notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

commit c77d1533d1c61411c2bf6ca72e6c8636357994fa
parent b87c4ff6232fd1ed6b64dd3f916739894690e7ff
Author: miksa <milutin@popovic.xyz>
Date:   Fri,  3 Jun 2022 17:04:13 +0200

update

Diffstat:
Mapp_pde/appendix.tex | 53++++++++++++++++++++++++++++++++++++++++++++++++++++-
Mapp_pde/basics_fluids.tex | 286++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-
Mapp_pde/build/basics_fluids.pdf | 0
3 files changed, 337 insertions(+), 2 deletions(-)

diff --git a/app_pde/appendix.tex b/app_pde/appendix.tex @@ -57,4 +57,55 @@ which is (\mathbf{u}\nabla)\mathbf{u} = \nabla(\frac{1}{2}\mathbf{u}\mathbf{u}) - \left(\mathbf{u}\times (\nabla \times \mathbf{u})\right) \end{align} - +\subsection{Middle Curvature of an Implicit Function} +In our case the implicit function for fixed time reads +\begin{align} + z-h\left(x_1,x_2\right) = 0. +\end{align} +The parametric representation is +\begin{align} + \mathbf{\sigma} = \begin{pmatrix} x_1 \\ x_2 \\ h \end{pmatrix} . +\end{align} +The middle curvature of the surface parametrized by $\mathbf{\sigma}$ is +\begin{align} + \frac{1}{R} = \text{Tr}(G^{-1}B), +\end{align} +where $G$ and $B$ are given by +\begin{align} + G_{ij} = \frac{\partial \mathbf{\sigma}}{\partial x_i} \frac{\partial + \mathbf{\sigma}}{\partial x_j}, \\ + B_{ij} = -\mathbf{N} \frac{\partial^2 \mathbf{\sigma}}{\partial + x_i\partial x_j}, +\end{align} +where $i, j = 1, 2$ and $\mathbf{N}$ is the normal, normalized surface vector given by +\begin{align} + \mathbf{N} &= \frac{\frac{\partial \mathbf{\sigma}}{\partial x_1}\times + \frac{\partial \mathbf{\sigma}}{\partial x_2}}{\|\frac{\partial \mathbf{\sigma}}{\partial x_1}\times + \frac{\partial \mathbf{\sigma}}{\partial x_2}\|} \\ + &= \frac{1}{\sqrt{h_x^2 + h_y^2 +1}} \begin{pmatrix} + -h_x\\-h_y\\1 \end{pmatrix}. +\end{align} +Thereby the matrices $B$ and $G$ are calculated to be +\begin{align} + G = \begin{pmatrix} 1+h_x^2 & h_xh_y\\h_xh_y & 1+h_y^2 \end{pmatrix} + \qquad + B =\frac{1}{\sqrt{h_x^2 +h_y^2 +1} } \begin{pmatrix}h_{x x} & + h_{yx}\\h_{x y} & h_{yy} \end{pmatrix}. +\end{align} +The inverse of $G$ is +\begin{align} + G^{-1} + &= \frac{1}{\det(G)} \text{adj}(G)\\ + &= \frac{1}{h_x^2+h_y^2 +1} \begin{pmatrix}1+h_y^2 & -h_xh_y \\-h_xh_y & + 1+h_x^2\end{pmatrix} . +\end{align} +Hence the middle curvature is given by the follwing +\begin{align} + \frac{1}{R} & + = \text{Tr}(G^{-1}B)\\ + &= \frac{1}{(h_x^2 + h_y^2+1)^{\frac{3}{2}}} + \text{Tr}\begin{pmatrix} (1+h_y)^2 h_{x x} - h_x h_y h_{xy} & *\\ + * & (1+h_x^2)h_{yy}-h_xh_yh_{xy}\end{pmatrix}\\ + &=\frac{(1+h_y^2)h_{x x}+(1+h_y^2)h_{yy} - + 2h_xh_yh_{xy}}{\left( h_x^2+h_y^2+1 \right)^{\frac{3}{2}} }. +\end{align} diff --git a/app_pde/basics_fluids.tex b/app_pde/basics_fluids.tex @@ -1,5 +1,8 @@ \include{./preamble.tex} +\usepackage{amsmath} +\numberwithin{equation}{section} + \begin{document} \maketitle @@ -266,7 +269,288 @@ The function $f(\mathbf{x}, t)$ can be removed by gauge transformation of $\phi \rightarrow \phi + \int f(\mathbf{x}, t)\ dt$, never the less this is not further discussed and left to the reader in the reference. \subsection{Boundary Conditions for water waves} -Surface, Bottom, Pressure +The boundary conditions for water-wave problems vary, generally on the +simplification we undertake. At the surface, called the free surface as in +free from the velocity conditions, we have the atmospheric stress on the +fluid. The stress component would again have a viscid component, this however +is only relevant when modeling surface wind, in this review we model the +fluid as unaffectedly and within reason as inviscid. The atmosphere employs +only a pressure on the surface, this pressure is taken to be the atmospheric +pressure, dependent on time and point in space. Thereby any surface tension +effects can also include a scenario at a curved surface (e.g. wave), giving +rise to the pressure difference across the surface. A more precise +description would use Thermodynamics to derive boundary conditions