notes

uni notes
Log | Files | Refs

commit d27e2526a41b97ed9625081e935e1d99b776bf6c
Author: miksa234 <milutin@popovic.xyz>
Date:   Wed, 10 Nov 2021 11:31:58 +0100

initial

Diffstat:
Aappl_ana/sesh1/main.pdf | 0
Aappl_ana/sesh1/main.tex | 342+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aappl_ana/sesh2/main.pdf | 0
Aappl_ana/sesh2/main.tex | 303+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
4 files changed, 645 insertions(+), 0 deletions(-)

diff --git a/appl_ana/sesh1/main.pdf b/appl_ana/sesh1/main.pdf Binary files differ. diff --git a/appl_ana/sesh1/main.tex b/appl_ana/sesh1/main.tex @@ -0,0 +1,342 @@ +\documentclass[a4paper]{article} + + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} +\usepackage{mlmodern} + +%\usepackage{ngerman} % Sprachanpassung Deutsch + +\usepackage{graphicx} +\usepackage{geometry} +\geometry{a4paper, top=15mm} + +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{amssymb} +\usepackage{amsthm} +\usepackage{mathtools} +\usepackage{braket} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage{float} +\usepackage{yhmath} +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} +\usetikzlibrary{calc,decorations.markings} + +%\usepackage[backend=biber, sorting=none]{biblatex} +%\addbibresource{uni.bib} + +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + + +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} +\usepackage{lipsum} + + +\usepackage{tcolorbox} +\tcbuselibrary{skins,breakable} + +\pagestyle{myheadings} + +\markright{Popovic\hfill Applied Analysis\hfill} + + +\title{University of Vienna\\ Faculty of Mathematics\\ +\vspace{1cm}Applied Analysis Problems +} +\author{Milutin Popovic} + +\begin{document} +\maketitle +\tableofcontents + +\section{Sheet 1} + +\subsection{Fall from high} +We consider a free fall ($\dot{x}(t=0)=0$) of an object with mass $20\ +\text{kg}$ from a height +$x(0) = h = 20\; \text{km}$, such that the gravitational force depends on the hight $x(t)$ in +the following way +\begin{align}\label{eq: free fall} + \ddot{x} = -g\frac{R^2}{(x(t) + R)^2}, +\end{align} +where $R$ is the radius of the earth $R \approx 6000\; \text{km}$ and $g +\approx 9.91\ \frac{m}{s^2}$ is the gravitational acceleration on the surface +of the earth. For this problem there are two possible non-dimensionalisations, +but first let us rewrite the variables in terms of non-dimensional variables +and some dimensional constants, a priori let +\begin{align} + t &= t_c \tau \;\;\; \text{and}\\ + x &= x_c \xi. +\end{align} +With the above ansatz we get the following second derivative in +time +\begin{align} + \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2} \\ + \Rightarrow \frac{d^2x}{dt^2} &= \frac{x_c}{t_c^2} + \frac{d^2\xi}{d\tau^2}, +\end{align} +and thus the initial conditions can be rewritten as +\begin{align} + \xi(0) = \frac{h}{x_c},\\ + \dot{\xi} = 0. +\end{align} +Now we can rewrite the equation of the free fall in \ref{eq: free fall} in +terms of $\xi(\tau)$ as +\begin{align} + \frac{x_c}{gt_c^2} \ddot{\xi} = -\frac{1}{(\frac{x_c}{R}\xi +1)^2}. +\end{align} +Thereby we have three dimensional constants constants $\Pi_1, \Pi_2, \Pi_3$, +as follows +\begin{align} + \Pi_1 = \frac{x_c}{R}, \;\;\;\; \Pi_2 = \frac{h}{x_c}, \;\;\;\; + \Pi_3 = \frac{x_c}{gt_c^2}. +\end{align} + +The first scaling is done by reducing $\Pi_1$ and $\Pi_3$ to 1, by setting +\begin{align} + x_c = R, \;\;\;\; t_c = \sqrt{\frac{R}{g}}, +\end{align} +refolmulating the initial problem in equation \ref{eq: free fall} to +\begin{align} + &\ddot{\xi} = -\frac{1}{(\xi + 1)^2},\;\;\;\; + \text{with} \nonumber\\ + &\xi(0) = \frac{h}{R}, \;\;\;\; \dot{\xi}(0) = 0. +\end{align} +Reducing the problem, meaining letting $R \rightarrow \infty$ makes the first +initial condition $\xi(0) \rightarrow 0$. We can conclude that this scaling +is bad since it changes the initial condition in the reduced problem. + +The second scaling option reduces $\Pi_2$ and $\Pi_3$ to 1, by setting +\begin{align} + x_c = h, \;\;\;\; t_c = \sqrt{\frac{h}{g}}, +\end{align} +refolmulating the initial problem in equation \ref{eq: free fall} to +\begin{align} + &\ddot{\xi} = -\frac{1}{(\frac{h}{R}\xi + 1)^2},\;\;\;\; + \text{with} \nonumber\\ + &\xi(0) = 1, \;\;\;\; \dot{\xi}(0) = 0. +\end{align} +By letting $R \rightarrow \infty$ we get the following reduced problem +\begin{align}\label{eq: free fall reduced} + \ddot{\xi} = -1. +\end{align} +Integrating and solving for $\xi(\tau = \frac{T}{t_c}) = 0$ for when the +object hits the ground we get a familliar solution +\begin{align} + T = \sqrt{\frac{2h}{g}} +\end{align} +Now in the reduced problem the time untill the object hits the ground is +shorter since the acceleration is constant, but in the original one the +acceleration increases as the object comes closer to earth. +Additionally we can calculate the velocity at impact we need to integrate the +reduced problem \ref{eq: free fall reduced} once and put in the initial +condition +\begin{align} + \dot{\xi}(\tau = \frac{T}{t_c}) &= -\tau = -\sqrt{2} \\ + \text{and} \;\;\; \dot{x} &= \frac{x_c}{t_c}\dot{\xi} = + \sqrt{gh}\; \dot{\xi}\\ + \Rightarrow \dot{x}(T) &= -\sqrt{2gh} +\end{align} +The vectical throw allows for different scaling because the initial +conditions are different, and thus the solution too $x(0) = 0$ and +$\dot{x}(0) = v$. + +\subsection{Scaling The Van der Pol equation} +The Van der Pol equation is a perturbation of the oscillation equation +\begin{align}\label{eq: vanderpol} + LC\frac{d^2I}{dt^2} + (-g_1C +3g_3CI^2)\frac{dI}{dt} = -I +\end{align} +with initial conditions +\begin{align}\label{eq: van initial} + I(0) = I_0,\;\;\;\; \dot{I}(0) = 0. +\end{align} +where $I(t)$ is the current at a time $t$, $C$ is the capacity, $L$ is the +inductivity and $g_1, g_3$ are some parameters. The units of all the +parameters are +\begin{align} + [LC] &= s^2\\ + [g_1C] &= s\\ + [g_3C] &= sA^{-2} +\end{align} +The oscillation equation is +\begin{align} + CL\ddot{I} + I = 0. +\end{align} +Solvable by the exponential ansatz of $I = Ae^{\lambda t}$, where $\lambda= +\pm i \sqrt{\frac{1}{LC}}$, thereby +\begin{align} + I(t) = A_1 e^{i\sqrt{\frac{1}{LC}}t} + A_2 e^{-i\sqrt{\frac{1}{LC}}t}. +\end{align} +With the initial conditions in equation \ref{eq: van initial} we get $A_1 = +A_2$ and thus the solution to the oscillation equation is +\begin{align} + I(t) = I_0\cos(\frac{t}{\sqrt{LC}}) +\end{align} +Now that we know the reduced problem and the solution to it, we may work with +the Van-Der-Pol equation \ref{eq: vanderpol}, by determining all possible +non-dimensionalisations. Let us begin by setting +\begin{align} + I(t) = I_c\psi,\\ + t = t_c \tau, +\end{align} +where $I_c$ and $t_c$ have the dimension of $I(t)$ and $t$ accordingly and +$\psi(\tau)$ and $\tau$ are dimensionless +The first and second derivative in time is +\begin{align} + \frac{d}{dt} &= \frac{1}{t_c}\frac{d}{d\tau}\\ + \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2}. +\end{align} +We can rewrite the Van-Der-Pol equation in terms of $\psi$ and $\tau$ +\begin{align} + &\frac{LC}{t_c^2}\ddot{\psi} - \frac{g_1C}{t_c}\dot{\psi} + \frac{3g_3CI_c}{t_c}\dot{\psi}\psi = -\psi\\ + &\psi(0) = \frac{I_0}{I_c} \;\;\;\; \dot{\psi}(0) = 0 +\end{align} +There are a total of four constants that we can eliminate +\begin{align} + \Pi_1 &= \frac{I_0}{I_c},\;\;\;\; + \Pi_2 = \frac{LC}{t_c^2},\nonumber\\ + \Pi_3 &= \frac{-g_1C}{t_c},\;\;\;\;\; + \Pi_4 = \frac{3g_3CI_C}{t_c}. +\end{align} +The first scaling is +\begin{align} + I_c = I_0,\;\;\; t_c=\frac{1}{\sqrt{LC}}. +\end{align} +Thereby we get the following problem +\begin{align} + &\ddot{\psi} + -\sqrt{\frac{C}{L}}g_1\dot{\psi}+\sqrt{\frac{C}{L}}3g_3I_0\dot{\psi}\psi + = -\psi\\ + &\psi(0) = 1 \;\;\;\; \dot{\psi}(0) = 0 +\end{align} + + +The second scaling is +\begin{align} + I_c = I_0,\;\;\; t_c=g_1C. +\end{align} +Thereby we get the following problem +\begin{align} + &\frac{L}{g_1^2C}\ddot{\psi} + -\dot{\psi}+\frac{3g_3}{g_1}\dot{\psi}\psi + = -\psi\\ + &\psi(0) = 1 \;\;\;\; \dot{\psi}(0) = 0 +\end{align} + +The third scaling is +\begin{align} + I_c = I_0,\;\;\; t_c=g_3CI_0. +\end{align} +Thereby we get the following problem +\begin{align} + &\frac{L}{g_3^2CI_0^2}\ddot{\psi} + -\frac{g_1}{g_3I_0}\dot{\psi}+3\dot{\psi}\psi + = -\psi\\ + &\psi(0) = 1 \;\;\;\; \dot{\psi}(0) = 0 +\end{align} +\subsection{Scale the Schrödinger Equation} +The well known Schrödinger equation that describes quantum physics of one +particle can be written as +\begin{align} + &i\hbar \partial_t\psi = -\frac{\hbar}{2m}\Delta \psi + V\psi \nonumber\\ + &\psi(t=0) =\psi_0 +\end{align} +where $\hbar$ is the Planks constant, $\psi=\psi(x, t)$ the wave function, +$m$ the mass and $V = V(x)$ the potential in which the wave function is. The +dimensions are +\begin{align} + [\hbar] = Js, \;\;\;\; V = J, \;\;\;\; [\psi]= m^{-d/2} +\end{align} +for the special dimension $d$. The standard scaling ansatz is +\begin{align} + &\psi = \psi_c \phi \\ + &t = t_c \tau \;\;\;\; x = x_c \xi, +\end{align} +by that we get the following derivatives in time and in space +\begin{align} + \partial_{x_i} &=\frac{1}{x_{(i)c}} \partial_{\psi_i} \\ + \partial^2_{x_i} &=\frac{1}{x_{(i)c}^2} \partial_{\psi_i}^2\\ + \partial_{t} &=\frac{1}{t_c} \partial_{\psi_i} \\ +\end{align} +for $i = 1, 2, 3$, or depending on the dimension we are dealing with. + +Let us consider $x\in \mathbb{R}^3$ and $V = 0$ to scale the equation. First +we now have +\begin{align} + i \partial_t\psi = -\frac{\hbar}{2m}\Delta \psi +\end{align} +with