $\nabla f$ is +perpendicular the level sets of $f(\mathbf{x})$, where $f(\mathbf{x}) = +\text{const.}$. Thus $\mathbf{u} \times \mathbf{\omega}$ is orthogonal to +the surfaces where +\begin{align} \label{eq:bernoulli} + \frac{1}{2}\mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega = + \text{const.}, +\end{align} +The above equation is called \textbf{Bernoulli's Equation}. + +Secondly \textbf{Unsteady Flow} but irrotational (+ incompressible), first of +all gives us the condition for the existence of a velocity potential $\phi$ +in the sense +\begin{align} + \mathbf{\omega} = \nabla \times \mathbf{u} = 0 \quad \Rightarrow \quad + \mathbf{u} = \nabla \phi, +\end{align} +where $\phi$ needs to satisfy the Laplace equation +\begin{align} + \Delta \phi = 0. +\end{align} +According to the Theorem of Schwartz we may exchange $\frac{\partial +}{\partial t}$ and $\nabla$, giving us an expression for the material +derivative +\begin{align} + \nabla\left( \frac{\partial \phi}{\partial t} +\frac{1}{2} + \mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega \right) = 0 +\end{align} +Thus the expression differentiated by the $\nabla$ operator is an arbitrary +function $f(\mathbf{x}, t)$, writing +\begin{align} + \frac{\partial \phi}{\partial t} +\frac{1}{2} + \mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega = f(\mathbf{x}, t). +\end{align} +The function $f(\mathbf{x}, t)$ can be removed by gauge transformation of +$\phi \rightarrow \phi + \int f(\mathbf{x}, t)\ dt$, never the less this is +not further discussed and left to the reader in the reference. +\subsection{Boundary Conditions for water waves} +The boundary conditions for water-wave problems vary, generally on the +simplification we undertake. At the surface, called the free surface as in +free from the velocity conditions, we have the atmospheric stress on the +fluid. The stress component would again have a viscid component, this however +is only relevant when modeling surface wind, in this review we model the +fluid as unaffectedly and within reason as inviscid. The atmosphere employs +only a pressure on the surface, this pressure is taken to be the atmospheric +pressure, dependent on time and point in space. Thereby any surface tension +effects can also include a scenario at a curved surface (e.g. wave), giving +rise to the pressure difference across the surface. A more precise +description would use Thermodynamics to derive boundary conditions coupling +water surface and the air above it, yet the density component of air +compared to that of water makes our ansatz viable. The described conditions +are called the \textbf{dynamic conditions} + +An additional condition revolves around the fluid particles on the moving +surface, called the \textbf{kinematic condition}. This condition bounds +the vertical velocity component on the surface. + +The logical step now is to define boundary conditions on the bod of the +fluid, i.e. the bottom. If the viscid case bottom is impermeable, we a no +slip condition to all fluid particles $\mathbf{u}_\text{bottom}= 0$. If we +assume that the fluid is inviscid then the bottom becomes a surface of the +fluid in the sense that the fluid particles in contact with the bed move in +the surface, we more or less mirror the kinematic condition of the surface. +For many problems the condition is going to vary, in most cases the bottom +will be rigid and fixed not necessarily horizontal. This condition is simply +called the \textbf{bottom condition}. +\subsubsection{Kinematic Condition} +Obtaining the free surface is the primary objective in the theory of modeling +water waves, represented by +\begin{align} + z = h(\mathbf{x}_\perp, t), +\end{align} +where $\mathbf{x}_\perp = (x, y)$ in Cartesian, or $\mathbf{x}_\perp = (r, +\theta)$ in cylindrical coordinates. A surfaces that moves with the fluid, +always contains the same fluid particles, described as +\begin{align} + \frac{D}{Dt}\left(z - h(\mathbf{x}_\perp, t \right) = 0. +\end{align} +Upon expanding the derivative we get +\begin{align} + \frac{Dz}{Dt} - \frac{Dh}{Dt} + &= \frac{\partial z}{\partial t}+ + (\mathbf{u}\nabla)z - \frac{\partial h}{\partial t} -(\mathbf{u}\nabla)\\ + &= w - \left(h_t - (\mathbf{u}_\perp \nabla_\perp) h\right) = 0, +\end{align} +where the subscript $\perp$ describes the components with regard to +$\mathbf{x}_\perp$. The \textbf{kinematic condition} reads +\begin{align} + w = h_t - (\mathbf{u}_\perp \nabla_\perp) h \qquad \text{on}\;\; + z=h(\mathbf{u}_\perp, t). +\end{align} + +\subsubsection{Dynamic Condition} +As described in the prescript of this section, the case of an inviscid fluid, +requires that only the pressure $P$ needs to be described on the free surface +$z = h(\mathbf{x}_\perp, t)$. Assuming incompressible, irrotational, +unsteady flow and setting $P=P_a$ for atmospheric pressure and $\Omega = +g\cdot z$ for the force per unit mass potential the equations of motion are +\begin{align} + \frac{\partial \phi}{\partial t} +\frac{1}{2}\mathbf{u}\mathbf{u} + + P_\frac{a}{\rho}+gh = f(t) \qquad \text{on}\;\; on z=h. +\end{align} +Somewhere $\|\mathbf{x}_\perp\| \rightarrow \infty$ the fluid reaches +equilibrium and is thereby stationary, thereby has no motion and the pressure +is $P=P_a$ and the surface is a constant $h = h_0$ $f(t)$ is +\begin{align} + f(t) = \frac{P_a}{\rho}+gh_0. +\end{align} +The simplest description for the \textbf{dynamic condition} may be written as +\begin{align} + \frac{\partial \phi}{\partial t} + +\frac{1}{2}\mathbf{u}\mathbf{u}+g(h-h_0) = 0 \qquad \text{on}\;\; z=h. +\end{align} + +Regarding the pressure difference on a curved surface, we may expand the +dynamic condition by introducing the pressure difference known as the +\textbf{Young-Laplace