tprak

Theoretical Physics Practical Training
git clone git://popovic.xyz/tprak.git
Log | Files | Refs

commit 33e2e1e8523d81df8ac6fbe798cd0aaa313210f4
parent 335c29161c326aa9012f8cc2c6e44254a1708aad
Author: miksa <milutin@popovic.xyz>
Date:   Sun, 20 Jun 2021 15:15:32 +0200

done sehs5

Diffstat:
Rsesh4/main.tex -> sesh4/src/main.tex | 0
Rsesh4/uni.bib -> sesh4/src/uni.bib | 0
Asesh5/src/main.bbl | 250+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asesh5/src/main.pdf | 0
Asesh5/src/main.run.xml | 85+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asesh5/src/main.tex | 515+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asesh5/src/uni.bib | 71+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
7 files changed, 921 insertions(+), 0 deletions(-)

diff --git a/sesh4/main.tex b/sesh4/src/main.tex diff --git a/sesh4/uni.bib b/sesh4/src/uni.bib diff --git a/sesh5/src/main.bbl b/sesh5/src/main.bbl @@ -0,0 +1,250 @@ +% $ biblatex auxiliary file $ +% $ biblatex bbl format version 3.1 $ +% Do not modify the above lines! +% +% This is an auxiliary file used by the 'biblatex' package. +% This file may safely be deleted. It will be recreated by +% biber as required. +% +\begingroup +\makeatletter +\@ifundefined{ver@biblatex.sty} + {\@latex@error + {Missing 'biblatex' package} + {The bibliography requires the 'biblatex' package.} + \aftergroup\endinput} + {} +\endgroup + + +\refsection{0} + \datalist[entry]{none/global//global/global} + \entry{cite1}{article}{} + \name{author}{1}{}{% + {{hash=f6c8e450bcdca89973765cf5d2daf6f1}{% + family={Deutsch}, + familyi={D\bibinitperiod}, + given={David}, + giveni={D\bibinitperiod}}}% + } + \list{publisher}{1}{% + {American Physical Society}% + } + \strng{namehash}{f6c8e450bcdca89973765cf5d2daf6f1} + \strng{fullhash}{f6c8e450bcdca89973765cf5d2daf6f1} + \strng{bibnamehash}{f6c8e450bcdca89973765cf5d2daf6f1} + \strng{authorbibnamehash}{f6c8e450bcdca89973765cf5d2daf6f1} + \strng{authornamehash}{f6c8e450bcdca89973765cf5d2daf6f1} + \strng{authorfullhash}{f6c8e450bcdca89973765cf5d2daf6f1} + \field{sortinit}{1} + \field{sortinithash}{4f6aaa89bab872aa0999fec09ff8e98a} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{issue}{9} + \field{journaltitle}{Phys. Rev. Lett.} + \field{month}{2} + \field{title}{Uncertainty in Quantum Measurements} + \field{volume}{50} + \field{year}{1983} + \true{nocite} + \field{pages}{631\bibrangedash 633} + \range{pages}{3} + \verb{doi} + \verb 10.1103/PhysRevLett.50.631 + \endverb + \verb{urlraw} + \verb https://link.aps.org/doi/10.1103/PhysRevLett.50.631 + \endverb + \verb{url} + \verb https://link.aps.org/doi/10.1103/PhysRevLett.50.631 + \endverb + \endentry + \entry{cite2}{article}{} + \name{author}{2}{}{% + {{hash=fd03e9cee55771f2da1be66b74546ca7}{% + family={Maassen}, + familyi={M\bibinitperiod}, + given={Hans}, + giveni={H\bibinitperiod}}}% + {{hash=f6b7f41c32904761b25459a288a498d2}{% + family={Uffink}, + familyi={U\bibinitperiod}, + given={J.\bibnamedelimi B.\bibnamedelimi M.}, + giveni={J\bibinitperiod\bibinitdelim B\bibinitperiod\bibinitdelim M\bibinitperiod}}}% + } + \list{publisher}{1}{% + {American Physical Society}% + } + \strng{namehash}{e77ecb12304ceaf875d7f1a4820485ae} + \strng{fullhash}{e77ecb12304ceaf875d7f1a4820485ae} + \strng{bibnamehash}{e77ecb12304ceaf875d7f1a4820485ae} + \strng{authorbibnamehash}{e77ecb12304ceaf875d7f1a4820485ae} + \strng{authornamehash}{e77ecb12304ceaf875d7f1a4820485ae} + \strng{authorfullhash}{e77ecb12304ceaf875d7f1a4820485ae} + \field{sortinit}{2} + \field{sortinithash}{8b555b3791beccb63322c22f3320aa9a} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{issue}{12} + \field{journaltitle}{Phys. Rev. Lett.