the initial condition $\phi(0) = \frac{\psi_0}{\psi_c}$. With our scaling the equation turns out to be +\begin{align} + \frac{i\hbar t_c}{2m}\frac{1}{||\vec{x}_c||^2}\Delta_{\vec{\xi}}\ \phi = + \partial_\tau\ \phi. +\end{align} +The constants we get are +\begin{align} + \Pi_1 = \frac{t_c\hbar}{2m}\frac{1}{||\vec{x}_c||^2}, \;\;\;\; \Pi_2 = + \frac{\psi_0}{\psi_c}. +\end{align} + +The simple choice of +\begin{align} + \frac{1}{||\vec{x}_c||^2} = 1, \;\;\;\; \psi_c = \psi_0, \;\;\;\; t_c = + \frac{2m}{\hbar}||\vec{x}_c||^2, +\end{align} +simplifies the Schrodinger equation without the potential to +\begin{align} + i\Delta_{\vec{\xi}}\ \phi = \partial_\tau \phi, +\end{align} +with the initial condition $\phi(\tau=0) = 1$. + +Now consider $V = 0$, $x\in[0, L]$ and $t \in [0, T]$, the Schrodinger +equation is the same only with one spacial dimension as above, we can set +\begin{align} + \psi_c = \psi_0, \;\;\;\; x_c =L, \;\;\;\; t_c = \frac{2mL^2}{\hbar}. +\end{align} +Thus we get +\begin{align} + i\partial_{\xi}^2 \phi = \partial_\tau \phi, +\end{align} +with the initial condition $\phi(\tau=0) = 1$. + +As a last example let us consider the quantum harmonic oscillator, that is +$V(x) = m\omega^2 x^2$ for $x\in \mathbb{R}$, where $\omega$ is the +frequency, the equation is the following +\begin{align} + i \hbar \partial_t \psi = -\frac{\hbar^2}{2m}\partial^2_x \psi + m\omega^2x^2 \psi. +\end{align} +By inserting the scaling +\begin{align} + i\partial_\tau \phi = -\frac{t_c\hbar}{2mx_c^2}\partial_\xi^2 \phi + \frac{t_cm\omega^2x_c^2}{\hbar} \xi^2 \phi +\end{align} +The dimensional constants are +\begin{align} + \Pi_1 = \frac{t_0\hbar}{mx_c^2},\;\;\;\;\Pi_2 = + \frac{m\omega^2x_c^2t_c}{\hbar},\;\;\;\; \Pi_3 = \frac{\psi_0}{\psi_c}. +\end{align} +The choice of scaling is +\begin{align} + \psi_c = \psi_0, \;\;\;\; t_c = \frac{1}{\omega}, \;\;\;\; x_c = + \sqrt{\frac{\hbar}{m\omega}}. +\end{align} +Thereby getting the following problem +\begin{align} + i\partial_\tau \phi = -\frac{1}{2} \partial_\xi^2 \phi +\xi^2 \phi +\end{align} +with $\phi(\tau = 0) = 1$. + + + +%\printbibliography +\end{document} diff --git a/appl_ana/sesh2/main.pdf b/appl_ana/sesh2/main.pdf Binary files differ. diff --git a/appl_ana/sesh2/main.tex b/appl_ana/sesh2/main.tex @@ -0,0 +1,303 @@ +\documentclass[a4paper]{article} + + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} +\usepackage{mlmodern} + +%\usepackage{ngerman} % Sprachanpassung Deutsch + +\usepackage{graphicx} +\usepackage{geometry} +\geometry{a4paper, top=15mm} + +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{amssymb} +\usepackage{amsthm} +\usepackage{mathtools} +\usepackage{braket} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage{float} +\usepackage{yhmath} +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} +\usetikzlibrary{calc,decorations.markings} + +%\usepackage[backend=biber, sorting=none]{biblatex} +%\addbibresource{uni.bib} + +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + + +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} +\usepackage{lipsum} + + +\usepackage{tcolorbox} +\tcbuselibrary{skins,breakable} +\newcommand{\eps}{\varepsilon} +\pagestyle{myheadings} + +\markright{Popović\hfill Applied Analysis\hfill} + + + +\title{Applied Analysis Problems} +\author{Milutin Popović} + +\begin{document} +\maketitle +\tableofcontents + +\section{Sheet 2} +\subsection{Problem 4} +We consider a quadratic equation with two ways to perturb it by $\eps = +0.001$ \begin{align} + x^2 + 2\eps x -1 = 0, \label{eq: (1)}\\ + \nonumber \\ + \eps x^2 + 2x - 1 = 0.