ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 4495052f7eb47c650ed0f894868f2fd1e3fa38ae
parent 5b023921cca4f36e1f6268fd94ed761dd7dab504
Author: miksa234 <milutin@popovic.xyz>
Date:   Tue, 10 Aug 2021 14:56:36 +0200

almost done

Diffstat:
Msrc/thesis/back/abstract.tex | 2++
Asrc/thesis/chapters/1_basics.tex | 564+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Rsrc/thesis/chapters/finitencg.tex -> src/thesis/chapters/2_finitencg.tex | 0
Asrc/thesis/chapters/3_realncg.tex | 292+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Rsrc/thesis/chapters/heatkernel.tex -> src/thesis/chapters/4_heatkernel.tex | 0
Asrc/thesis/chapters/5_twopointspace.tex | 244+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/thesis/chapters/6_electroncg.tex | 465+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Msrc/thesis/chapters/acknowledgment.tex | 10++++++++--
Dsrc/thesis/chapters/basics.tex | 564-------------------------------------------------------------------------------
Msrc/thesis/chapters/conclusion.tex | 17++++++++++++++++-
Dsrc/thesis/chapters/electroncg.tex | 465-------------------------------------------------------------------------------
Msrc/thesis/chapters/intro.tex | 35+++++++++++++++++++++++++++++++++--
Dsrc/thesis/chapters/realncg.tex | 292-------------------------------------------------------------------------------
Dsrc/thesis/chapters/twopointspace.tex | 244-------------------------------------------------------------------------------
Asrc/thesis/main.aux | 0
Asrc/thesis/main.bcf | 2261+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/thesis/main.log | 1199+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/thesis/main.out | 0
Msrc/thesis/main.pdf | 0
Msrc/thesis/main.tex | 16++++++++++------
Asrc/thesis/main.toc | 0
Msrc/thesis/todo.md | 6+++---
22 files changed, 5097 insertions(+), 1579 deletions(-)

diff --git a/src/thesis/back/abstract.tex b/src/thesis/back/abstract.tex @@ -1,3 +1,4 @@ +\vspace*{\fill} \begin{abstract} Noncommutative geometry is a branch of mathematics that has deep connections to applications in physics. From reconstructing the @@ -11,3 +12,4 @@ the basic backbone of noncommutative geometry and to further out derive the Lagrangian of electrodynamics. \end{abstract} +\vspace*{\fill} diff --git a/src/thesis/chapters/1_basics.tex b/src/thesis/chapters/1_basics.tex @@ -0,0 +1,564 @@ +\subsection{Noncommutative Geometric Spaces\label{sec:1}} +\subsubsection{$*$-Algebra} +To grasp the idea of encoding geometrical data into a spectral triple we +introduce the first ingredient of a spectral triple, an unital $*$ algebra. +\begin{mydefinition} + A \textit{vector space} $A$ over $\mathbb{C}$ is called a + \textit{complex, unital Algebra} if for all $a,b \in A$: + \begin{align} + A \times A \rightarrow A\\ + (a,\ b)\ &\mapsto \ a\cdot b, + \end{align} + with an identity element: + \begin{align} + 1a = a1 =a. + \end{align} + Extending the definition, a $*$-algebra is an algebra $A$ with a \textit{conjugate linear map (involution)} $*:A\ \rightarrow A$, + $\forall a, b \in A$ satisfying + \begin{align} + (a\ b)^* &= b^*a^*,\\ + (a^*)^* &= a. + \end{align} +\end{mydefinition} +In the following all unital algebras are referred to as algebras. + +\subsubsection{Finite Discrete Space} +Let us consider an example, a $*$-algebra of continuous functions $C(X)$ +on a discrete topological space $X$ with $N$ points. Functions of a +continuous $*$-algebra $C(X)$ assign values to $\mathbb{C}$ and for $f,\ g \in +C(X)$, $\lambda \in \mathbb{C}$ and $x \in X$ they provide the following structure: +\begin{itemize} + \item \textit{pointwise linear} + \begin{align} + (f + g)(x) &= f(x) + g(x),\\ + (\lambda\ f)(x) &= \lambda (f(x)), + \end{align} + \item \textit{pointwise multiplication} + \begin{align} + f\ g\ (x) = f(x)g(x), + \end{align} + \item \textit{pointwise involution} + \begin{align} + f^*(x) = \overline{f(x)}. + \end{align} +\end{itemize} +The $*$-algebra $C(X)$ is \textit{isomorphic} to a $*$-algebra $\mathbb{C}^N$ +with involution ($N$ number of points in $X$), we write $C(X) \simeq +\mathbb{C}^N$. Isomorphisms are bijective maps that preserve structure and +don't lose physical information. A function $f:X\ \rightarrow\ \mathbb{C}$ +can be represented with $N \times N$ diagonal matrices, where each diagonal +value represents the function value at the corresponding $i$-th point for $i += 1,...,N$. Matrix multiplication and hermitian conjugation of +matrices we have a preserving structure. + +Moreover we can \textit{map} between finite discrete spaces $X_1$ and $X_2$ with a +function +\begin{align} + \phi:\ X_1 \rightarrow\ X_2. +\end{align} +For every such map there exists a corresponding map +\begin{align} + \phi ^*:C(X_2)\ \rightarrow C(X_1), +\end{align} +which `pulls back' values even if $\phi$ is not bijective. +Note that the pullback does not map points back, but maps functions on an $*$-algebra $C(X)$. +The pullback, in literature often called a $*$-homomorphism or a $*$-algebra map under +pointwise product has the following properties +\begin{align} + \phi ^*(f\ g) &= \phi ^*(f)\ \phi ^*(g),\\ + \phi ^*(\overline{f}) &= \overline{\phi ^*(f)},\\ + \phi ^*(\lambda\ f + g) &= \lambda\ \phi ^*(f) + \phi ^*(g). +\end{align} +%------------ Exercise + The map $\phi :X_1\ \rightarrow \ X_2$ is an injective (surjective) map, + if only and if the corresponding pullback $\phi ^* :C(X_2)\ \rightarrow \ + C(X_1)$ is surjective (injective). To clarify let us say that $X_1$ has $n$ points and + $X_2$ with $m$ points. Then there are three different cases, first $n=m$ and + obviously $\phi$ is bijective and $\phi ^*$ too. Then $n > m$, in this case + $\phi$ assigns $n$ points to $m$ points when $n > m$, which is by definition + surjective. On the other hand $\phi ^*$ assigns $m$ points to $n$ points when + $n > m$, which is by definition injective. Lastly $n < m $, which is + completely analogous to the case $n > m$. +%------------ Exercise + +\begin{mydefinition} + A \textit{(complex) matrix algebra} A is a direct sum, for $n_i, N \in + \mathbb{N}$ + \begin{align} + A = \bigoplus _{i=1}^{N} M_{n_i}(\mathbb{C}). + \end{align} + The involution is the hermitian conjugate. A $*$ algebra with involution is referred to as + a matrix algebra +\end{mydefinition} + +To summarize, from a topological discrete space $X$, we can construct a +$*$-algebra $C(X)$ which is isomorphic to a matrix algebra $A$. Then the +question instantly arises, if we can construct $X$ given $A$? For a matrix +algebra $A$, which in most cases is not commutative, the answer is generally +no. Hence there are two options. We can restrict ourselves to commutative +matrix algebras, which are the vast minority and not physically interesting. +Or we can allow more morphisms (isomorphisms) between matrix algebras. + +\subsubsection{Finite Inner Product Spaces and Representations} +Until now we have looked at finite topological discrete spaces, moreover we can consider a +finite dimensional inner product space $H$ (finite Hilbertspaces), with inner product +$(\cdot,\cdot)\rightarrow \mathbb{C}$. We denote $L(H)$ as the $*$-algebra of operators on $H$ +equipped with a product given by composition and involution of the adjoint, $T \mapsto T^*$. +Then $L(H)$ is a \textit{normed vector space} with +\begin{align} + \|T\|^2 &= \sup_{h \in H}\big\{(T\ h,\ T\ h): (h,\ h) \leq 1\big|\ T + \in L(H)\big \},\\ + \|T\| &= \sup\big\{\sqrt{\lambda}:\; \lambda \text{ eigenvalue of } T\big\}. +\end{align} +The Hilbert space allows us to define representations of $*$-algebras. +\begin{mydefinition} + The \textit{representation} of a finite dimensional $*$-algebra $A$ is a + pair $(H, \pi)$, where $H$ is a finite dimensional inner product space + and $\pi$ is a $*$-\textit{algebra map} + \begin{align} + \pi:A\ \rightarrow \ L(H). + \end{align} + We call the representation $(H, \pi)$ \textit{irreducible} if + \begin{itemize} + \item $H \neq \emptyset$, + \item only $\emptyset$ or $H$ is invariant under the action of $A$ on + $H$. + \end{itemize} +\end{mydefinition} +Here are some examples of reducible and irreducible representations +\begin{itemize} + \item For $A = M_n(\mathbb{C})$ the representation $H=\mathbb{C}^n$, $A$ acts as matrix multiplication\\ + $H$ is irreducible. + \item For $A = M_n(\mathbb{C})$ the representation $H=\mathbb{C}^n\oplus \mathbb{C}^n$, with $a \in A$ acting + in block form \\ $\pi: a \mapsto \big(\begin{smallmatrix} a & 0\\ 0 & a \end{smallmatrix}\big)$ is + reducible. +\end{itemize} +Naturally there are also certain equivalences between different +representations. +\begin{mydefinition} +Two representations of a $*$-algebra $A$, $(H_1, \pi _1)$ and +$(H_2, \pi _2)$ are called \textit{unitary equivalent} if there exists a map +$U: H_1 \rightarrow H_2$ such that. + \begin{align} + \pi _1(a) = U^* \pi _2(a) U + \end{align} +\end{mydefinition} + +Furthermore we define a mathematical structure called the structure space, +which will become important later when speaking of the duality between a +spectral triple and a geometrical space. +\begin{mydefinition} + Let $A$ be a $*$-algebra then, $\hat{A}$ is called the structure space of all \textit{unitary equivalence classes + of irreducible representations of A}. +\end{mydefinition} +%------------- EXERCISE + Given a representation $(H, \pi)$ of a $*$-algebra $A$, the \textbf{commutant} $\pi (A)'$ of $\pi (A)$ is defined as a set + of operators in $L(H)$ that commute with all $\pi (a)$ + \begin{align} + \pi (A)' = \big\{T \in L(H):\ \pi(a)\ T = T\ \pi(a) \;\; \forall a\in + A\big\} + \end{align} + The commutant $\pi (A)'$ is also a $*$-algebra, since it has unital, + associative and involutive properties. The unitary property is given by + the unital operator of the $*$-algebra of operators $L(H)$, which exists + by definition because $H$ is a inner product space. Associativity is + given by the $*$-algebra of $L(H)$, where $L(H) \times L(H)~\mapsto + L(H)$, which is associative by definition. The involutive property is + also given by the $*$-algebra $L(H)$ with a map $*: L(H) \mapsto L(H)$ + only for a $T \in H$ that commutes with $\pi (a)$. +%------------- EXERCISE + +%------------- EXERCISE + For a unital algebra $*$-algebra $A$, the matrices $M_n(A)$ with entries + in $A$ form a unital $*$-algebra, because the unitary operation in + $M_n(A)$ is given by the identity Matrix, which exists in every + entry in $M_n(A)$ and behaves like in $A$. Associativity is given by + matrix multiplication. Lastly, involution is given by the conjugate + transpose. + + Consider a representation $\pi :A\ \rightarrow \ L(H)$ of a $*$-algebra + $A$ and set $H^n = H \oplus ... \oplus H$, $n$ times. Then we have the following + representation $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ for the Matrix + Algebra with $\tilde{\pi}((a_{ij})) = (\tilde{\pi}(a_{ij})) \in M_n(A)$, + since a direct isomorphisms of $A \simeq M_n(A)$ and $H \simeq H^n$ + exists. Meaning $\tilde{\pi}$ is a valid reducible representation. + + By looking at $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ a $*$ algebra + representation of $M_n(A)$. We see that $\pi: A \rightarrow L(H^n)$ is a representation of $A$. + The fact that $\tilde{\pi}$ and $\pi$ are unitary equivalent, there is + a map $U: H^n \rightarrow H^n$ given by $U=\mathbbm{1}_n$, thus + \begin{align} + \pi (a) &= \mathbbm{1}_n^*\ \tilde{\pi}((a_{ij})), \\ + \mathbbm{1}_n &= \tilde{\pi}((a_{ij})) = \pi (a_{ij}) + \Rightarrow a_{ij} = a\ \mathbbm{1}_n. + \end{align} +%------------- EXERCISE + + +With help of the structure space $\hat{A}$, a commutative matrix algebra can be used to reconstruct a discrete space. +Since $A \simeq \mathbb{C}^N$ all irreducible representation are of the form +\begin{align} + \pi _i:(\lambda_1,...,\lambda_N)\in \mathbb{C}^N \mapsto \lambda_i \in + \mathbb{C} +\end{align} +for $i = 1,...,N$, and thus $\hat{A} \simeq \{1,...,N\}$. +We can conclude that there is a duality between discrete spaces and +commutative matrix algebras. This duality is called the \textit{finite +dimensional Gelfand duality} + +Our aim is to make a further generalization by constructing a duality between +finite dimensional spaces and \textit{equivalence classes} of matrix +algebras that preserves general non-commutativity of matrices. Equivalence +classes are described by a concept of isomorphisms between matrix +algebras called \textit{Morita Equivalence}. + +\subsubsection{Algebraic Modules} +An important part of the Morita Equivalence are algebraic modules, later +extended by Hilbert bimodules. +\begin{mydefinition} + Let $A$, $B$ be algebras (need not be matrix algebras) + \begin{enumerate} + \item \textit{left} A-module is a vector space $E$, that carries a left + representation of $A$, that is $\exists$ a bilinear map $\gamma: A + \times E \rightarrow E$ with + \begin{align} + (a_1\ a_2)\cdot e = a_1 \cdot (a_2 \cdot e);\;\;\; a_1, a_2 \in + A, e \in E. + \end{align} + \item \textit{right} B-module is a vector space $F$, that carries a + right representation of $A$, that is there exists a bilinear map + $\gamma: F \times B \rightarrow F$ with + \begin{align} + f \cdot (b_1\ b_2)= (f \cdot b_1) \cdot b_2;\;\;\; b_1, b_2 \in B, f \in F + \end{align} + \item \textit{left} A-module and \textit{right} B-module is a + \textit{bimodule}, a vector space $E$ satisfying + \begin{align} + a \cdot (e \cdot b)= (a \cdot e) \cdot b;\;\;\; a \in A, b \in B, e \in E + \end{align} + \end{enumerate} +\end{mydefinition} +An $A$-\textbf{module homomorphism} is linear map $\phi: E\rightarrow F$ which respects the +representation of A, e.g.\ for left module. +\begin{align} + \phi (a\ e) = a \phi (e); \;\;\; a \in A, e \in E. +\end{align} +We will use the notation +\begin{itemize} + \item ${}_A E$, for left $A$-module $E$; + \item ${}_A E_B$, for right $B$-module $F$; + \item ${}_A E_B$, for $A$-$B$-bimodule $E$, simply bimodule. +\end{itemize} +%------------------- EXERCISE +From a simple observation, we see that an arbitrary representation $\pi : A +\rightarrow L(H)$ of a $*$-algebra A, turns H into a left module ${}_A H$. If +$_A H$ than $(a_1\ a_2) h = a_1 (a_2\ h)$ for $a_1, a_2 \in A$ and $h \in H$. We +take the representation of an $a \in A$, $\pi (a)$, and write +\begin{align} + \big(\pi(a_1)\ \pi(a_2)\big)h = \pi(a_1)\big(\pi(a_2)\ h\big) = + \big(T_1\ T_2\big) h = T_1 \big(T_2\ h\big) +\end{align} +For $T_1, T_2 \in L(H)$, which operate naturally from the left on $h$. + +%------------------- EXERCISE +%------------------- EXERCISE + +Furthermore notice that that an $*$-algebra $A$ is a bimodule ${}_A A_A$ with +itself, given by the map +\begin{align} + \gamma: A\times A\times A \rightarrow A, +\end{align} +which is the inner product of a $*$-algebra. +%------------------- EXERCISE + +\subsubsection{Balanced Tensor Product and Hilbert Bimodules} +In this chapter we introduce the balanced tensor