} + \field{month}{3} + \field{title}{Generalized entropic uncertainty relations} + \field{volume}{60} + \field{year}{1988} + \true{nocite} + \field{pages}{1103\bibrangedash 1106} + \range{pages}{4} + \verb{doi} + \verb 10.1103/PhysRevLett.60.1103 + \endverb + \verb{urlraw} + \verb https://link.aps.org/doi/10.1103/PhysRevLett.60.1103 + \endverb + \verb{url} + \verb https://link.aps.org/doi/10.1103/PhysRevLett.60.1103 + \endverb + \endentry + \entry{cite3}{article}{} + \name{author}{2}{}{% + {{hash=4a3a6bc61c0b79007a27f68a759c41c5}{% + family={Hiesmayr}, + familyi={H\bibinitperiod}, + given={Beatrix\bibnamedelima C}, + giveni={B\bibinitperiod\bibinitdelim C\bibinitperiod}}}% + {{hash=9326f70a002ee922a600a49e5751a830}{% + family={Löffler}, + familyi={L\bibinitperiod}, + given={Wolfgang}, + giveni={W\bibinitperiod}}}% + } + \list{publisher}{1}{% + {IOP Publishing}% + } + \strng{namehash}{c39ef397de2a49586a7a044f3c670dc1} + \strng{fullhash}{c39ef397de2a49586a7a044f3c670dc1} + \strng{bibnamehash}{c39ef397de2a49586a7a044f3c670dc1} + \strng{authorbibnamehash}{c39ef397de2a49586a7a044f3c670dc1} + \strng{authornamehash}{c39ef397de2a49586a7a044f3c670dc1} + \strng{authorfullhash}{c39ef397de2a49586a7a044f3c670dc1} + \field{extraname}{1} + \field{sortinit}{3} + \field{sortinithash}{ad6fe7482ffbd7b9f99c9e8b5dccd3d7} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{issn}{1367-2630} + \field{journaltitle}{New Journal of Physics} + \field{month}{8} + \field{number}{8} + \field{title}{Complementarity reveals bound entanglement of two twisted photons} + \field{volume}{15} + \field{year}{2013} + \true{nocite} + \field{pages}{083036} + \range{pages}{1} + \verb{doi} + \verb 10.1088/1367-2630/15/8/083036 + \endverb + \verb{urlraw} + \verb http://dx.doi.org/10.1088/1367-2630/15/8/083036 + \endverb + \verb{url} + \verb http://dx.doi.org/10.1088/1367-2630/15/8/083036 + \endverb + \endentry + \entry{cite4}{article}{} + \name{author}{2}{}{% + {{hash=038cef343425bee050066635728d1d78}{% + family={Hiesmayr}, + familyi={H\bibinitperiod}, + given={Beatrix}, + giveni={B\bibinitperiod}}}% + {{hash=9326f70a002ee922a600a49e5751a830}{% + family={Löffler}, + familyi={L\bibinitperiod}, + given={Wolfgang}, + giveni={W\bibinitperiod}}}% + } + \strng{namehash}{3361c869bbd344a8fa8635f2ba4ea67c} + \strng{fullhash}{3361c869bbd344a8fa8635f2ba4ea67c} + \strng{bibnamehash}{3361c869bbd344a8fa8635f2ba4ea67c} + \strng{authorbibnamehash}{3361c869bbd344a8fa8635f2ba4ea67c} + \strng{authornamehash}{3361c869bbd344a8fa8635f2ba4ea67c} + \strng{authorfullhash}{3361c869bbd344a8fa8635f2ba4ea67c} + \field{extraname}{2} + \field{sortinit}{4} + \field{sortinithash}{9381316451d1b9788675a07e972a12a7} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{journaltitle}{Physica Scripta} + \field{month}{09} + \field{title}{Mutually Unbiased Bases and Bound Entanglement} + \field{volume}{2014} + \field{year}{2013} + \true{nocite} + \verb{doi} + \verb 10.1088/0031-8949/2014/T160/014017 + \endverb + \endentry + \entry{cite5}{article}{} + \name{author}{5}{}{% + {{hash=e6dbcb67d77eb859d38306c2c56185a9}{% + family={Spengler}, + familyi={S\bibinitperiod}, + given={Christoph}, + giveni={C\bibinitperiod}}}% + {{hash=93d146cf476e422f1aaaf5815edef308}{% + family={Huber}, + familyi={H\bibinitperiod}, + given={Marcus}, + giveni={M\bibinitperiod}}}% + {{hash=779d39baa19bb96d78a124cb78e6ee92}{% + family={Brierley}, + familyi={B\bibinitperiod}, + given={Stephen}, + giveni={S\bibinitperiod}}}% + {{hash=7c87a1fe9c90d97e2360e1c7d2eeb249}{% + family={Adaktylos}, + familyi={A\bibinitperiod}, + given={Theodor}, + giveni={T\bibinitperiod}}}% + {{hash=4a3a6bc61c0b79007a27f68a759c41c5}{% + family={Hiesmayr}, + familyi={H\bibinitperiod}, + given={Beatrix\bibnamedelima C.