\label{eq: (2)} +\end{align} +Equation \ref{eq: (2)} is singular, because the reduced problem ($\eps +\rightarrow 0$) has only one solution while the at $x = \frac{1}{2}$. While +the reduced problem in \ref{eq: (1)} has two solutions for $x = \pm 1$, which +is the regular case. Let us thereby calculate the asymptotic expansion of the +regular case up to $O(\eps^2)$, we take the ansatz for the asymptotic +expansion +\begin{align}\label{eq: p4 ansatz} + x_\eps = x_0 + \eps x_1 + \eps^2 x_2 + O(\eps^3). +\end{align} +By substituting $x_\eps$ into \ref{eq: (1)} and factoring out the orders of +$\eps$ we get +\begin{align} + \eps^0 (x_0^2 - 1) + \eps^1(2x_0 + 2x_0x_1) + \eps^2(x_1^2+2x_2x_0 + 2x_1) = O(\eps^3) +\end{align} +By solving the equations in order of $\eps$, for the coefficients +$x_0$, $x_1$ and $x_2$ we get +\begin{align} + x_0 = \pm 1, \;\;\;\; x_1 = -1, \;\;\;\; x_2 = \pm \frac{1}{2}. +\end{align} +By substituting into the equation \ref{eq: p4 ansatz} we get +\begin{align} + x_\eps = \pm 1 - \eps \pm \frac{1}{2} \eps + O(\eps^3). +\end{align} +For $\eps = 0.001$ we get +\begin{align} + x_\eps = -1.00150 + O(\eps^3)\\ + x_\eps = -1.00100 + O(\eps^2). +\end{align} +\subsection{Problem 5} +Consider the following equations +\begin{align} + \label{eq: p5 1}\eps y' + y = x \;\;\;\;\;\; y(0) = 1\\ + \label{eq: p5 2}\eps y' + y = x \;\;\;\;\;\; y(0) = 0\\ + \nonumber\\ + \label{eq: p5 3}\eps y' + y = x \;\;\;\;\;\; y(0) = \eps\\ + \label{eq: p5 4}\eps^2 y' + y = x \;\;\;\;\;\; y(0) = \eps\\ + \nonumber\\ + \label{eq: p5 5}y' + \eps y = x \;\;\;\;\;\; y(0) = 1\\ + \label{eq: p5 6}y' + y = \eps x \;\;\;\;\;\; y(0) = 1\\ +\end{align} +We will go through the equations and elaborate on if the perturbation is +regular or singular, if regular we will compute the asymptotic expansion up +to second order. +Let us begin with equation \ref{eq: p5 1}. By the first look, the reduced +problem does not agree with the boundary condition +\begin{align} + y_0 = x \;\;\;\;\; y_0(0) = 1, +\end{align} +is a contradiction in $y_0(0) = 0 \neq 1$, thereby equation \ref{eq: p5 1} is +\textbf{singularly perturbed}. + +The reduced problem of equation \ref{eq: p5 2} on the other hand agrees with +the boundary condition, since +\begin{align} + y_0 = x \;\;\;\;\; y_0(0) = 0. +\end{align} +But by doing the ansatz for the asymptotic expansion +\begin{align} + y_\eps(x) = y_0 + \eps y_1 + \eps^2 y_2 + O(\eps^3), +\end{align} +plugging in into \ref{eq: p5 2} and separating coefficients in terms of +$\eps$, we get +\begin{align} + \eps^0 (y_0 -x) + \eps^1(y_0' + y_1) + \eps^2(y_1' + y_2) = O(\eps^3) +\end{align} +The solutions to these equations are +\begin{align} + y_0 = x, \;\;\;\; y_1 = 1, \;\;\;\; y_2 = 0, +\end{align} +which is a contradiction to the boundary