Equation} +\begin{align} + \Delta P = \frac{\Gamma}{R}, +\end{align} +where $\Gamma>0$ is the coefficient of surface tension and $\frac{1}{R}$ is +the curvature representing an implicit function, in our case the implicit +function is $z - h(\mathbf{x}_\perp, t)$ for fixed time. The curvature in +Cartesian coordinates takes the form +\begin{align} + \frac{1}{R} = \frac{(1+h_y^2)h_{x x}+(1+h_y^2)h_{yy} - + 2h_xh_yh_{xy}}{\left( h_x^2+h_y^2+1 \right)^{\frac{3}{2}} }, +\end{align} +the derivation is precisely described in \ref{appendix:curvature} + + + +\subsubsection{The Bottom Condition} +The representation for the bottom is +\begin{align} + z = b(\mathbf{x}_\perp, t), +\end{align} +where the fluid surface needs to satisfy +\begin{align} + \frac{D}{Dt} \left(z - b(\mathbf{x}_\perp) \right) = 0. +\end{align} +Hence we arrive at the bottom boundary conditions +\begin{align} + w = b_t + (\mathbf{u}_\perp \nabla_\perp)b \qquad \text{on}\;\; z=b , +\end{align} +where $b(\mathbf{x}_\perp, t)$ is already known for most water wave +problems. If we consider a stationary bottom then the time derivative +vanishes, leaving us with the following condition +\begin{align} + w = (\mathbf{u}_\perp \nabla_\perp)b \qquad \text{on}\;\; z=b +\end{align} + + +\subsubsection{Integrated Mass Condition} +In this section we want to combine the kinematics of both the free and the +bottom surface with the mass conservation equation on the perpendicular +components +\begin{align} + \nabla \mathbf{u} = \nabla_\perp \mathbf{u}_\perp + w_z = 0 . +\end{align} +Integrating the above expression from bottom to surface, i.e. from +$z=b(\mathbf{x}_\perp,t)$ to $z = h (\mathbf{x},t)$ gives +\begin{align} + \int_b^h \nabla_\perp \mathbf{u}_\perp\ dz + w\bigg|_{z=b}^{z=h} = 0, +\end{align} +where we insert the conditions on the free surface and on the bottom surface +\begin{align} + w &= h_t + (\mathbf{u}_{\perp \text{s}} \nabla_\perp) h \quad + \text{on}\;\; z = h\\ + w &= b_t + (\mathbf{u}_{\perp \text{b}} \nabla_\perp) h \quad + \text{on}\;\; z =b, +\end{align} +with the subscript $s$ and $b$ indicating the evaluation of a quantity +on the free surface and the bottom surface respectively. Inserting the +boundary conditions we get +\begin{align} + \int_b^h \nabla_\perp \mathbf{u}_\perp + + h_t + (\mathbf{u}_{\perp \text{s}} \nabla_\perp) h + - b_t - (\mathbf{u}_{\perp \text{b}} \nabla_\perp) b= 0. +\end{align} +To simplify the equation we resort again to the Leibniz Rule of Integration +\begin{align} + \int_b^h \nabla_\perp\mathbf{u}_\perp = + \nabla_\perp \int_b^h \mathbf{u}_\perp\ dz - (\mathbf{u}_{\perp \text{s}} + \nabla_\perp)h - (\mathbf{u}_{\perp \text{b}})b. +\end{align} +As a consequence the \textbf{Integrated Mass Condition} is given by +\begin{align} + \nabla_\perp \int_b^h \mathbf{u}_\perp\ dz + \underbrace{h_t - + b_t}_{=d_t} = 0. +\end{align} +\subsection{Energy Equation} +To derive the energy equation we start off with Euler's Equation of Motion +\begin{align} + \mathbf{u} _t + \nabla + (\frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}+\Omega) = \mathbf{u}\times + \mathbf{w}, +\end{align} +multiplying the equation with $\mathbf{u}$ we get +\begin{align} + &\mathbf{u}\mathbf{u} _t \label{eq:energy1} \\ + &+(\mathbf{u}\nabla)(\frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}+\Omega)\label{eq:energy2}\\ + &= \mathbf{u}(\mathbf{u}\times + \mathbf{w})\label{eq:energy3}. +\end{align} +The first equation given in \ref{eq:energy1} can we rewritten using inverse +product rule of differentiation +\begin{align} + \mathbf{u}\frac{\partial \mathbf{u}}{\partial t} + &= \frac{\partial + }{\partial t} (\mathbf{u}\mathbf{u}) - \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \\ + &= \frac{\partial + }{\partial t} (\mathbf{u}\mathbf{u}) - \mathbf{u}\frac{\partial + \mathbf{u}}{\partial t}\\ + \Rightarrow\quad & \mathbf{u} \frac{\partial \mathbf{u}}{\partial t} = + \frac{1}{2}\frac{\partial }{\partial t} (\mathbf{u}\mathbf{u}). +\end{align} +Then we may add +\begin{align} + \left(\frac{1}{2} \mathbf{u}\mathbf{u}+\frac{P}{\rho} +\Omega \right) + \underbrace{(\nabla u)}_{=0} = 0, +\end{align} +to above not changing anything. Thereby getting +\begin{align} + \frac{\partial }{\partial t} (\frac{1}{2}\mathbf{u}\mathbf{u}) + +(\mathbf{u}\nabla \mathbf{u})\left( + \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho} \right) + +\left( \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho} + \Omega \right) + (\nabla \mathbf{u}) = 0. +\end{align} +Applying the product rule we can simplify +\begin{align} + \frac{\partial }{\partial t} \left(\frac{1}{2}\mathbf{u}\mathbf{u}\right) + +\nabla \left(\mathbf{u}\left(\mathbf{u}( + \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}\right) \right) = 0, +\end{align} +additionally adding $\frac{\partial \Omega}{\partial t} =0$ leads us to +\begin{align} + \underbrace{\frac{\partial }{\partial t} \left(\frac{1}{2}\mathbf{u}\mathbf{u} + +\Omega\right)}_{\text{change of total energy density}} + +\underbrace{\nabla \left(\mathbf{u}\left(\mathbf{u}( + \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}\right) +\right)}_{\text{energy flow of the velocity field}} = 0.