}, + giveni={B\bibinitperiod\bibinitdelim C\bibinitperiod}}}% + } + \list{publisher}{1}{% + {American Physical Society (APS)}% + } + \strng{namehash}{89bc1e0689471ae75c5db52ffe15ce0f} + \strng{fullhash}{8e59df037a0b0d873000784677720de3} + \strng{bibnamehash}{89bc1e0689471ae75c5db52ffe15ce0f} + \strng{authorbibnamehash}{89bc1e0689471ae75c5db52ffe15ce0f} + \strng{authornamehash}{89bc1e0689471ae75c5db52ffe15ce0f} + \strng{authorfullhash}{8e59df037a0b0d873000784677720de3} + \field{sortinit}{5} + \field{sortinithash}{20e9b4b0b173788c5dace24730f47d8c} + \field{labelnamesource}{author} + \field{labeltitlesource}{title} + \field{issn}{1094-1622} + \field{journaltitle}{Physical Review A} + \field{month}{8} + \field{number}{2} + \field{title}{Entanglement detection via mutually unbiased bases} + \field{volume}{86} + \field{year}{2012} + \true{nocite} + \verb{doi} + \verb 10.1103/physreva.86.022311 + \endverb + \verb{urlraw} + \verb http://dx.doi.org/10.1103/PhysRevA.86.022311 + \endverb + \verb{url} + \verb http://dx.doi.org/10.1103/PhysRevA.86.022311 + \endverb + \endentry + \enddatalist +\endrefsection +\endinput + diff --git a/sesh5/src/main.pdf b/sesh5/src/main.pdf Binary files differ. diff --git a/sesh5/src/main.run.xml b/sesh5/src/main.run.xml @@ -0,0 +1,85 @@ +<?xml version="1.0" standalone="yes"?> +<!-- logreq request file --> +<!-- logreq version 1.0 / dtd version 1.0 --> +<!-- Do not edit this file! --> +<!DOCTYPE requests [ + <!ELEMENT requests (internal | external)*> + <!ELEMENT internal (generic, (provides | requires)*)> + <!ELEMENT external (generic, cmdline?, input?, output?, (provides | requires)*)> + <!ELEMENT cmdline (binary, (option | infile | outfile)*)> + <!ELEMENT input (file)+> + <!ELEMENT output (file)+> + <!ELEMENT provides (file)+> + <!ELEMENT requires (file)+> + <!ELEMENT generic (#PCDATA)> + <!ELEMENT binary (#PCDATA)> + <!ELEMENT option (#PCDATA)> + <!ELEMENT infile (#PCDATA)> + <!ELEMENT outfile (#PCDATA)> + <!ELEMENT file (#PCDATA)> + <!ATTLIST requests + version CDATA #REQUIRED + > + <!ATTLIST internal + package CDATA #REQUIRED + priority (9) #REQUIRED + active (0 | 1) #REQUIRED + > + <!ATTLIST external + package CDATA #REQUIRED + priority (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8) #REQUIRED + active (0 | 1) #REQUIRED + > + <!ATTLIST provides + type (static | dynamic | editable) #REQUIRED + > + <!ATTLIST requires + type (static | dynamic | editable) #REQUIRED + > + <!ATTLIST file + type CDATA #IMPLIED + > +]> +<requests version="1.0"> + <internal package="biblatex" priority="9" active="0"> + <generic>latex</generic> + <provides type="dynamic"> + <file>main.bcf</file> + </provides> + <requires type="dynamic"> + <file>main.bbl</file> + </requires> + <requires type="static"> + <file>blx-dm.def</file> + <file>blx-compat.def</file> + <file>biblatex.def</file> + <file>standard.bbx</file> + <file>numeric.bbx</file> + <file>numeric.cbx</file> + <file>biblatex.cfg</file> + <file>english.lbx</file> + </requires> + </internal> + <external package="biblatex" priority="5" active="0"> + <generic>biber</generic> + <cmdline> + <binary>biber</binary> + <infile>main</infile> + </cmdline> + <input> + <file>main.bcf</file> + </input> + <output> + <file>main.bbl</file> + </output> + <provides type="dynamic"> + <file>main.bbl</file> + </provides> + <requires type="dynamic"> + <file>main.bcf</file> + </requires> + <requires type="editable"> + <file>uni.bib</file> + </requires> + </external> +</requests> diff --git a/sesh5/src/main.tex b/sesh5/src/main.tex @@ -0,0 +1,515 @@ +\documentclass[a4paper]{article} + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} + +\usepackage{mathptmx} + +\usepackage[a4paper, total={6in, 8in}]{geometry} +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{bbm} +\usepackage{amssymb} +\usepackage{amsthm} +\usepackage{mathtools} +\usepackage{braket} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage{float} +\usepackage{multirow} +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} +\usepackage[backend=biber, sorting=none]{biblatex} + +\addbibresource{uni.bib} +\pagestyle{myheadings} + +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} + +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + +\newcounter{exercise} + +\renewcommand*\theexercise{Exercise~\arabic{exercise}} + +\makeatletter +\mdfdefinestyle{exercisestyle}{% + outerlinewidth=1em,% + outerlinecolor=white,% + leftmargin=-1em,% + rightmargin=-1em,% + middlelinewidth=1.2pt,% + roundcorner=5pt,% + linecolor=black,% + backgroundcolor=blue!5, + innertopmargin=1.2\baselineskip, + skipabove={\dimexpr0.5\baselineskip+\topskip\relax}, + skipbelow={-1em}, + needspace=3\baselineskip, + frametitlefont=\sffamily\bfseries, + settings={\global\stepcounter{exercise}}, + singleextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};},% + firstextra={% + \node[titlered,xshift=1cm] at (P-|O) % + {~\mdf@frametitlefont{\theexercise}~};}, +} +\makeatother + +\newenvironment{MyExercise}% +{\begin{mdframed}[style=exercisestyle]}{\end{mdframed}} + + + + + +\markright{Popovic, Vogel\hfill Detection of Quantum Entanglement with MUBs \hfill} + +\title{Universität Wien\\ Fakultät für Physik\\ +\vspace{1.25cm}Labcours Theoretical Physik 2021S \\ Detection of Quantum +Entanglement with MUBs +} +\author{Milutin Popovic \& Tim Vogel \vspace{1cm}\\ Betreuerin: Beatrix C. Hiesmayr} +\date{20. Juni, 2021} + +\begin{document} +\maketitle + +\noindent\rule[0.5ex]{\linewidth}{1pt} +\begin{abstract} + In this lab course we go through the QM problem of detecting entangled and + separable states. Even thought given a density matrix we cannot always know if + the state is separable or entangled. Thus a new concept is introduced, a + witness function build upon by the so called mutually unbiased bases short + MUBs. With help of the witness we can experimentally test to prove + entangled Bell states. +\end{abstract} +\noindent\rule[0.5ex]{\linewidth}{1pt} + +\tableofcontents + +\section{Background} +\subsection{Heisenberg's uncertainty relation-Robertson version} +Given an observable $\mathcal{A}$ we can define a hermitian operator $\hat{A}$ +, given a state $\psi$, we can define the expectation value $\langle \hat{A} \rangle _\psi += \text{Tr}(\hat{A}\psi)$ and thus a standard derivation $(\Delta +\hat{A})^2_\psi = \langle \hat{A}^2 \rangle_\psi - \langle \hat{A} +\rangle_\psi^2$, where any such operator needs to satisfy. +\begin{align} + \langle \hat{A}^\dagger \hat{A} \rangle_\psi = \langle + \psi|\hat{A}^\dagger\hat{A} \rangle = \langle \hat{A}\psi | \hat{A}\psi + \rangle \geq 0. +\end{align} +Furthermore two arbitrary hermitian operators $\hat{A}$ and $\hat{B}$ hold the +following inequality +\begin{align} + (\Delta \hat{A})_\psi \cdot (\Delta \hat{B})_\psi \geq \frac{1}{2} |\langle + \hat{A}, \hat{B}\rangle_\psi| +\end{align} +for any state $\psi$. This uncertainty is called the Heisenberg's uncertainty +principle and forms a fundamental basis for quantum mechanics the +unpredictability of quantum mechanics. + +\subsection{Entropic Uncertainty Relations-Quantum Information Theoretical +Formulation} +In quantum-information theory the entropic uncertainty is defined as the +following +\begin{align} + H(\hat{O}_n) + H(\hat{O}_m) \geq - \log_2\bigg(\max_{i,j}\{|\langle + \chi_n^i|\chi_m^j \rangle|^2\} \bigg) = log_2(|\frac{1}{\sqrt{2}}|^2) +\end{align} +where $H(\bar{0})_n$ is the binary entropy for a pure state $\psi$ +\begin{align} + H(\bar{O}_n) = -p(n)\log_2(p(n)) -(1-p(n))\log_2(1-p(n)) +\end{align} +and $p(n) = |\langle \chi_n | \psi \rangle|^2$ is the probability for the +outcome $n$ of $\hat{O}_n$ for $\psi$. + +The entropic uncertainty relation can be extended for an arbitrary number of +outcomes, $d$, with the von-Neumann Entropy $S(\hat{O}_n)$ +\begin{align} + &S(\hat{O}_n) + S(\hat{O}_m) \geq - \log_d\bigg(\max_{i,j}\{|\langle + \chi_n^i|\chi_m^j \rangle|^2\} \bigg)\\ + \nonumber\\ + &S(\hat{O}_n) = -\sum^{d-1}_{i=0} p_n(i)\ln(p_n(i)) \;\;\;\ \text{or}\\ + &S(\hat{O}_n) = -\text{Tr}(\hat{O} \ln(\hat{O})). \label{eq:vn} +\end{align} + +\subsection{Mutually Unbiased Bases (MUBs)} +A ONB of a $d$-dimensional Hilbert space is $B = \{|i \rangle\} = \{|0\rangle ,\dots, +|(d-1)\rangle \}$. In quantum information theory a set of orthonormal bases +$\{B_1, \dots, B_m\}$ (each an ONB of the $d$-dimensional Hilbertspace $H^d$) is called mutually +unbiased if +\begin{align} + |\langle i_k| j_{k'}\rangle|^2 = \delta_{k,k'}\delta_{i,j} + (1-\delta_{k,k'})\frac{1}{d} +\end{align} + +Thus the maximum of the entropy uncertainty relation is + +\begin{align} + S(\hat{O}_n) + S(\hat{O}_m) \geq - \log_d(\frac{1}{d}) +\end{align} + +\subsection{Construction of MUBs \label{sec:mubs}} +In this section we will show how to construct mutually unbiased bases (MUBs) +using the Hadamard Matrix $\mathbb{H}$. In fact two orthonormal basies are +connected by the Hadamard Matrix (unitary) +\begin{align} + \mathbb{H}=\sum_{i,j} \frac{1}{\sqrt{d}} e^{i\phi_{ij}}|i\rangle\langle j|. +\end{align} +where $\phi_{i,j}$ is a phase chosen such that the $\mathbb{H}$ is unitary. A +simple choice $e^{i\phi_{i,j}} = \omega^{-ij} = e^{\frac{2\pi i}{d}}$ always +works. In this case the matrix is called the Fourier matrix +\begin{align} + \mathbb{H}=\sum_{i,j} \frac{1}{\sqrt{d}} \omega^{-ij}|i\rangle\langle j|. +\end{align} +Furthermore the Hadamard matrix is directly related to the generalized +Pauli-matrices. +\begin{align} + &\sigma_{\mathbb{Z}} = \sum_i \omega^i |i\rangle\langle i|\\ + &\sigma_{\mathbb{X}} = \mathbb{H}\sigma_{\mathbb{Z}} \mathbb{H} = \sum_i + |i+1\rangle\langle i|\\ + &\sigma_{\mathbb{X}}\sigma_{\mathbb{Z}} = i \sigma_{\mathbb{Y}}. +\end{align} + +All this means, the problem of finding MUBs, essentially narrows down, to finding +these Hadamad matrices. +\newline + +A second way of constructing MUBs is the so called Heisenberg-Weyl +construction. If $d$ is prime, the eigenvectors of the operators, form a MUB, +which looks like: +\begin{align} + (\sigma_\mathbb{Z},\sigma_\mathbb{X},\sigma_\mathbb{X}. + \sigma_\mathbb{Z},\sigma_\mathbb{X}.\sigma^2_\mathbb{Z},...,\sigma_\mathbb{X}. + \sigma^{d-1}_\mathbb{Z}) +\end{align} + +\textbf{Examples:} +\newline + +MUBs for qubits (d=2) +\begin{align} + &B_1 = \{|0_1\rangle, |1_1\rangle\} = \{|0\rangle, |1\rangle\}\\ + &B_2 = \{|0_2\rangle, |1_2\rangle\} = \frac{1}{\sqrt{2}} \{|0\rangle + +|1\rangle , |0\rangle - |1\rangle\}\\ + &B_2 = \{|0_3\rangle, |1_3\rangle\} = \frac{1}{\sqrt{2}} \{|0\rangle + +i|1\rangle , |0\rangle - i|1\rangle\}\\ +\end{align} + +MUBs for qutrits (d=3) +\begin{align} + &B_1 = \{|0_1\rangle, |1_1\rangle, |2_1\rangle\} = + \bigg\{ + \begin{pmatrix}1 \\ 0\\0\end{pmatrix}, + \begin{pmatrix}0 \\ 1\\0\end{pmatrix}, + \begin{pmatrix}0 \\ 0\\1\end{pmatrix} + \bigg\} + \\ + &B_2 = \{|0_2\rangle, |1_2\rangle, |2_2\rangle\} = + \frac{1}{\sqrt{3}} + \bigg\{ + \begin{pmatrix}1 \\ 1\\1\end{pmatrix}, + \begin{pmatrix}1 \\ \omega\\\omega^2\end{pmatrix}, + \begin{pmatrix}1 \\ \omega^2\\\omega\end{pmatrix} + \bigg\} + \\ + &B_3 = \{|0_3\rangle, |1_3\rangle, |2_1\rangle\} = + \frac{1}{\sqrt{3}} + \bigg\{ + \begin{pmatrix}1 \\\omega\\\omega\end{pmatrix}, + \begin{pmatrix}1 \\ \omega^2\\1\end{pmatrix}, + \begin{pmatrix}1 \\ 1\\\omega^2\end{pmatrix} + \bigg\} \\ + &B_4 = \{|0_4\rangle, |1_1\rangle, |2_1\rangle\} = + \frac{1}{\sqrt{3}} + \bigg\{ + \begin{pmatrix}1 \\\omega^2\\\omega^2\end{pmatrix}, + \begin{pmatrix}1 \\ \omega\\1\end{pmatrix}, + \begin{pmatrix}1 \\ 1\\\omega\end{pmatrix} + \bigg\} +\end{align} + +With these bases we can define an bell state seed $\Omega_{0,0}$ with $P_{0,0} += |\Omega_{0,0}\rangle\langle \Omega_{0,0}|$, +\begin{align}\label{eq:arb} + |\Omega_{0,0}\rangle = \frac{1}{\sqrt{d}} \sum_{s=0}^{d-1} |ss\rangle +\end{align} +extending this with the Wely operators $W_{kl}$ we can arrive at an arbitrary +bell state $P_{i,j}$ +\begin{align} + &|\Omega_{k,l}\rangle = W_{kl} \otimes \mathbbm{1}|\Omega_{0,0}\rangle\\ + \nonumber\text{where:}\\ + &W_{kl} = \sum_{j=0}^{d-1} \omega^{j\cdot k} |j\rangle \langle j+l| +\end{align} +where $\omega = e^{\frac{2\pi i}{d}}$ and $\sum_{j=0}^{d-1} \omega^j = 0$. + +\subsection{Detecting Entanglement via MUBs} +One of the most important aspects of quantum theory, is the prediction of +entanglement, and furthermore finding ways to construct experiments, that, with +minimal effort allow the creation of so called entanglement witnesses for +entanglement detection. Because, the bigger a system gets, the more +measurements are needed, which for huge systems is often straight up impossible +to realize. So, essentially, quantum theory tries to witness entanglement with +as few measurements as possible, and without resorting to full state +tomography. +\begin{table}[h!] + \centering +\begin{tabular}{||c|c|c || c|c||} +\hline + & \multicolumn{2}{|c||}{Lower Bounds} &\multicolumn{2}{|c||}{Upper Bounds}\\ +\hline + m & $L_{m,2}^{MUB}$ &$L_{m,3}^{MUB}$&$U_{m,2}^{MUB}$ &$U_{m,3}^{MUB}$ \\ +\hline + 2 & 1/2 &0.211 &3/2 & 4/3\\ +\hline + 3 & 1 &1/2 &2 & 5/3\\ +\hline + 4 & &1 & & 2\\ +\hline +\end{tabular} + \caption{Lower $L$ and upper $U$ bounds for the MUB witness for $d = 2, 3$ + and $m=1, \dots, d+1$ \label{tab:1}} +\end{table} + +\newpage +\section{Exercises} + +\begin{MyExercise} + \textbf{Compute the Heisenberg uncertainty relation for $\hat{A} = + \hat{\sigma}_{1}$ and $\hat{B} = \hat{\sigma}_{2}$ (Pauli matrices) for an + arbitrary pure state $|\psi \rangle = \cos\frac{\theta}{2} |\Uparrow\rangle + + \sin\frac{\theta}{2} e^{i\phi} |\Downarrow\rangle$. Furthermore compute + the quantum-information theoretical version of the inequality for + $\hat{O}_{n,m} = \hat{\sigma}_{1, 2}$}. + \newline + + To start of, the Pauli matrices are + \begin{align} + \sigma_1 = + \begin{pmatrix} + 0 & 1\\ 1& 0 + \end{pmatrix} \;\;\;\;\; + \sigma_2 = + \begin{pmatrix} + 0 & -i \\ i & 0 + \end{pmatrix} \;\;\;\;\; + \sigma_3 = + \begin{pmatrix} + 1&0\\ 0& -1 + \end{pmatrix} \;\;\;\;\; + \end{align} + Now we have a straight forward calculation + \begin{align} + &\langle \sigma_1\rangle^2_\psi = \sin^2 \theta \cos^2 \phi\\ + &\langle (\sigma_1)^2\rangle_\psi = 1\\ + \nonumber \\ + &\langle \sigma_2\rangle_\psi^2 = \sin^2\theta \sin^2\phi\\ + &\langle (\sigma_2)^2\rangle_\psi = 1\\ + \nonumber \\ + &\frac{1}{2} |\langle[\sigma_1, \sigma_2]\rangle = cos\theta + \end{align} + after some basic algebra with trigonometric functions we arrive at the + following inequality + \begin{align} + \sin^4\theta \sin^2(2\phi) \geq 0 + \end{align} + which holds true for all $\theta, \phi$. + + For the quantum-theoretical version of the inequality we use Equation + \ref{eq:vn} to calculate the von Neumann entropy. The maximum of the right + hand side is $\frac{1}{2}$ + \begin{align} + S(\sigma_1) = -\text{Tr}(\sigma_1\ln(\sigma_1)) = 0\\ + S(\sigma_2) = -\text{Tr}(\sigma_2\ln(\sigma_2)) = \pi + \end{align} + thus the inequality is + \begin{align} + \pi \geq 1 + \end{align} + + Since the Heisenberg's uncertainty principle is mathematically correct, + because it holds true for all hermitian operators, a violation of + the principle would put the basis of functional analysis and/or + the axioms of quantum mechanics at question. + + The quantum information theoretical approach to the uncertainty principal + is convenient since the right hand side does not depend on any particular + state. +\end{MyExercise} + +\begin{MyExercise}\label{ex:2} + \textbf{Compute + \begin{align} + &I_m^{MUB} = \sum_{k=1}^m\sum_{i=0}^{d-1} + \text{Tr}((|i_k\rangle\langle i_k| \otimes |i_k\rangle \langle i_k|) + \varrho) \;\;\;\;\;\; \text{and}\\ + &I_m^{MUB} = \sum_{k=1}^m\sum_{i=0}^{d-1} + \text{Tr}((|i_k\rangle\langle i_k| \otimes (|i_k\rangle \langle + i_k|)^*) + \varrho) + \end{align} + for two qubits ($d=2$), for $m=1, 2, 3$ and $|\psi\rangle = + cos\alpha|00\rangle + sin\alpha |11>$. Here $|i_k\rangle$ is the eigenvector + of the Pauli matrix $\sigma_k$.