condition of $y_1(0) = 1 \neq 0$. +Thereby we can conclude that equation \ref{eq: p5 2} is \textbf{singularly +perturbed}. + +Next up is equation \ref{eq: p5 3}, where by the asymptotic expansion the +first order coefficient of $\eps$, $y_2$, has the boundary condition $y_2(0) += 0$. But by applying the ansatz of the asymptotic expansion and plugging +into the equation we get +\begin{align} + \eps^2(y_0 - x) + \eps^1 (y_0' + y_1) + \eps^2(y_1' + y_2) = O(\eps^3). +\end{align} +Solving these equations we get +\begin{align} + y_0 = 0, \;\;\;\; y_1 = 1 \;\;\;\; y_2 = 0 , +\end{align} +which is a contradiction $y_1(0) = 1 \neq 0 $, thus the equation \ref{eq: p5 +3} is \textbf{singularly perturbed}. + +The next equation \ref{eq: p5 4} is also singularly perturbed, we +can see this by plugging the asymptotic expansion into the equation +\begin{align} + \eps^0 ( y_0 - x) + \eps^1(y_1) + \eps^2(y_0' + y_2) = O(\eps^3), +\end{align} +solving for the coefficients we get +\begin{align} + y_0 = x, \;\;\;\; y_1 = 0, \;\;\;\;\; y_2 = -1, +\end{align} +which is contradiction by the boundary condition $y_2(0) = -1 \neq 0$, +thereby \ref{eq: p5 4} is \textbf{singularly perturbed}. + +Equation \ref{eq: p5 5} on the first sight does not indicate for any +contradictions, we may plug the ansatz of the asymptotic expansion into the +equation and see what happens +\begin{align} + \eps^0(y_0 -x) + \eps^1(y_1' + y_0) + \eps^2(y_2' +y_1) = O(\eps^2), +\end{align} +with the initial conditions $y_0(0) = 1$, $y_1(0) = y_2(0) = 0$. +\begin{align} + y_0 = \frac{x^2}{2} + 1, \;\;\;\; + y_1 = -\frac{x^3}{6} + x, \;\;\;\; + y_2 = \frac{x^4}{24} + \frac{x^2}{2}. +\end{align} +Finally we get +\begin{align} + y_\eps(x) = (\frac{x^2}{2}+1) + \eps(-\frac{x^3}{6} -x) + +\eps^2(\frac{x^4}{24} + \frac{x^2}{2}) + O(\eps^3). +\end{align} +Thereby we can conclude that \ref{eq: p5 5} is \textbf{regularly perturbed}. + +The last equation \ref{eq: p5 6} is also regular, let us do the asymptotic +expansion of the equation and order the equation in orders of $\eps$. +\begin{align} + \eps^0(y_0' + y_0) + \eps^1(y_1' + y_1 -x) + \eps^2(y_2 + y_2) = + O(\eps^3). +\end{align} +by solving these differential equations with the boundary conditions $y_0(0) += 1$, $y_1(0) = y_2(0) = 0$ we get +\begin{align} + y_0 = e^{-x} \;\;\;\; y_1 = (x-1) + e^{-x} \;\;\;\; y_2 = 0. +\end{align} +The equation we get +\begin{align} + y_\eps(x) = e^{-x} + \eps(x-1 +e^{-x}) + O(\eps^3). +\end{align} +Thereby we can conclude that the last equation \ref{eq: p5 6} is +\textbf{regularly perturbed}. +\subsection{Problem 6} +In this section we will calculate the asymptotic expansion of a regularly +perturbed equation in two ways, by doing the regular expansion ansatz and by +substituting and expanding in terms of $\eps$. The ordinary differential +equation we are dealing with is +\begin{align} + y' = -y + \eps y^2 \;\;\;\;\; y(0) = 1, +\end{align} +where $t > 0$ and $0 < \eps \ll 1$. The standard expansion ansatz is +\begin{align} +y_\eps(x) = y_0 + \eps y_1 + \eps^2 y_2 + O(\eps^3). +\end{align} +The ODE then expands to +\begin{align} + \eps^0(y_0' + y_0) + \eps(y_1' + y_1 - y_0^2) + \eps^2(y_2' + y_2 - + 