product later called the +Kasparov product. This operation allows us to naturally construct a bimodule +of a third algebra in chapter \ref{chap: kasparov product}. +\begin{mydefinition} + Let $A$ be an algebra, $E$ be a \textit{right} $A$-module and $F$ be a + \textit{left} $A$-module. The \textit{balanced tensor product} of $E$ and + $F$ forms a $A$-bimodule. + \begin{align} + E \otimes _A F := E \otimes F / \left\{\sum _i e_i a_i \otimes f_i - + e_i \otimes a_i f_i : \;\;\; a_i \in A,\ e_i \in E,\ f_i \in F + \right\}. + \end{align} +\end{mydefinition} +The symbol $/$ denotes the quotient space. By careful examination we can say +that the operation $\otimes _A$ takes two left/right modules and makes a +bimodule. Additionally with the help of the tensor product of the two modules and the quotient +space which takes out all the elements from the tensor product that don't +preserver the left/right representation and that are duplicates. +\begin{mydefinition} + Let $A$, $B$ be \textit{matrix algebras}. The \textit{Hilbert bimodule} for + $(A, B)$ is given by an $A$-$B$-bimodue $E$ and by an $B$-valued + \textit{inner product} $\langle \cdot,\cdot\rangle_E: E\times E \rightarrow + B$, which satisfies the following conditions for $e, e_1, e_2 \in + E,\ a \in A$ and $b \in B$ +\begin{align} + \langle e_1,\ a\cdot e_2\rangle_E &= \langle a^*\cdot e_1,\ e_2\rangle_E + \;\;\;\; & \text{sesquilinear in $A$},\\ + \langle e_1,\ e_2 \cdot b\rangle_E + &= \langle e_1,\ e_2\rangle_E b \;\;\;\; & \text{scalar in $B$},\\ + \langle e_1,\ e_2\rangle_E &= \langle e_2,\ e_1\rangle^*_E \;\;\;\; & + \text{hermitian}, \\ + \langle e,\ e\rangle_E &\ge 0 \;\;\;\; & \text{equality + holds iff $e=0$}. +\end{align} +We denote $KK_f(A,\ B)$ as the set of all \textit{Hilbert bimodules} of $(A,\ B)$. +\end{mydefinition} +%-------------- EXERCISE + +And indeed the Hilbert bimodule extension takes a representation $\pi:\ A \ +\rightarrow L(H)$ of a matrix algebra $A$ and turns $H$ into a Hilbert bimodule for +$(A, \mathbb{C})$, because the representation for a $a \in A$, $\pi(a)=T \in L(H)$ fulfills +the conditions of the $\mathbb{C}$-valued inner product for $h_1, h_2 \in H$ +\begin{itemize} + \item $\langle h_1,\ \pi(a)\ h_2\rangle _\mathbb{C} = \langle h_1,\ T\ h_2\rangle _\mathbb{C} = + \langle T^* h_1, h_2\rangle _\mathbb{C}$, $T^*$ given by the adjoint, + \item $\langle h_1,\ h_2\ \pi(a)\rangle _\mathbb{C} = \langle h_1,\ h_2\ + T\rangle _\mathbb{C} = \langle h_1,\ h_2\rangle _\mathbb{C}$ , $T$ acts + from the left, + \item $\langle h_1,\ h_2\rangle _\mathbb{C}^* = \langle h_2,\ h_1\rangle _\mathbb{C}$, hermitian because of the + $\mathbb{C}$-valued inner product + \item $\langle h_1,\ h_2\rangle \ge 0$, $\mathbb{C}$-valued inner product. +\end{itemize} +%-------------- EXERCISE + +%-------------- EXERCISE +Take again the $A-A$ bimodule given by an $*$-algebra $A$. By looking at the +following inner product $\langle \cdot,\cdot\rangle_A:A \times A \rightarrow A$ +\begin{align} + \langle a,\ a\rangle_A = a^*a' \;\;\;\; a,a'\in A. + \label{eq:inner-product}, +\end{align} +it becomes clear that $A \in KK_f(A,\ A)$. +Simply checking the conditions in $\langle \cdot, \cdot\rangle _A$ for +$a, a_1, a_2 \in~A$ +\begin{align} + &\langle a_1,\ a\cdot a_2\rangle _A = a^* a\cdot a_2 = + (a^*a_1)^*\ a_2 = \langle a^*\ a_1,\ a_2\rangle, \\ + &\langle a_1,\ a_2 \cdot a\rangle _A = a^*_1\ (a_2\cdot a) = + (a^*a_2)\cdot a = \langle a_1,\ a_2\rangle _A\ a,\\ + &\langle a_1,\ a_2\rangle _A^* = (a_1^*\ a_2)^* = a_2^*\ + (a_1^*)^* = a_2^*\ a_1 = \langle a_2,\ a_1\rangle. +\end{align} + +%-------------- EXERCISE + +%-------------- EXAMPLE +%As an for overview consider a $*$ homomorphism between two matrix +%algebras $\phi:A\rightarrow B$, we can construct a Hilbert bimodule +%$E_{\phi} \in KK_f(A, B)$ in the following way. We let $E_{\phi}$ be $B$ in +%as an vector space and an inner product from above in equation +%\eqref{eq:inner-product}, with $A$ acting on the left with $\phi$. +%\begin{align} +% a\cdot b = \phi(a)\ b +%\end{align} +%for $a\in A, b\in E_{\phi}$. +%-------------- EXAMPLE + +\subsubsection{Kasparov Product and Morita Equivalence\label{chap: kasparov +product}} +\begin{mydefinition} + Let $E \in KK_f(A, B)$ and $F \in KK_F(B, D)$ the \textit{Kasparov product} is defined as + with the balanced tensor product + \begin{align} + F \circ E := E \otimes _B F. + \end{align} + Then $F\circ E \in KK_f(A,D)$ is equipped with a $D$-valued inner product + \begin{align} + \langle e_1 \otimes f_1,\ e_2 \otimes f_2\rangle _{E\otimes _B F} = + \langle f_1,\langle e_1,\ e_2\rangle _E f_2\rangle _F + \end{align} +\end{mydefinition} + +%-------------- EXERCISE +The Kasparov product for $*$-algebra homomorphism $\phi: A \rightarrow B$ and +$\psi: B \rightarrow C$ are isomorphisms in the sense that +\begin{align} + E_{\psi} \circ E_{\phi}\ \equiv\ E_{\phi} \otimes _B E_{\psi}\ + \simeq\ + E_{\psi \circ \phi} \in KK_f(A,C). +\end{align} + +The direct computation for $a \in A$, $b\in B$, and $c\in C$ which is $\psi +\circ \phi$ shows us +\begin{align} +a \cdot b \cdot c = \psi(\phi (a) \cdot b) \cdot c +\end{align} +An interesting case arises when looking at $E_{\text{id}_A} \simeq A \in +KK_f(A,A)$, where $\text{id}_A$ is the identity in $A$. Let $E_{\phi}$ be $A$ +with a natural right representation. It follows that $E_{\phi}\simeq A$, where +an inner product, acting from the left on $A$ for $\phi$, $a', a\in A$ reads +\begin{align} + a'\ a = (\phi(a')\ a) \in A, +\end{align} +which is satisfied only by $\phi = \text{id}_A$. + +\begin{mydefinition} + Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita equivalent} if there + exists an $E \in KK_f(A, B)$ and an $F \in KK_f(B, A)$ such that + \begin{align} + E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq + B, + \end{align} + where $\simeq$ denotes the isomorphism between Hilbert bimodules and note + that $A$ or $B$ is a bimodule by itself. +\end{mydefinition} + +Since we land in the same space as we started, the modules $E$ and $F$ are +each others inverse in regards to the Kasparov Product. More clearly, in the +definition we have $E \in KK_f(A, B)$. Naturally we start from $A$ and $E +\otimes _B F$, which lands in $A$. On the other hand we have $F \in KK_f(B, +D)$ and start from $B$, $F \otimes _A E$, which lands in $B$. + +%------------- EXERCISE +By definition $E \otimes _B F$ is a $A-D$ bimodule. Since +\begin{align} + E \otimes _B F = E \otimes F / \bigg\{\sum_i\ e_i\ b_i \otimes f_i - e_i + \otimes b_i\ f_i\ \big|\;\; e_i \in E_i,\ b_i \in B,\ f_i \in F\bigg\}, +\end{align} +the last part takes out all tensor product elements of $E$ and $F$ that don't +preserver the left/right representation and that are duplicates. + +Additionally $\langle \cdot,\cdot\rangle _{E\oplus _B F}$ defines a $D$ valued +inner product, as $\langle e_1,\ e_2\rangle _E \in B$ and $\langle f_1,\ f_2\rangle _F \in C$ by +definition. So for $\langle e_1,\ e_2\rangle _E =b$ we have +\begin{align} + \langle e_1 \otimes f_1,\ e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle + f_1,\ \langle e_1,\ e_2\rangle _E\ f_2\rangle _F = \langle f_1,\ b\ f_2\rangle _F \in C +\end{align} +%------------- EXERCISE +%------------- EXAMPLE +Picking up the example of $(A, A)$, the Hilbert bimodule $A$, we can +consider an $E \in KK_f(A,B)$ for +\begin{align} + E \circ A = A\oplus _A E \simeq E. +\end{align} +We conclude, that $_A A_A$ is the identity