\label{eq:energy} +\end{align} +This is called the \textbf{energy equation} and is a general result for a +inviscid and incompressible fluids, which we can apply to study water waves. +We start off with replacing $\nabla = \nabla_\perp + \frac{\partial }{\partial +z} $ and $\Omega = g z$ and multiplying by $\rho$, then our energy equation +in \ref{eq:energy} becomes +\begin{align} + \frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho + g z\right) + \nabla_\perp\left( \mathbf{u}_\perp\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right) + \frac{\partial}{\partial z} \left( w\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho g z \right) \right) = 0. +\end{align} +Integrating from bottom to top, i.e. from bed to free surface gets us to +\begin{align} + &\int_b^h\frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho + g z\right)\ dz \label{eq:e-int1}\\ + &+ \int_b^h \nabla_\perp\left( \mathbf{u}_\perp\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right)\ + dz\label{eq:e-int2}\\ + &+ \left(\frac{\partial}{\partial z} \left( w\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho g z \right) +\right)\right)\Bigg|_b^h \label{eq:e-int3} + = 0. +\end{align} +For equation \ref{eq:e-int1} we use Leibniz Rule of Integration, leaving us +with +\begin{align} + \int_b^h\frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho + g z\right)\ dz + &= \frac{\partial }{\partial t} \int_b^h + \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho gz \ dz\\ + &+ \left( \frac{1}{2}\rho \mathbf{u}_s \mathbf{u}_s + \rho g h \right) + h_t\\ + &- \left( \frac{1}{2}\rho \mathbf{u}_b \mathbf{u}_b + \rho g b \right) + b_t +\end{align} +For equation \ref{eq:e-int2} we again take note of the Leibniz Rule of +Integration, getting +\begin{align} + \int_b^h \nabla_\perp\left( \mathbf{u}_\perp\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right)\ + dz + &= \nabla_\perp \int_b^h \mathbf{u}_\perp\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u} + P + \rho g z \right) \ dz\\ + &- \left( \frac{1}{2}\rho \mathbf{u}_s\mathbf{u}_s + P + \rho g h \right) + \left( \mathbf{u}_{\perp s} \nabla_\perp \right) h\\ + &+\left( \frac{1}{2}\rho \mathbf{u}_b\mathbf{u}_b + P + \rho g b \right) + \left( \mathbf{u}_{\perp b} \nabla_\perp \right) b +\end{align} +Thereby transforming our equation into +\begin{align} + \frac{\partial }{\partial t} \underbrace{\int_b^h \frac{1}{2}\rho + \mathbf{u}\mathbf{u}+\rho g z\ dz}_{=:\mathcal{E}} + + \nabla_\perp&\underbrace{\int_b^h + \mathbf{u}_\perp\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho g z +\right)\ dz}_{:=\mathcal{F}} ++ \underbrace{P_s h_t - P_b b_t}_{:=\mathcal{P}} = 0\\ +\nonumber\\ + &\frac{\partial \mathcal{E}}{\partial t} + + \nabla_\perp \mathcal{F} + \mathcal{P} = 0, +\end{align} +where $\mathcal{E}$ represents the energy in the flow per unit horizontal +area, since we are integrating from bed to free surface. Where $\mathcal{F}$ +is the horizontal energy flux vector and lastly $\mathcal{P} = P_s h_t - +P_b b_t$ is the net energy input due to the pressure forces doing work on the +upper and lower boundaries, i.e. bottom and free surface of the fluid. +Assuming stationary rigid bottom condition and constant surface pressure, we +can set $P_s=0$, such that $\mathcal{P} =0$ leaving us with the equation +\begin{align} + \frac{\partial \mathcal{E}}{\partial t} + + \nabla_\perp \mathcal{F} = 0. +\end{align} +We note that the assumption $P_s=0$ is only possible if the coefficient of +surface tension is set to 0, which usually is not the case. diff --git a/app_pde/chap2.tex b/app_pde/chap2.tex @@ -0,0 +1,215 @@ +\section{Dimensional Analysis} +Our derived model of fluid dynamics yields formal connections between +physical quantities. These quantities bear units, e.g. the velocity of fluid +particles $\mathbf{u}$ has the ``SI'' unites of $\frac{m}{s}$, meters per +second. The idea is the make use of these scales and formulate a model, where +the quantities are nondimensionalized, i.e. to get rid of physical units by +scaling each quantity appropriately. The appropriate length scales are that +of the typical water depth $h_0$ and the typical wavelength $\lambda$ of a +surface wave. + +\subsection{Nondimensionalisation} +In summary we use these adaptations +\begin{itemize} + \item $h_0$ for the typical water depth + \item $\lambda$ for the typical wavelength + \item $\frac{\lambda}{\sqrt{g h_0}}$ time scale of wave propagation + \item $\sqrt{g h_0}$ velocity scale of waves in $(x, y)$ + \item $\frac{h_0 \sqrt{g h_0} }{\lambda}$ velocity scale in the $z$ + direction. +\end{itemize} +$(x, z, t)$, then +\begin{align} + u = \psi _z, \qquad w = - \psi_x; +\end{align} +and the scale of $\psi$ must be $h_0\sqrt{g h_0}$. Additionally we write the +boundary condition on the free surface as follows +\begin{align} + h = h_0 + a \eta (\mathbf{x}_\perp, t) = z, +\end{align} +where $a$ is the typical amplitude and $\eta$ nondimensional function. All in +all we have the following scaling for the physical quantities of our context +\begin{align} + &x \rightarrow\ \lambda x, \quad u \rightarrow \sqrt{gh_0} u, \\ + &y \rightarrow\ \lambda y, \quad v \rightarrow \sqrt{gh_0} v, \qquad + t\rightarrow \frac{\lambda}{\sqrt{gh_0}}t,\\ + &z \rightarrow\ h_0 z, \quad w \rightarrow + \frac{h_0\sqrt{gh_0}}{\lambda} w. +\end{align} +with +\begin{align} + h = h_0 + a \eta, \qquad b \rightarrow h_0 b. +\end{align} +The pressure is also rewritten into +\begin{align} + P = P_a + \rho g(h_0 -z) + \rho g h_0 p, +\end{align} +where $P_a$ is the atmospheric pressure, the term $h_0-z$ represent the +hydrostatic pressure distribution, i.e. pressure at depth and the term with the pressure +variable $p$ measures the deviation from the hydrostatic pressure +distribution. Indeed $p\neq 0 $ for wave propagation. Now we can perform a +rescaling of the Euler's Equation of Motion, we introduce the notation +\begin{align} + &t = \frac{\lambda}{\sqrt{gh_0}}\tau,\quad x = \lambda \xi,\quad u = + \sqrt{gh_0} \tilde{u}\\ + &y = \lambda \chi,\quad v = \sqrt{gh_0} \tilde{v}\\ + &z = h_0 \zeta, \quad w = \frac{h_0\sqrt{gh_0} }{\lambda}\tilde{w}. +\end{align} +We start off with the $x$ coordinate, substitute and apply the chain rule +leading us to +\begin{align} + \frac{Du}{Dt} + &= \frac{\partial u}{\partial t} +u \frac{\partial + u}{\partial x} \\ + &= \sqrt{gh_{0}}\frac{\partial \tilde{u}}{\partial \tau} \frac{\partial + \tau}{\partial t} +gh_0 \tilde{u} \frac{\partial \tilde{u}}{\partial \xi} + \frac{\partial \xi}{\partial x} \\ + &= \frac{gh_0}{\lambda} \left( \frac{\partial \tilde{u}}{\partial \tau} + \tilde{u} \frac{\partial \tilde{u}}{\partial \xi} \right), +\end{align} +on the other hand +\begin{align} + \frac{gh_0}{\lambda} \left( \frac{\partial \tilde{u}}{\partial \tau} + \tilde{u} \frac{\partial \tilde{u}}{\partial \xi} \right) + &=-\frac{1}{\rho}\frac{1}{\lambda}\frac{\partial P}{\partial x} \\ + &=-\frac{ g h_0 }{\lambda}\rho \frac{\partial p}{\partial \xi}. +\end{align} +Thereby the rescaling evolves to +\begin{align} + \frac{D \tilde{u}}{D\tau} = -\frac{\partial p}{\partial \xi}. +\end{align} +Because of the same scaling in $y$ we get the same result as in $x$, that is +\begin{align} + \frac{D \tilde{v}}{D\tau} = -\frac{\partial p}{\partial \chi}. +\end{align} +In the $z$ coordinate we have +\begin{align} + \frac{Dw}{Dt} + &= \frac{\partial w}{\partial t} +w \frac{\partial + w}{\partial \zeta} \\ + &= \frac{h_0\sqrt{gh_0}}{\lambda} \frac{\sqrt{gh_0}}{\lambda} + \frac{\partial \tilde{w}}{\partial \tau} + \frac{1}{h_0} + \frac{h_0\sqrt{gh_0} }{\lambda} \frac{h_0\sqrt{gh_0}}{\lambda} + \tilde{w}\frac{\partial \tilde{v}}{\partial \zeta}\\ + &= \frac{h_0^2g}{\lambda}\left( \frac{\partial \tilde{w}}{\partial \tau} + + \tilde{w}\frac{\partial \tilde{w}}{\partial \zeta} \right) . +\end{align} +On the other side we have +\begin{align} + \frac{h_0^2g}{\lambda}\left( \frac{\partial \tilde{w}}{\partial \tau} + + \tilde{w}\frac{\partial \tilde{w}}{\partial \zeta} \right) + &= + -\frac{1}{h_0\rho} \frac{\partial P}{\partial z} +g \\ + &=-\frac{1}{h_0\rho}(-\rho gh_0 \frac{\partial \zeta}{\partial \zeta} + \rho gh_0 + \frac{\partial p}{\partial \zeta} ) + g \\ + &= -g \frac{\partial p}{\partial z}. +\end{align} +In total for the $z$ direction we get +\begin{align} + \underbrace{\left( \frac{h_0}{\lambda} \right)^2}_{=: \delta^2} + \frac{Dw}{Dt} = -\frac{\partial p}{\partial z}, +\end{align} +where $\delta$ is the \textbf{long wavelength} or \textbf{shallowness} +parameter, a very important constant for developing model hierarchies. For +clarity we resubstitute for $x, y, z, t, u, v$ and $w$, and for completeness +the we display the equations again, which are +\begin{align}\label{eq:nondim-motion} + \frac{Du}{Dt} = - \frac{\partial p}{\partial x}&, \quad + \frac{Dv}{Dt} = - \frac{\partial p}{\partial y}, \quad + \delta^2\frac{Dw}{Dt} = - \frac{\partial p}{\partial z}, \\ + &\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + +\frac{\partial w}{\partial z} = 0. +\end{align} +We can now turn our attention to the boundary conditions, on both free +surface $z=h$ and the bottom $z=b$ we have $z \Rightarrow h_0 z$ and thereby +\begin{align} + z = 1+ + \underbrace{\frac{a}{h_0}}_{:=\varepsilon}\eta(\mathbf{x}_\perp,t) \quad + \text{and}\quad z= b, +\end{align} +where we arrive at our second very important parameter $\varepsilon$ called +the \textbf{amplitude} parameter. As for the kinematic condition, we +substitute the free surface $z=h = 1+\varepsilon \eta$ and get +\begin{align} + \frac{Dz}{Dt} = \varepsilon\left(\eta_t + (\mathbf{u}_\perp + \nabla_\perp)\eta\right) \qquad \text{on}\;\; z= 1+\varepsilon \eta. +\end{align} +Respectively the bottom condition is not changed +\begin{align} + w = b_t + (\mathbf{u}_\perp \nabla_\perp) b \quad \text{on}\;\; z= b. +\end{align} +The general dynamic condition for $h = h(x, y, t)$ yields a rescaling of the +curvature in terms of +\begin{align} + \frac{1}{R} + &= \frac{(1+h_y^2)h_{x x} + (1+h_x^2)h_yy - 2h_xh_yh_{xy} + }{\left(h_x^2+h_y^2 +1 \right)^{\frac{3}{2}} } \\ + &= -\frac{\varepsilon h_0}{\lambda^2} \frac{( + 1+\varepsilon^2\delta^2\eta_y^2 )\eta_{x x}+ + (1+\varepsilon^2\delta^2\eta_x^2)\eta_{yy} - + 2\varepsilon^2\delta^2\eta_x\eta_y\eta_{xy}}{\left( + 1+\varepsilon^2\delta^2\eta_x^2+\varepsilon^2\delta^2\eta_y^2 + \right)^{\frac{3}{2}} }, +\end{align} +together with the pressure difference +\begin{align} + \Delta P = \rho g h_0(p - \varepsilon \eta) = \frac{\Gamma}{R}, +\end{align} +leaving us ultimately with the dynamic condition +\begin{align} + p-\varepsilon\eta= \varepsilon\left( \frac{\Gamma}{\rho g\lambda^2} + \right) \left(\frac{\lambda^2}{\varepsilon h_0}\frac{1}{R}\right), +\end{align} +where $W_e = \frac{\Gamma}{\rho g h_0^2}$ is the \textbf{Weber number}. This +dimensionless parameter can be considered as a measure of the fluid's inertia +compered to its surface tension, which satisfies the relation +\begin{align} + \delta^2 W_e = \frac{\Gamma}{\rho g \lambda^2}. +\end{align} +\subsection{Scaling of Variables} +Admits a simple observation of the governing equations in the last chapter we +notice that $w$ and $p$ on the free surface $z = 1 + \varepsilon\eta$ are +directly proportional to $\varepsilon$. Hence we want to ''scale this way`` +by introducing the following transformation +\begin{align} + p \rightarrow \varepsilon p, \quad w \rightarrow \varepsilon w, \quad + \mathbf{u}_\perp \rightarrow \varepsilon \mathbf{u}_\perp. +\end{align} +Because of this scaling our material derivative changes slightly to +\begin{align}\label{eq:mod-material} + \frac{D}{Dt} = \frac{\partial }{\partial t} + \varepsilon\left(u + \frac{\partial }{\partial x} + v \frac{\partial }{\partial y} + w + \frac{\partial }{\partial z} \right) +\end{align} +A simple recalculation yields the rescaled, nondimensionalized Euler's +Equation of motion are the same as in equations \ref{eq:nondim-motion} with +the modified material derivative from \ref{eq:mod-material}, and the boundary +conditions are +\begin{align} + p &= \eta - \frac{\delta^2\varepsilon