2y_0y_1) = O(\eps^3). +\end{align} +Equations in order of $\eps$ and $\eps^2$ are non homogeneous ODE's, a little +bit of a hassle to solve but, still easy by first solving the non homogeneous +part, getting a constant dependent on $x$ we can plug the solution into the +non homogeneous equation and calculate for the constant (...). The solution to +these three coefficients with the boundary conditions $y_0(0) = 1$, $y_1(0) = +y_2(0) = 1$ we get +\begin{align} + y_0 = e^{-x}, \;\;\;\; y_1 = -e^{-2x} + e^{-x}, \;\;\;\; y_2 = e^{-3x} - + 2e^{-2x} + e^{-x}. +\end{align} +The expansion of $y$ is then +\begin{align} + y_\eps (x) = e^{-x} + \eps(-e^{-2x} + e^{-x}) + \eps^2(e^{-3x} - 2e^{-2x} ++ e^{-x}) + O(\eps^3). \end{align} + +The second ansatz, considers the substitution $z = \frac{1}{y}$, by +calculating the first derivative and substituting the original problem we +get +\begin{align} + z' &= \frac{-y'}{y^2} = \frac{y-\eps y^2}{y^2} = \frac{1}{y} - \eps = z - + \eps. \\ + z(0) &= \frac{1}{y(0)} = 1. +\end{align} +The solution is +\begin{align} + z(x) = \eps + (1-\eps) e^x. +\end{align} +By substituting this into $y = \frac{1}{z}$ and expanding we get +\begin{align} + y(x) &= \frac{1}{\eps+(1-\eps)e^x} = e^{-x} \frac{1}{1 - (1- e^{-x})\eps} + \\ + &= e^{-x} \sum_{n\geq 0} \eps^n(1-e^{-x})^n. +\end{align} +which is the geometric series. +\subsection{Problem 7} +The last problem consists of a perturbation of a partial differential +equation (heat equation). +\begin{align} + &\partial_t u(x, t) + \partial_x^2 u(x,t) - \eps u(x, t)^2 = 0 + &x\in (0, 1),\; t>0,\\ + &u(x, 0) = \tilde{u}_0(x) &x\in(0, 1), \\ + &u(0, t) = u(1, t) = 0 & t>0. +\end{align} +The problem is regular because the reduced solution is the regular heat +equation in the one special dimension on $x\in (0, 1)$, we know this is +solvable. By doing the expansion ansatz we can derive the first equations +for the first three terms, the ansatz is always the same +\begin{align} + u_\eps = u_0 + \eps u_1 + \eps^2 u_2 + O(\eps^3). +\end{align} +Plugging this into the perturbed problem problem and factoring out the terms +in the order of $\eps$ we get +\begin{align} + &\eps^0 (\partial_t u_0 + \partial_x^2 u_0) + \\ + &\eps^1 (\partial_t u_1 + \partial_x^2 u_1 - u_0^2) +\\ + &\eps^2 (\partial_t u_2 + \partial_x^2 u_2 - 2u_1u_0) = O(\eps^3) +\end{align} + +We can solve the reduced problem with the initial condition $\tilde{u}_0 = +\sin(\pi x)$ by separation of variables. Setting $u(x, t) = \xi(x) \tau(t)$ +and substituting into the equation we get two ordinary differential equation +\begin{align} + \underbrace{\frac{\xi_{xx}}{\xi}}_{=k} + \underbrace{\frac{\tau_t}{\tau}}_{=-k} = 0 +\end{align} +for some $k$. Solving these two by the exponential ansatz. +\begin{align} + \xi(x) &= A_1 e^{\sqrt{k} x} +A_2 e^{-\sqrt{k} x},\\ + \tau(t) &= A_3 e^{-kt}. +\end{align} +With the initial condition we get the conditions that +\begin{align} + A_1A_3 &= -A_2 A_3,\\ + k &= \pi^2 +\end{align} +we choose $A_1 = A_3 = 1$ , $A_2 = -1$. We get the following solution to the +PDE +\begin{align} + u(x, t) = \xi(x)\tau(t) = \sin(\pi x) e^{-\pi^2 t}. +\end{align} + +%\printbibliography +\end{document}