element in the Kasparov product (up +to isomorphism). +%------------- EXAMPLE +%------------- EXAMPLE +Let us examine another example for $E = \mathbb{C}^n$, which is a +$(M_n(\mathbb{C}), \mathbb{C})$ Hilbert bimodule with the standard $\mathbb{C}$ +inner product. Further let $F = \mathbb{C}^n$, which is a $(\mathbb{C}, +M_n(\mathbb{C}))$ Hilbert bimodule by right matrix multiplication with +$M_n(\mathbb{C})$ valued inner product, we can write + \begin{align} + \langle v_1, v_2\rangle =\bar{v_1}v_2^t \;\; \in M_n(\mathbb{C}). + \end{align} +If we take the Kasparov product of $E$ and $F$ + \begin{align} + F\circ E\ &=\ E\otimes _{\mathbb{C}}F\ \;\;\;\;\;\; \simeq \ + M_n(\mathbb{C}),\\ + E\circ F\ &=\ F\otimes _{M_n(\mathbb{C})}E\ \simeq\ \mathbb{C}, + \end{align} +we see that $M_n(\mathbb{C})$ and $\mathbb{C}$ are Morita equivalent! +%------------- EXAMPLE + +\begin{mylemma} + Two matrix algebras are Morita Equivalent if, and only if their their structure spaces + are isomorphic as discreet spaces (have the same cardinality / same number + of elements). +\end{mylemma} +\begin{proof} + Let $A$, $B$ be \textit{Morita equivalent}. Then there exist the modules + $_A E_B$ and $_B F_A$ with + \begin{align} + E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq + B. + \end{align} + Also consider $[(\pi _B, H)] \in \hat{B}$. We can construct a + representation of $A$, which reads + \begin{align} + \pi _A \rightarrow L(E \otimes _B H)\;\;\; \text{with} \;\;\; \pi _A(a) + (e \otimes v) = a e \otimes w + \end{align} + Vice versa, we have $[(\pi _A, W)] \in \hat{A}$ and we can construct $\pi _B$ + as + \begin{align} + \pi _B: B \rightarrow L(F \otimes _A W) \;\;\; \text{and}\;\;\; \pi + _B(b) (f\otimes w) = bf\otimes w. + \end{align} + Now we need to show that the representation $\pi _A$ is irreducible if and + only if $\pi _B$ is irreducible. For $(\pi _B, H)$ to be irreducible, we + need $H \neq \emptyset$ and only $\emptyset$ or $H$ to be invariant under + the Action of $B$ on $H$. Than $E\otimes _B H$ and $E\otimes _B H \simeq A$ + cannot be empty, because $E$ preserves left representation of $A$. + + Lastly we need to check if the association of the class $[\pi _A]$ to $[\pi + _B]$ is independent of the choice of representatives $\pi _A$ and $\pi _B$. + The important thing is that $[\pi _A] \in \hat{A}$ respectively $[\pi _B] \in + \hat{B}$, hence any choice of representation is irreducible, because the + structure space denotes all unitary equivalence classes of irreducible + representations. + + Note that the statements $E \simeq H$ and $F \simeq W$ are not particularly + true, since all infinite dimensional Hilbert spaces are isomorphic. Here + we are looking at finite dimensional Hilbert spaces. Another thing to keep + in mind, is that for $[\pi _B, H] \in \hat{B}$ and looking at algebraic + bimodules, we know that $H$ is a bimodule of $B$, hence $E \otimes _B + H\simeq A$, and for $[\pi _A, W]$, which is the same. + Finally we can conclude, that these maps are each others inverses, thus + $\hat{A} \simeq \hat{B}$. +\end{proof} + +\begin{mylemma} + The matrix algebra $M_n(\mathbb{C})$ has a unique irreducible + representation (up to isomorphism) given by the defining representation on + $\mathbb{C}^n$. +\end{mylemma} +\begin{proof} + We know $\mathbb{C}^n$ is a irreducible representation of $A= + M_n(\mathbb{C})$. Let $H$ be irreducible and of dimension $k$, then we + define a map + \begin{align} + \phi : A\oplus...\oplus A &\rightarrow H^* \\ + (a_1,...,a_k)&\mapsto e^1\circ a_1^t+...