h_0}{\lambda^2} \frac{W_e}{R}\\ + w &= \frac{1}{\varepsilon}\eta_t + (\mathbf{u}_\perp \nabla_\perp)\eta + \quad \text{on}\;\; z = 1+\varepsilon\eta\\ + w &=\frac{1}{\varepsilon}b_t + (\mathbf{u}_\perp \nabla_\perp)b \quad + \text{on}\;\; z=b +\end{align} +\subsection{Model Hierarchies} +As we have derived a model of fluid dynamics, with small parameters +$\varepsilon$ and $\delta$, we can conduct a series of classifications and +perform asymptotic analysis on them. The main hierarchies important in this +review are derived from the following problem classifications +\begin{itemize} + \item $\varepsilon\rightarrow 0$: linearized problem, small amplitude + \item $\delta\rightarrow 0$: shallow Water, long-wave + \item$\delta \rightarrow 0;\; \varepsilon~1$: shallow Water, large + amplitude + \item $\delta\ll 1;\; \varepsilon~\delta$: shallow water, medium + amplitude + \item $\delta\ll 1;\; \varepsilon~\delta^2$: shallow water, small + amplitude + \item $\delta \gg 1;\; \varepsilon\delta\ll 1$: deep water, small + steepness. +\end{itemize} + + + diff --git a/app_pde/chap3.tex b/app_pde/chap3.tex @@ -0,0 +1,508 @@ +\section{The Solitary Wave and The KdV Equation} +The solitary wave is a wave of translation, it is stable and can travel long +distances additionally the speed depends on the size of the wave. An +interesting feature is that two solitary waves do not merge together to form +one solitary wave, rather the small wave is overtaken by a larger one. If a +solitary wave is too big for the depth it splits into two, a big and a small +one. Solitary waves arise in the region $\varepsilon=O(\delta^2)$. + + +\subsection{Solitary Wave} +To describe +a solitary wave we begin with Euler's Equation of Motion, where we assume +there is no surface tension we set $W_e = 0$ and additionally assume +irrotational flow $\mathbf{\omega}=\nabla \times \mathbf{u} = 0$. This means +that there exists a velocity potential $\phi(\mathbf{x},t)$ given +by$\mathbf{u} = \nabla \phi$ satisfying the Laplace equation. In regard of a +solitary wave being a plane wave, we rotate our coordinate system such that +the propagation is in the $x$-direction and a stationary \& fixed bottom +$b=0$. Ultimately leaving us with the following model +\begin{align}\label{eq:soliton} +\begin{drcases} + & \phi_{zz} + \delta \phi_{x x } = 0,\\ + &\text{with the boundary conditions}\\ + &\begin{drcases} + &\phi_z = \delta^2 (\eta_t + \varepsilon \phi_x \eta_x) \\ + &\phi_t + \eta + \frac{1}{2}\varepsilon\left( \frac{1}{\delta^2}\phi^2_z + + \phi_x^2\right) =0 + \end{drcases}\quad \text{on}\;\; z = 1+\varepsilon\eta,\\ + &\text{and}\\ + & \phi_z =0 \quad \text{on}\;\; z = b = 0. +\end{drcases} +\end{align} +Since the model arises $\varepsilon = O(\delta^2)$, for convince we set +$\varepsilon=1$. The fact of the matter is we are seeking a traveling wave +solution, thereby we can go into the coordinate system of the traveling wave, +one in the variable $\xi = x - ct$ for a from left to right traveling wave, +where $c$ is the nondimensional speed of the wave. Our goal is to find the +solution for the velocity potential $\phi(\xi, z)$ and the wave profile +$\eta(\xi)$. The chain rule gives us +\begin{align} + \frac{\partial }{\partial x} &= \frac{\partial \xi}{\partial x} + \frac{\partial }{\partial \xi} = \frac{\partial }{\partial \xi}, \\ + \frac{\partial }{\partial t} &= \frac{\partial \xi}{\partial t} + \frac{\partial }{\partial \xi} = -c\frac{\partial }{\partial \xi}. +\end{align} +Together with the equations in \ref{eq:soliton} we obtain +\begin{align}\label{eq:soliton-xi} + \begin{drcases} + & \phi_{zz} + \delta \phi_{\xi\xi} = 0,\\ + &\text{with the boundary conditions}\\ + &\begin{drcases} + &\phi_z = \delta^2 (\phi_\xi -c)\eta_\xi \\ + &-c\phi_\xi + \eta + \frac{1}{2}\varepsilon\left( \frac{1}{\delta^2}\phi^2_z + + \phi_\xi^2\right) =0 + \end{drcases}\quad \text{on}\;\; z = 1+\eta,\\ + &\text{and}\\ + & \phi_z =0 \quad \text{on}\;\; z = b = 0. + \end{drcases} +\end{align} +\subsubsection{Exponential Decay} +We would like to analyze if the equation in \ref{eq:soliton-xi} gives viable a +solution that decays exponentially, we make the ansatz +\begin{align} + \eta \simeq a e^{-\alpha |\psi|},\quad \phi \simeq \psi(z)e^{-\alpha + |\xi|}, \qquad \mid \xi \mid \rightarrow \infty, +\end{align} +where $\alpha>0$ is the exponent. The equations in \ref{eq:soliton-xi} +transforms to +\begin{align} + \psi'' + \alpha^2 \delta^2\psi = 0. +\end{align} +The above equation is a standard well known ordinary differential equation +reading +\begin{align} + \psi = A \cos(\alpha\delta z), +\end{align} +where $A$ is the integration constant. On the free surface $z\simeq 1$ gives +\begin{align} + &-cA\alpha\sin(\alpha\delta) = ca\alpha,\label{eq:sol1}\\ + &cA\alpha \cos(\alpha\delta) = -a \label{eq:sol2}. +\end{align} +Dividing equation \ref{eq:sol1} with equation \ref{eq:sol2} gives +\begin{align} \label{eq:soliton-dispersion} + c^2 = \frac{\tan\left(\alpha\delta \right) }{\alpha\delta}. +\end{align} +We conclude that the solution for such a wave exists provided that the +dispersion relation on the wave propagation speed holds, thereby all solitary +waves exhibit exponential decay in their tail and satisfy the dispersion +relation in equation \ref{eq:soliton-dispersion}. +\subsubsection{Asymptotic Analysis} +The underlining equations in \ref{eq:soliton} extend from $-\infty$ to +$\infty$, so the length scale is much greater than any finite depth of +water. Therefore the classification $\delta \rightarrow 0$ is appropriate for +a solitary wave, this however goes with the assumption +$\varepsilon\rightarrow 0$ otherwise we cannot make an appropriate expansion. +Let us look at the main equation +\begin{align}\label{eq:sol-laplace} + \phi_{zz} + \delta \phi_{x x} = 0. +\end{align} +For small $\delta$ we conduct the $\delta^2 = O(\varepsilon)$ standard ansatz +in asymptotic analysis +\begin{align} + \phi_{\delta}(x, t, z) \simeq \sum_{n=0}^{\infty} \delta^{2n}\phi_n(x, t, + z). +\end{align} +Substituting $\phi_\delta$ into equation \ref{eq:sol-laplace} we get +\begin{align} + \delta^{2\cdot 0}\left( \phi_{0zz} \right) + \delta^{2\cdot 1}\left( + \phi_{1zz}+\phi_{0 x x} \right) + \delta^{2\cdot 2}\left( \phi_{2zz}+ + \phi_{1 x x} \right) + O(\delta^{2\cdot 3}) = 0. +\end{align} +We start off with $O(\delta^{2\cdot0}) $, which gives us an arbitrary function +$\phi_{0} = \theta(x, t)$. Next we may generalize the results for all +$O(\delta^{2\cdot n})$ in the means of +\begin{align} + \phi_{n+1zz} = -\phi_{nx x}\qquad \forall n\in \mathbb{N} . +\end{align} +Therefore leaving us for $\phi_1$ and $\phi_2$ with +\begin{align} + &\phi_1 = -\frac{1}{2} z^2 \theta_0(x,t) + \theta(x, t),\\ + \Rightarrow& \phi_2 = + \frac{1}{24}z^4\theta_0(x,t)-\frac{1}{2}z^2\theta_1(x,t) + \theta_2(x,t). +\end{align} +The boundary condition on the bottom comes around to be +\begin{align} + \phi_{nz} =0 \quad \text{on}\;\; z=0. +\end{align} +The free surface boundary condition $z= 1+\varepsilon\eta$ n evolves more calculation, we consider +only terms up the order of $\delta^2$, initializing with +\begin{align} + &\phi_z = \delta^2(\eta_t + \varepsilon\phi_x \eta_x)\\ + \Leftrightarrow &\frac{1}{\delta}\phi_z = \eta_t + \varepsilon\phi_x + \eta_x, +\end{align} +substituting $\phi_\delta$ into the above proceeds to be +\begin{align} + \frac{1}{\delta^2}\underbrace{\phi_{0z}}_{=0} + \phi_{1z}+ \delta^2\phi_{zz} + O(\delta^{2\cdot 2}) + &= -z\theta_{x x} + \delta^2\left( \frac{1}{6}z^3\theta_{0 x x x x} - z + \theta_{0x x} \right) + O(\delta^{2\cdot 2})\\ + &=-(1+\varepsilon\eta)\theta_{0 x x} + \delta^2\left( + \frac{1}{6}(1+\varepsilon\eta)^3\theta_{0 x x} - +(1+\varepsilon\eta)\theta_{0 x x} \right) \label{eq:soliton-scale-boundary1}\\ + &= \eta_t + \varepsilon\eta_x \left( + \theta_{0x} + \delta^2(\theta_{1x}-\frac{1}{2}( 1+ \varepsilon\eta)^2 \theta_{0x x + x}\label{eq:soliton-scale-boundary2} +\right). +\end{align} +The second condition is +\begin{align} + \phi_t + \eta + \frac{1}{2}\varepsilon \left( \frac{1}{\delta}\phi^2_z + \phi_x^2\right) = 0, +\end{align} +becomes after substitution +\begin{align} + &\theta_{0t}+ \delta^2\left( -\frac{1}{2}(1+\varepsilon\eta)^2\theta_{0 x xt} + + \theta_{1t}\right) + \eta + O(\delta^{2\cdot 2}) +\label{eq:soliton-scale-boundary3} + \\&=-\frac{1}{2}\delta^2\varepsilon(-(1+\varepsilon\eta)\theta_{0 x x + })^2\label{eq:soliton-scale-boundary4} + -\frac{1}{2}\left( \theta_{0 x} + \delta^2\left( \theta_{1x} - + \frac{1}{2}(1+\varepsilon\eta)^2\theta_{0 x x x x} \right) \right) ^2 +\end{align} +In the order of $O(\delta^{0})$ as $\varepsilon \rightarrow 0$ gives us the conditions +\begin{align} + -\theta_{0 x x} &= \eta_t \simeq \text{and}\quad + \theta_{0t}\simeq-\eta\label{eq:solitonO0}\\ + &\Rightarrow \theta_{0 x x} - \theta_{0 t t} \simeq 0. +\end{align} +This gives us the wave equation, a simple solution in the frame of the right +moving wave dependent on $\xi = x -t$ the chain rule gives us +\begin{align} + \frac{\partial \theta_0(\xi(x, t))}{\partial t} + &= \frac{\partial + \theta_0}{\partial \xi} \underbrace{\frac{\partial \xi}{\partial t}}_{=-1} + + \frac{\partial + \theta_0}{\partial t} \underbrace{\frac{\partial t}{\partial t}}_{=1} + + \frac{\partial \theta_0}{\partial x} \underbrace{\frac{\partial + x}{\partial t}}_{=0}\\ + &=-\theta_{0\xi}+\theta_{0t}. +\end{align} +substituting into \label{eq:solitionO0} we get +\begin{align} + &2\theta_{0t\xi}\simeq\theta_{0t t},\\ + \Rightarrow\;\;&\eta= \theta_{0\xi}+O(\varepsilon). +\end{align} +As for the surface boundary condition we see that the derivatives in $t$ are +''small``. So we can proceed by the scaling $\tau = \varepsilon t$ as +$\varepsilon\rightarrow 0$, we proceed with equation given in +\ref{eq:soliton-scale-boundary1} and \ref{eq:soliton-scale-boundary2} in the +$O(\varepsilon), O(\delta^2)$ +\begin{align}\label{eq:soliton-scale-boundary5} + -(1+\varepsilon\eta)\theta_{0\xi\xi}+ + \delta^2\left(\frac{1}{6}\theta_{0\xi\xi\xi\xi} - \theta_{1\xi\xi}\right)\simeq + \varepsilon\eta_\tau -\eta_\xi +\varepsilon\eta\theta_{0\xi} +\end{align} +and boundary equations in \ref{eq:soliton-scale-boundary3}, +\ref{eq:soliton-scale-boundary4} produce +\begin{align}\label{eq:soliton-scale-boundary6} + \varepsilon\theta_{0\tau}-\theta_{0\xi}+\delta^2\left( + \frac{1}{2}\theta_{0\xi\xi\xi} - \theta_{1\xi} \right) +\eta \simeq + -\frac{1}{2}\varepsilon \theta^2_{0\xi}. +\end{align} +Doing the following operation to the above equations +\ref{eq:soliton-scale-boundary5} $-$ $\frac{\partial }{\partial +\xi}$\ref{eq:soliton-scale-boundary6} turns out to be +\begin{align} + &-\theta_{0\xi\xi}- + \varepsilon\eta\theta_{0\xi\xi}+ + \delta\left(\frac{1}{6}\theta_{0\xi\xi\xi\xi}-\theta_{1\xi\xi}\right) + - \varepsilon\theta_{0\xi\tau}+\theta_{0\xi\xi}-\delta^2\left( + \frac{1}{2}\theta_{0\xi\xi\xi\xi} - + \theta_{1\xi\xi}\right)+\eta_{\xi}\\ + &\simeq \varepsilon\eta_t - \eta_\xi+ + \varepsilon\eta\theta_{0\xi}+\varepsilon\theta_{0\xi\xi}\theta_{0\xi}. +\end{align} +In the above equation we can simplify, i.e. short some terms out and +substitute $\eta = \theta_{0\xi} + O(\varepsilon)$ and because of $\delta^2 = +O(\varepsilon)$ we set $\delta^2 = K\varepsilon$ for constant $K$, leaving us +with the equation for the surface profile, called the \textbf{Korteweg-de +Vries}, KdV equation (1895) +\begin{align} + 2\eta_\tau + 3\eta\eta_\xi + \frac{K}{3}\eta_{\xi\xi\xi} = 0. +\end{align} +The KdV equation describes the balance