} + + The strategy to calculate the witness is to use the computer to loop over + $d$ and $m$ for $m = 1, \dots, d+1$ then we compare the results with table + \ref{tab:1}. Note that $|i_k\rangle\langle i_k|$ is a $d$-dimensional + matrix, the density matrix is a $d^2$-dimensional matrix and + thus the matrix inside the trace is $d^2$. + + We start of with $I_m^{MUB}$ without conjugation + \begin{align} + &I^{MUB}_{m=1} = \cos^2\alpha\\ + &I^{MUB}_{m=2} = \frac{1}{4}(-\sin(2\alpha) + 2\cos(2\alpha) + 3)\\ + &I^{MUB}_{m=3} = \cos^2(\alpha) + \frac{1}{2} + \end{align} + For $m=2$ entangled states for lower bound $\alpha = \frac{\pi}{4}$. For + $m = 3$ entangled states for lower bound $\alpha = \frac{3\pi}{4}$. + + with conjugation we get + \begin{align} + &I^{MUB}_{m=1} = \cos^2\alpha\\ + &I^{MUB}_{m=2} = \frac{1}{4}(\sin(2\alpha) + 2\cos(2\alpha) + 3)\\ + &I^{MUB}_{m=3} = \frac{1}{\sqrt{2}} \sin(2\alpha + \frac{\pi}{4}) +1 + \end{align} + For $m=2$ entangled states for lower bound $\alpha = \frac{\pi}{4}$. For + $m = 3$ entangled states for lower bound $\alpha = -\frac{\pi}{8}$. +\end{MyExercise} + +\begin{MyExercise} + \textbf{Compute the same as in exercise \ref{ex:2} for + the isotropic state + \begin{align} + \varrho^{iso}_d (p) = (1-p)\cdot\frac{1}{d^2}\mathbbm{1}_{d^2} + p + P_{i,j} + \end{align} + for a freely chosen bell state $P_{i,j}$, and for both $d=2$ qubits and for + $d=3$ qutrits. For $p\in [-\frac{1}{d^2-1}, 1]$ + we have the positivity condition and for $p\in [-\frac{1}{d^2 -1}, + \frac{1}{d+1}]$ we have a separable state else entangled. + } + + We choose $P_{i,j} = P_{0,0} = |\Omega_{0,0}\rangle \langle \Omega_{0,0}|$. + To calculate $\Omega$ we use the equation \ref{eq:arb} and use the MUBs given + in section \ref{sec:mubs}. + + For $d=2$ we have the following for the standard $I^{MUB}$ + \begin{align} + &I^{MUB}_{m=1} = \frac{1}{4}(3p+1) \\ + &I^{MUB}_{m=2} = \frac{1}{2}(3p+1) \\ + &I^{MUB}_{m=3} = \frac{1}{4}(5p+3) \\ + \end{align} + For $m=2$ we have entanglement on the upper bound for $p = \frac{2}{3}$. + For $m=3$ we have entanglement on the upper bound for $p = 1$. + + + with conjugation we get + \begin{align} + &I^{MUB}_{m=1} = \frac{1}{4}(3p+1) \\ + &I^{MUB}_{m=2} = \frac{1}{2}(3p+1) \\ + &I^{MUB}_{m=3} = \frac{1}{4}(9p+3) \\ + \end{align} + For $m=2$ we have entanglement on the upper bound for $p = \frac{2}{3}$. + For $m=3$ we have entanglement on the upper bound for $p = \frac{4}{9}$. + + For $d=3$ we have the following + \begin{align} + &I^{MUB}_{m=1} = \frac{1}{9}(16p+2) \\ + &I^{MUB}_{m=2} = \frac{1}{9}(23p+4) \\ + &I^{MUB}_{m=3} = 3p + \frac{1}{3}\\ + &I^{MUB}_{m=4} = \frac{1}{9}(31p + 8) + \end{align} + For $m=2$ we have entanglement on the upper bound for $p = \frac{8}{23}$. + For $m=3$ we have entanglement on the upper bound for $p = \frac{4}{9}$. + + with conjugation we get + \begin{align} + &I^{MUB}_{m=1} = \frac{1}{9}(16p+2) \\ + &I^{MUB}_{m=2} = \frac{1}{9}(32p+4) \\ + &I^{MUB}_{m=3} = \frac{16}{3}p + \frac{2}{3}\\ + &I^{MUB}_{m=4} = \frac{1}{9}(64p + 8) + \end{align} + For $m=3$ we have entanglement on the upper bound for $p = \frac{5}{3}$. +\end{MyExercise} +\newpage +\begin{MyExercise} + \textbf{ + Compute $I_m^{MUB}$ with conjugation and without for the Werner states + for $d=2, 3$ and $m=1,\dots, d+1$ + \begin{align} + \varrho_W(q) = q \frac{P_{sym}}{d(d+1)} + (1-q) \frac{P_{asym}}{d(d-1)} + \end{align} + where $P_{sym} = (\mathbbm{1} + \mathbb{P})$ and $P_{asym} = + (\mathbbm{1} - \mathbb{P})$ for $\mathbb{P} = \sum_{ij} + |ji\rangle\langle ij|$. The