coupling +water surface and the air above it, yet the density component of air +compared to that of water makes our ansatz viable. The described conditions +are called the \textbf{dynamic conditions} + +An additional condition revolves around the fluid particles on the moving +surface, called the \textbf{kinematic condition}. This condition bounds +the vertical velocity component on the surface. + +The logical step now is to define boundary conditions on the bod of the +fluid, i.e. the bottom. If the viscid case bottom is impermeable, we a no +slip condition to all fluid particles $\mathbf{u}_\text{bottom}= 0$. If we +assume that the fluid is inviscid then the bottom becomes a surface of the +fluid in the sense that the fluid particles in contact with the bed move in +the surface, we more or less mirror the kinematic condition of the surface. +For many problems the condition is going to vary, in most cases the bottom +will be rigid and fixed not necessarily horizontal. This condition is simply +called the \textbf{bottom condition}. +\subsubsection{Kinematic Condition} +Obtaining the free surface is the primary objective in the theory of modeling +water waves, represented by +\begin{align} + z = h(\mathbf{x}_\perp, t), +\end{align} +where $\mathbf{x}_\perp = (x, y)$ in Cartesian, or $\mathbf{x}_\perp = (r, +\theta)$ in cylindrical coordinates. A surfaces that moves with the fluid, +always contains the same fluid particles, described as +\begin{align} + \frac{D}{Dt}\left(z - h(\mathbf{x}_\perp, t \right) = 0. +\end{align} +Upon expanding the derivative we get +\begin{align} + \frac{Dz}{Dt} - \frac{Dh}{Dt} + &= \frac{\partial z}{\partial t}+ + (\mathbf{u}\nabla)z - \frac{\partial h}{\partial t} -(\mathbf{u}\nabla)\\ + &= w - \left(h_t - (\mathbf{u}_\perp \nabla_\perp) h\right) = 0, +\end{align} +where the subscript $\perp$ describes the components with regard to +$\mathbf{x}_\perp$. The \textbf{kinematic condition} reads +\begin{align} + w = h_t - (\mathbf{u}_\perp \nabla_\perp) h \qquad \text{on}\;\; + z=h(\mathbf{u}_\perp, t). +\end{align} + +\subsubsection{Dynamic Condition} +As described in the prescript of this section, the case of an inviscid fluid, +requires that only the pressure $P$ needs to be described on the free surface +$z = h(\mathbf{x}_\perp, t)$. Assuming incompressible, irrotational, +unsteady flow and setting $P=P_a$ for atmospheric pressure and $\Omega = +g\cdot z$ for the force per unit mass potential the equations of motion are +\begin{align} + \frac{\partial \phi}{\partial t} +\frac{1}{2}\mathbf{u}\mathbf{u} + + P_\frac{a}{\rho}+gh = f(t) \qquad \text{on}\;\; on z=h. +\end{align} +Somewhere $\|\mathbf{x}_\perp\| \rightarrow \infty$ the fluid reaches +equilibrium and is thereby stationary, thereby has no motion and the pressure +is $P=P_a$ and the surface is a constant $h = h_0$ $f(t)$ is +\begin{align} + f(t) = \frac{P_a}{\rho}+gh_0. +\end{align} +The simplest description for the \textbf{dynamic condition} may be written as +\begin{align} + \frac{\partial \phi}{\partial t} + +\frac{1}{2}\mathbf{u}\mathbf{u}+g(h-h_0) = 0 \qquad \text{on}\;\; z=h. +\end{align} + +Regarding the pressure difference on a curved surface, we may expand the +dynamic condition by introducing the pressure difference known as the +\textbf{Young-Laplace Equation} +\begin{align} + \Delta P = \frac{\Gamma}{R}, +\end{align} +where $\Gamma>0$ is the coefficient of surface tension and $\frac{1}{R}$ is +the curvature representing an implicit function, in our case the implicit +function is $z - h(\mathbf{x}_\perp, t)$ for fixed time. The curvature in +Cartesian coordinates takes the form +\begin{align} + \frac{1}{R} = \frac{(1+h_y^2)h_{x x}+(1+h_y^2)h_{yy} - + 2h_xh_yh_{xy}}{\left( h_x^2+h_y^2+1 \right)^{\frac{3}{2}} }, +\end{align} +the derivation is precisely described in \ref{appendix:curvature} + + + +\subsubsection{The Bottom Condition} +The representation for the bottom is +\begin{align} + z = b(\mathbf{x}_\perp, t), +\end{align} +where the fluid surface needs to satisfy +\begin{align} + \frac{D}{Dt} \left(z - b(\mathbf{x}_\perp) \right) = 0. +\end{align} +Hence we arrive at the bottom boundary conditions +\begin{align} + w = b_t + (\mathbf{u}_\perp \nabla_\perp)b \qquad \text{on}\;\; z=b , +\end{align} +where $b(\mathbf{x}_\perp, t)$ is already known for most water wave +problems. If we consider a stationary bottom then the time derivative +vanishes, leaving us with the following condition +\begin{align} + w = (\mathbf{u}_\perp \nabla_\perp)b \qquad \text{on}\;\; z=b +\end{align} + + +\subsubsection{Integrated Mass Condition} +In this section we want to combine the kinematics of both the free and the +bottom surface with the mass conservation equation on the perpendicular +components +\begin{align} + \nabla \mathbf{u} = \nabla_\perp \mathbf{u}_\perp + w_z = 0 . +\end{align} +Integrating the above expression from bottom to surface, i.e. from +$z=b(\mathbf{x}_\perp,t)$ to $z = h (\mathbf{x},t)$ gives +\begin{align} + \int_b^h \nabla_\perp \mathbf{u}_\perp\ dz w\bigg|_{z=b}^{z=h} = 0, +\end{align} +where we insert the conditions on the free surface and on the bottom surface +\begin{align} + w &= h_t + (\mathbf{u}_{\perp \text{s}} \nabla_\perp) h \quad + \text{on}\;\; z = h\\ + w &= b_t + (\mathbf{u}_{\perp \text{b}} \nabla_\perp) h \quad + \text{on}\;\; z =b, +\end{align} +with the subscript $s$ and $b$ indicating the evaluation of a quantity +on the free surface and the bottom surface respectively. Inserting the +boundary conditions we get +\begin{align} + \int_b^h \nabla_\perp \mathbf{u}_\perp + + h_t + (\mathbf{u}_{\perp \text{s}} \nabla_\perp) h + - b_t - (\mathbf{u}_{\perp \text{b}} \nabla_\perp) b= 0. +\end{align} +To simplify the equation we resort again to the Leibniz Rule of Integration +\begin{align} + \int_b^h \nabla_\perp\mathbf{u}_\perp = + \nabla_\perp \int_b^h \mathbf{u}_\perp\ dz - (\mathbf{u}_{\perp \text{s}} + \nabla_\perp)h - (\mathbf{u}_{\perp \text{b}})b. +\end{align} +As a consequence the \textbf{Integrated Mass Condition} is given by +\begin{align} + \nabla_\perp \int_b^h \mathbf{u}_\perp\ dz + \underbrace{h_t - + b_t}_{=d_t} = 0. +\end{align} +\subsection{Energy Equation} +To derive the energy equation we start of with Euler's Equation of Motion +\begin{align} + \mathbf{u} _t + \nabla + (\frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}+\Omega) = \mathbf{u}\times + \mathbf{w}, +\end{align} +multiplying the equation with $\mathbf{u}$ we get +\begin{align} + &\mathbf{u}\mathbf{u} _t \label{eq:energy1} \\ + &+(\mathbf{u}\nabla)(\frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}+\Omega)\label{eq:energy2}\\ + &= \mathbf{u}(\mathbf{u}\times + \mathbf{w})\label{eq:energy3}. +\end{align} +The first equation given in \ref{eq:energy1} can we rewritten using inverse +product rule of differentiation +\begin{align} + \mathbf{u}\frac{\partial \mathbf{u}}{\partial t} + &= \frac{\partial + }{\partial t} (\mathbf{u}\mathbf{u}) - \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \\ + &= \frac{\partial + }{\partial t} (\mathbf{u}\mathbf{u}) - \mathbf{u}\frac{\partial + \mathbf{u}}{\partial t}\\ + \Rightarrow\quad & \mathbf{u} \frac{\partial \mathbf{u}}{\partial t} = + \frac{1}{2}\frac{\partial }{\partial t} (\mathbf{u}\mathbf{u}). +\end{align} +Then we may add +\begin{align} + \left(\frac{1}{2} \mathbf{u}\mathbf{u}+\frac{P}{\rho} +\Omega \right) + \underbrace{(\nabla u)}_{=0} = 0, +\end{align} +to above not changing anything. Thereby getting +\begin{align} + \frac{\partial }{\partial t} (\frac{1}{2}\mathbf{u}\mathbf{u}) + +(\mathbf{u}\nabla \mathbf{u})\left( + \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho} \right) + +\left( \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho} + \Omega \right) + (\nabla \mathbf{u}) = 0. +\end{align} +Applying the product rule we can simplify +\begin{align} + \frac{\partial }{\partial t} \left(\frac{1}{2}\mathbf{u}\mathbf{u}\right) + +\nabla \left(\mathbf{u}\left(\mathbf{u}( + \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}\right) \right) = 0, +\end{align} +additionally adding $\frac{\partial \Omega}{\partial t} =0$ leads us to +\begin{align} + \underbrace{\frac{\partial }{\partial t} \left(\frac{1}{2}\mathbf{u}\mathbf{u} + +\Omega\right)}_{\text{change of total energy density}} + +\underbrace{\nabla \left(\mathbf{u}\left(\mathbf{u}( + \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}\right) +\right)}_{\text{energy flow of the velocity field}} = 0.