between linearity and dispersion in +the change of time of the wave profile. By rewriting $\eta = f(\xi-ct)$ we +get +\begin{align} + -2cf' + 3ff' + \frac{K}{3}f''' = 0\\ + \text{with} \quad f, f', f''' \rightarrow 0\quad \text{as}\;\; |\xi-ct| + \Rightarrow \infty. +\end{align} +The solution is a $\text{sech}$ function +\begin{align} + f = 2c\ \text{sech}^2\left( \sqrt{\frac{3}{2K}}(\xi-ct)\right) +\end{align} +\subsection{KdV Equation} +In this section we will go over the more general prerequisites and therefore +a more convincing expedition for the Korteweg-de Vries equation. We still +want to derive the wave profile of a wave in shallow water, small amplitude +regime $\delta^2 = O(\varepsilon)$, where the bottom is horizontal \& +stationary. The propagating wave can be seen as a plane wave, therefore the +coordinate system is rotated in such a way that the propagating direction is +the $x$ direction. For irrotational, inviscid flow without surface tension +$W_e=0$ that is for gravity waves, nondimensional and rescaled Euler's +Equations of Motion for such a flow are +\begin{align} + \begin{drcases} + \frac{Du}{Dt}=-p_x,\quad \quad \delta^2 + \frac{Dw}{Dt} = -p_z,\\ + \text{where}\\ + \frac{D}{Dt} = \frac{\partial }{\partial t} + \varepsilon + \left( + u\frac{\partial u}{\partial x} + +w\frac{\partial w}{\partial z}\right) +\\ + \text{with}\\ + \frac{\partial u}{\partial x} +\frac{\partial w}{\partial z} = 0 + \end{drcases} +\end{align} +with free surface boundary conditions +\begin{align} + \begin{drcases} + p=\eta\\ + w=\eta_t+\varepsilon u \eta_x + \end{drcases} + \text{on}\;\; z= 1+\varepsilon\eta, +\end{align} +and bottom boundary condition +\begin{align} + w = 0 \quad \text{on}\;\; z=b =0. +\end{align} +We note here thatthe soluition for such a wave is a solitary wave as in +described in the previous section. In principel we expect to wind such waves +reather rarely in nature, since $\delta^2 = O(\varepsilon)$ is a very special +case. Never the less this is not the case. We demonstrate that $\forall\ +\delta$ as $\varepsilon$ goes to $0$ there exists a region in the position +space $(x, t)$ where the KdV balance in terms of linearity and dispersion +is observed. Indeed we can ''generate`` KdV solitary waves, provided a small +enough amplitude in the sence of $\varepsilon$ goes to $0$. First of all we +introduce a rescaling of the variables adjusted to our problem definition +\begin{align} + x \rightarrow \frac{\delta}{\sqrt{\varepsilon} }\tilde{x}, \quad t + \rightarrow \frac{\delta}{\sqrt{\varepsilon} }\tilde{t}\\ + w \rightarrow \frac{\sqrt{\varepsilon} }{\delta}\tilde{w}. +\end{align} +Then the material derivative is transformed to be +\begin{align} + \frac{D}{Dt} = \frac{\sqrt{\varepsilon}}{\delta}(\frac{\partial + }{\partial \tilde{t}} +\varepsilon \tilde{\mathbf{u}} \nabla). +\end{align} +The initial equations become +\begin{align} + \frac{Du}{Dt} = \frac{\sqrt{\varepsilon}}{\delta} =- + \frac{\sqrt{\varepsilon} }{\delta} p_{\tilde{x}}\;\; &\Rightarrow\;\; + u_{\tilde{t}} + \varepsilon(u u_{\tilde{x}} + wu_z)= -p_{\tilde{x}}.\\ + \frac{Dw}{Dt} = \frac{\varepsilon}{\delta^2} + \frac{D\tilde{w}}{D\tilde{t}}=-p_z \;\;&\Rightarrow\;\; + \varepsilon\left(\tilde{w}_{\tilde{t}} + \varepsilon\left( + u\tilde{w}_{\tilde{x}}+ \tilde{w}\tilde{w}_z \right) \right) = -p_z, +\end{align} +with +\begin{align} + &w + = \frac{\varepsilon}{\delta}\tilde{w} + = \frac{\sqrt{\varepsilon} }{\delta} + \eta_{\tilde{t}}+\varepsilon u\frac{\sqrt{\varepsilon}}{\delta} + \eta_{\tilde{x}}\\ + &\Rightarrow\;\; + \begin{drcases} + \tilde{w} = \eta_{\tilde{t}}+ \varepsilon u + \eta_{\tilde{x}}\\ + p=\eta + \end{drcases} + \text{on}\;\; z = 1+\varepsilon\eta +\end{align} +and +\begin{align} + w = 0 \quad \text{on}\;\; z= b = 0. +\end{align} +Now we replace the region $\delta^2$ with $\varepsilon = \delta^2$, while we +let $\varepsilon$ go to $0$. We conclude to the following equations +\begin{align}\label{eq:kdv3} + \begin{drcases} + u_t = -p_x, \quad p_z = 0\\ + u_x + w_z = 0,\\ + \text{with}\\ + w=\eta_t \quad p=\eta \quad \text{on}\;\; z= 1\\ + w = 0 \quad \text{on}\;\; z= 0. + \end{drcases} +\end{align} +Modification to these equations on the boundary condition, i.e. on $z=1$ +leaves us with +\begin{align} + u = -p_x = -\eta_x \quad \Rightarrow \quad u_t + \eta_x = 0 + \label{eq:kdv1}\\ + w = -zu_x\Big|_{z=1} = -u_x = \eta_t \quad \Rightarrow \quad u_x + \eta_t + =0.\label{eq:kdv2} +\end{align} +By doing differentiation \ref{eq:kdv1} with respect to $x$ and subtracting +the equation \ref{eq:kdv2} differentiated with respect tot $t$ we get the +standard wave equation for the profile of the wave +\begin{align} + \eta_{x x} - \eta_{t t} = 0 . +\end{align} +We choose a solution for a right going wave and go into the frame of the +moving wave by a coordinate transformation as in the last section to $\xi = +x- t$. Additionally we want to introduce a long term variable, since we have +a uniformity as $t$ (or $x$) goes to infinity. This is usually done by +rescaling $t = \varepsilon \tau$. In summary we have that $\xi = O(1)$ as +well as $\tau = O(1)$. This is for \textbf{far field region} of the wave, and +therefore the region, where we expect KdV type balance, between dispersion +and linearity. The fact of this matter can be rigorously proven, it needs to +be show that any sufficiently fast decaying smooth solution will eventually +split into a finite superposition of two solitary waves traveling to the +right and a decaying dispersive part traveling to the left. However will not +go into this here. To transform the equations in \ref{eq:kdv3}, we look at +the chain rule w.r.t $\xi ,\tau$ evolving to +\begin{align} + \frac{\partial }{\partial t} &= -\frac{\partial }{\partial \xi} + +\varepsilon \frac{\partial }{\partial \tau} \\ + \frac{\partial }{\partial x} &= \frac{\partial }{\partial \xi}. +\end{align} +Then we get +\begin{align}\label{eq:kdv5} + \begin{drcases} + -u_\xi + \varepsilon\left(u_\tau + uu_\xi + w u_z \right) = + -p_\xi\\ + \varepsilon\left( -w_\xi + \varepsilon\left( w_\tau + u w_\xi + w w_z + \right) \right) = - p_z\\ + u_\xi + w_z = 0\\ + \text{with}\\ + \begin{drcases} + w = -\eta_\xi+\varepsilon(\eta_\tau+u \eta_\xi)\\ + p=\eta + \end{drcases} + \text{on} \;\; z=1+\varepsilon\eta\\ + \text{and}\\ + w = 0 \quad \;\; z = b =0. + \end{drcases} +\end{align} +The crucial part now is to consider an asymptotic expansion of in +$\varepsilon$ for velocity of the fluid particles $u, w$ and also the wave +profile $\eta$ and for the pressure variable $p$. The general asymptotic +ansatz is of the form +\begin{align} + q\left( \xi, \tau, z; \varepsilon \right) = \sum_{n=0}^{\infty} + \varepsilon^n q_n\left( \xi, \tau, z \right). +\end{align} +The first equation in \ref{eq:kdv5} up to the order of $O(\varepsilon^2)$ is +of the form +\begin{align} + \varepsilon^0\left( p_{0\xi} - u_{0\xi}\right) + \varepsilon^1\left( + p_{1\xi} - u_{1\xi} + u_{0\tau} + u_0 u_{0\xi} + w_0u_{0z} \right) + +O(\varepsilon^2) = 0, +\end{align} +with the main condition $p_{0\xi} = u_{0\xi}$. For the second equation in +\ref{eq:kdv5} becomes +\begin{align} + \varepsilon^0\left( p_{0z} \right) + +\varepsilon^1\left( p_{1z}-w_{0\xi} + w_{0\tau} + u_0w_{0\xi}+w_0w_{0z} \right) + + O(\varepsilon^2) = 0, +\end{align} +the main condition $p_{0z} =0 $. The third equation in \ref{eq:kdv5} is the +following +\begin{align} + \varepsilon^0(u_{0\xi}+w_{0z}) + \varepsilon^1\left( u_{1\xi}+w_{1z} + \right) + O(\varepsilon^2) =0, +\end{align} +where the main condition satisfies $u_{n\xi} = -w_{n\xi}$ for all $n \in +\mathbb{N}$. Further the surface condition is expanded into +\begin{align} + p_n = \eta_n \qquad \forall\ n \in \mathbb{N}, +\end{align} +and +\begin{align} + \varepsilon^0\left(w_0 + \eta_{0\xi}\right)+ + \varepsilon^1\left( w_1 + \eta_{1\xi} + \eta_{0\tau} + \eta_0 \eta_{0\xi}\right) + + O(\varepsilon^2) = 0, +\end{align} +Do note that the condition for for $\varepsilon^0$ is $z=1$ and for +$\varepsilon^1$ is $z=\varepsilon\eta$. The main conclusion from the above +equation is however $w_0 = -\eta_{0\xi}$. And lastly the bottom condition +remains unchanged for all $n$ as +\begin{align} + w_n = 0 \quad \text{on}\;\; z= b=0 +\end{align} +In essence $O(\varepsilon^0)$ give us the equations +\begin{align} + u_{0\xi}=p_{0\xi},\quad p_{0z} =0,\quad u_{0\xi} + w_{0z} = 0, +\end{align} +with +\begin{align} + p_0 = \eta_0, \quad w_0 = -\eta_{0\xi} \quad \text{on}\;\; z=1\\ + w_0 = 0 \quad \text{on}\;\; z=b=0. +\end{align} +They lead us tot he following solution which satisfies the boundary +\begin{align} + p_0 = \eta_0, \quad u_0 = \eta_0, \quad w_0 = -z\eta_{0\xi} \quad + \forall\ z\in[0, 1]. +\end{align} +Do notice who $w_0 = -z\eta_{0\xi}$ automatically satisfies the boundary +conditions for both $z=0$ and $z=1$. Before we go on to consider +$O(\varepsilon)$, we expand $u, w$ and $p$ around $z=1$ via Taylor expansion. +This makes only since in the case $\varepsilon\rightarrow 0$ +\begin{align} + \begin{drcases} + p_0 + \varepsilon\eta_0 p_{0z} + \varepsilon p_1 = \eta_0 + \varepsilon\eta_1 + O(\varepsilon^2)\\ + w_0 +\varepsilon\eta_0w_{0z} + \varepsilon w_1 = -\eta_{0\xi} - + \varepsilon\eta_{1\xi} + \varepsilon\left( \eta_0 + u_0 \eta_{0\xi} + \right) +O\left(\varepsilon^2 \right). + \end{drcases} \text{on}\;\; z=1 +\end{align} +Right off the equations of order $O(\varepsilon^1)$ become +\begin{align} + -u_{1\xi} + u_{0\tau} + u_0u_{0\xi} + w_{0}u_{0z} = -p_{1\xi},\\ + p_{1z} = w_{0\xi} \quad \text{and} \quad u_{1\xi} + w_{1z} = 0, +\end{align} +with the boundary conditions +\begin{align} + \begin{drcases} + p_1 + \eta_0 p_{0z} = \eta_1\\ + w_1 + \eta_0 w_{0z} = -\eta_{1\xi} + \eta_{0t} + u + \end{drcases} + \text{on}\;\; z=1\\ + w_1 = 0 \quad \text{on}\;\; z =b = 0. +\end{align} +Thus +\begin{align} + &p_{1z} = w_{0\xi} = -z\eta_{0\xi}\\ + \Rightarrow p_1 = -\frac{1}{2}z^2 \eta_{0\xi\xi} +c, +\end{align} +where $c$ is the integration constant, together with the boundary condition +on $z=1$ we get that +\begin{align} + c = \eta_1 + \frac{1}{2} \eta_{0\xi\xi}, +\end{align} +for $p_1$ leaving is with +\begin{align} + p_1 = \frac{1}{2} \left( 1-z^2 \right) \eta_{0\xi\xi} +\eta_1 +\end{align} +As for the condition $w_{1z} = -u_{1\xi}$ we get +\begin{align} + w_{1z} &= -u_{1\xi} = -p_{1\xi} - u_{0\tau} - u_0u_{0\xi} - u_0u_{0z} \\ + &=\frac{1}{2} (1-z^2)\eta_{0\xi\xi\xi} - \eta_{1\xi} -\eta_{0\tau} + -\eta_{0\xi}. +\end{align} +By integration and evaluation on $z=1$ of the above equation we get +\begin{align}\label{eq:kdv6} + w_1\Big|_{z=1} = -\frac{1}{3} \eta_{0\xi\xi\xi} - \eta_{1\xi} - + \eta_{0\tau} -\eta_0\eta_{0\xi}, +\end{align} +on the other hand we have the original boundary condition +\begin{align}\label{eq:kdv7} + w_1\Big|_{z=1} = -\eta_{1\xi} + \eta_{0\tau} +2\eta_{0}\eta_{0\xi} . +\end{align} +Subtracting equation \ref{eq:kdv6} from \ref{eq:kdv7} we get the KdV equation +\begin{align} + \frac{1}{3} \eta_{0\xi\xi\xi} - 2\eta_{0\tau} - 3\eta_0\eta_{0\xi} = 0. +\end{align} + + + + + diff --git a/app_pde/main.tex b/app_pde/main.tex @@ -0,0 +1,28 @@ +\include{./preamble.tex} + +\usepackage{amsmath} +\numberwithin{equation}{section} + +\begin{document} + +\maketitle +\tableofcontents + +\include{./chap1.tex} +\include{./chap2.tex} +\include{./chap3.tex} + + +\newpage +\include{appendix.tex} + + + +\nocite{johnson_1997} +\nocite{vallis_2017} +\nocite{constantin_tsunami} +\nocite{rupert_2009} +\nocite{mathe-physik} +\printbibliography + +\end{document}