state is separable for $q\in [0,\frac{1}{2}]$ and + entangled for $q\in [\frac{1}{2}, 1]$ + } + + First we calculate for $d=2$ we choose the basis $B_1$ to calculate the projection + operator. And note that $|ij\rangle = |i\rangle \otimes |j\rangle$ we need + the tensor product here. + + Straightforward computation gives + \begin{align} + &I^{MUB}_{m=1} = \frac{q}{3}\\ + &I^{MUB}_{m=2} = \frac{2q}{3}\\ + &I^{MUB}_{m=3} = q + \end{align} + For $m=3$ we have entanglement on the lower bound for $p = 1/2$. + + with conjugation + \begin{align} + &I^{MUB}_{m=1} = \frac{q}{3}\\ + &I^{MUB}_{m=2} = \frac{2q}{3}\\ + &I^{MUB}_{m=3} = \frac{q}{3} + \frac{1}{2} + \end{align} + For $m=3$ we have entanglement on the lower bound for $p = 0$. + + For $d=3$ we choose the basis $B_1$ to calculate the projection operator + and straightforward computation gives + \begin{align} + &I^{MUB}_{m=1} = \frac{q}{3}\\ + &I^{MUB}_{m=2} = \frac{2q}{3}\\ + &I^{MUB}_{m=3} = q \\ + &I^{MUB}_{m=3} = \frac{4q}{3} + \end{align} + For $m=2$ we have entanglement on the lower bound for $p = 0.3165$. + For $m=3$ we have entanglement on the lower bound for $p = \frac{1}{2}$. + + with conjugation + \begin{align} + &I^{MUB}_{m=1} = \frac{q}{3}\\ + &I^{MUB}_{m=2} = \frac{1}{12}(5q + 2)\\ + &I^{MUB}_{m=3} = \frac{1}{36}(15q + 14)\\ + &I^{MUB}_{m=4} = \frac{1}{36}(15q + 22)\\ + \end{align} + For $m=2$ we have entanglement on the lower bound for $p = 0.1064$. + For $m=3$ we have entanglement on the lower bound for $p = \frac{4}{15}$. + + A simple comparison with exercise 3, we arrive at the conclusion that for + the Werner states we detect entanglement only on the lower bound and for the + isotropic states we detect entanglement only on the upper bound. +\end{MyExercise} + + + +\nocite{cite1} +\nocite{cite2} +\nocite{cite3} +\nocite{cite4} +\nocite{cite5} +\printbibliography + + + +\end{document} diff --git a/sesh5/src/uni.bib b/sesh5/src/uni.bib @@ -0,0 +1,71 @@ +@article{cite1, + title = {Uncertainty in Quantum Measurements}, + author = {Deutsch, David}, + journal = {Phys. Rev. Lett.}, + volume = {50}, + issue = {9}, + pages = {631--633}, + numpages = {0}, + year = {1983}, + month = {Feb}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevLett.50.631}, + url = {https://link.aps.org/doi/10.1103/PhysRevLett.50.631} +} + + +@article{cite2, + title = {Generalized entropic uncertainty relations}, + author = {Maassen, Hans and Uffink, J. B. M.}, + journal = {Phys. Rev. Lett.}, + volume = {60}, + issue = {12}, + pages = {1103--1106}, + numpages = {0}, + year = {1988}, + month = {Mar}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevLett.60.1103}, + url = {https://link.aps.org/doi/10.1103/PhysRevLett.60.1103} +} + +@article{cite3, + title={Complementarity reveals bound entanglement of two twisted photons}, + volume={15}, + ISSN={1367-2630}, + url={http://dx.doi.org/10.1088/1367-2630/15/8/083036}, + DOI={10.1088/1367-2630/15/8/083036}, + number={8}, + journal={New Journal of Physics}, + publisher={IOP Publishing}, + author={Hiesmayr, Beatrix C and Löffler, Wolfgang}, + year={2013}, + month={Aug}, + pages={083036} +} + +@article{cite4, +author = {Hiesmayr, Beatrix and Löffler, Wolfgang}, +year = {2013}, +month = {09}, +pages = {}, +title = {Mutually Unbiased Bases and Bound Entanglement}, +volume = {2014}, +journal = {Physica Scripta}, +doi = {10.1088/0031-8949/2014/T160/014017} +} + + +@article{cite5, + title={Entanglement detection via mutually unbiased bases}, + volume={86}, + ISSN={1094-1622}, + url={http://dx.doi.org/10.1103/PhysRevA.86.022311}, + DOI={10.1103/physreva.86.022311}, + number={2}, + journal={Physical Review A}, + publisher={American Physical Society (APS)}, + author={Spengler, Christoph and Huber, Marcus and Brierley, Stephen and Adaktylos, Theodor and Hiesmayr, Beatrix C.}, + year={2012}, + month={Aug} +}