\label{eq:energy} +\end{align} +This is called the \textbf{energy equation} and is a general result for a +inviscid and incompressible fluids, which we can apply to study water waves. +We start of with replacing $\nabla = \nabla_\perp + \frac{\partial }{\partial +z} $ and $\Omega = g z$ and multiplying by $\rho$, then our energy equation +in \ref{eq:energy} becomes +\begin{align} + \frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho + g z\right) + \nabla_\perp\left( \mathbf{u}_\perp\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right) + \frac{\partial}{\partial z} \left( w\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho g z \right) \right) = 0. +\end{align} +Integrating from bottom to top, i.e. from bed to free surface gets us to +\begin{align} + &\int_b^h\frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho + g z\right)\ dz \label{eq:e-int1}\\ + &+ \int_b^h \nabla_\perp\left( \mathbf{u}_\perp\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right)\ + dz\label{eq:e-int2}\\ + &+ \left(\frac{\partial}{\partial z} \left( w\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho g z \right) +\right)\right)\Bigg|_b^h \label{eq:e-int3} + = 0. +\end{align} +For equation \ref{eq:e-int1} we use Leibniz Rule of Integration, leaving us +with +\begin{align} + \int_b^h\frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho + g z\right)\ dz + &= \frac{\partial }{\partial t} \int_b^h + \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho gz \ dz\\ + &+ \left( \frac{1}{2}\rho \mathbf{u}_s \mathbf{u}_s + \rho g h \right) + h_t\\ + &- \left( \frac{1}{2}\rho \mathbf{u}_b \mathbf{u}_b + \rho g b \right) + b_t +\end{align} +For equation \ref{eq:e-int2} we again take note of the Leibniz Rule of +Integration, getting +\begin{align} + \int_b^h \nabla_\perp\left( \mathbf{u}_\perp\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right)\ + dz + &= \nabla_\perp \int_b^h \mathbf{u}_\perp\left( + \frac{1}{2}\rho\mathbf{u}\mathbf{u} + P + \rho g z \right) \ dz\\ + &- \left( \frac{1}{2}\rho \mathbf{u}_s\mathbf{u}_s + P + \rho g h \right) + \left( \mathbf{u}_{\perp s} \nabla_\perp \right) h\\ + &+\left( \frac{1}{2}\rho \mathbf{u}_b\mathbf{u}_b + P + \rho g b \right) + \left( \mathbf{u}_{\perp b} \nabla_\perp \right) b +\end{align} +Thereby transforming our equation into +\begin{align} + \frac{\partial }{\partial t} \underbrace{\int_b^h \frac{1}{2}\rho + \mathbf{u}\mathbf{u}+\rho g z\ dz}_{=:\mathcal{E}} + + \nabla_\perp&\underbrace{\int_b^h + \mathbf{u}_\perp\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho g z +\right)\ dz}_{:=\mathcal{F}} ++ \underbrace{P_s h_t - P_b b_t}_{:=\mathcal{P}} = 0\\ +\nonumber\\ + &\frac{\partial \mathcal{E}}{\partial t} + + \nabla_\perp \mathcal{F} + \mathcal{P} = 0, +\end{align} +where $\mathcal{E}$ represents the energy in the flow per unit horizontal +area, since we are integrating from bed to free surface. Where $\mathcal{F}$ +is the horizontal energy flux vector and lastly $\mathcal{P} = P_s h_t - +P_b b_t$ is the net energy input due to the pressure forces doing work on the +upper and lower boundaries, i.e. bottom and free surface of the fluid. +Assuming stationary rigid bottom condition and constant surface pressure, we +can set $P_s=0$, such that $\mathcal{P} =0$ leaving us with the equation +\begin{align} + \frac{\partial \mathcal{E}}{\partial t} + + \nabla_\perp \mathcal{F} = 0. +\end{align} +We note that the assumption $P_s=0$ is only possible if the coefficient of +surface tension is set to 0, which usually is not the case. +\section{Dimensional Analysis} diff --git a/app_pde/build/basics_fluids.pdf b/app_pde/build/basics_fluids.pdf Binary files differ.