+e^k\circ a_k^t, + \end{align} +where $\{e^1,...,e^k\}$ is the basis of the dual space $H^*$ and +$(\circ)$ being the pre-composition of elements in $H^*$ and $A$ acting on $H$. +This forms a morphism of $M_n(\mathbb{C})$ modules, provided a matrix $a \in A$ +acts on $H^*$ with $v\mapsto v\circ a^t$ ($v\in H^*$). Furthermore this +morphism is surjective, thus making the pullback $\phi ^*:H\mapsto (A^k)^*$ +injective. Now identify $(A^k)^*$ with $A^k$ as a $A$-module and note that +$A=M_n(\mathbb{C}) \simeq \oplus ^n \mathbb{C}^n$ as a n A module. It follows +that $H$ is a submodule of $A^k \simeq \oplus ^{nk}\mathbb{C}$. By +irreducibility $H \simeq \mathbb{C}$. +\end{proof} + +%---------------- EXAMPLE +Let us look at an example, two matrix algebras $A$, and $B$. +\begin{align} + A = \bigoplus ^N_{i=1} M_{n_i}(\mathbb{C}), \;\;\; + B = \bigoplus ^M_{j=1} M_{m_j}(\mathbb{C}). +\end{align} +Let $\hat{A} \simeq \hat{B}$, this implies $N=M$. Further define $E$ with $A$ +acting by block-diagonal matrices on the first tensor and B acting in the same +manner on the second tensor. Define $F$ vice versa, ultimately reading +\begin{align} + E:= \bigoplus _{i=1}^N \mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i}, \;\;\; + F:= \bigoplus _{i=1}^N \mathbb{C}^{m_i} \otimes \mathbb{C}^{n_i}. +\end{align} +When we calculate the Kasparov product we get the following +\begin{align} + E \otimes _B F &\simeq \bigoplus _{i=1}^N (\mathbb{C}^{n_i}\otimes\mathbb{C}^{m_i}) + \otimes _{M_{m_i}(\mathbb{C})} (\mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i}) \\ + &\simeq \bigoplus _{i=1}^N \mathbb{C}^{n_i}\otimes + \left(\mathbb{C}^{m_i}\otimes _{M_{m_i}(\mathbb{C})}\mathbb{C}^{m_i}\right) + \oplus \mathbb{C}^{n_i} \\ + &\simeq \bigoplus _{i=1}^N + \mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i} \simeq A. +\end{align} +On the other hand we get +\begin{align} + F \otimes _A E \simeq B. +\end{align} +%---------------- EXAMPLE + +To summarize, there is a duality between finite spaces and Morita equivalence +classes of matrix algebras. Furthermore by replacing $*$-homomorphism $A\rightarrow B$ +with Hilbert bimodules $(A,B)$ we introduce a richer structure of morphism +between matrix algebras. diff --git a/src/thesis/chapters/finitencg.tex b/src/thesis/chapters/2_finitencg.tex diff --git a/src/thesis/chapters/3_realncg.tex b/src/thesis/chapters/3_realncg.tex @@ -0,0 +1,292 @@ +\subsection{Finite Real Noncommutative Spaces\label{sec:3}} +\subsubsection{Finite Real Spectral Triples} +In this chapter we supplement the finite spectral triples with a \textit{real +structure}. We additionally require a symmetry condition that that $H$ is an +$A$-$A$-bimodule rather than only a $A$-left module. This ansatz has tight +bounds with physical properties such as charge conjugation, into which we will +dive in deeper in later chapters. In regards to this we will need to set a basis +of definitions to get an overview. +First we introduce a $\mathbb{Z}_2$-grading $\gamma$ with the following +properties +\begin{align} + \gamma ^* &= \gamma, \\ + \gamma ^2 &= 1, \\ + \gamma D &= - D \gamma,\\ + \gamma a &= a \gamma, \;\;\;\; a\in A. +\end{align} +Then we can define a finite real spectral triple. +\begin{mydefinition} + A \textit{finite real spectral triple} is given by a finite spectral + triple $(A, H, D)$ and a anti-unitary operator $J:H\rightarrow H$ called + the \textit{real structure}, such that + \begin{align} + a^\circ := J\ a^*\ J^{-1}, + \end{align} + is a right representation of $A$ on $H$, that is $(ab)^\circ = b^\circ + a^\circ$. With two requirements + \begin{align} + &[a, b^\circ] = 0,\\ + &[[D, a],\ b^\circ] = 0. + \end{align} + The two properties are called the \textit{commutant property}, they + require that the left action of an element in $A$ and $\Omega _D^1(A)$ commutes with the right + action on $A$. +\end{mydefinition} +\begin{mydefinition} + The $KO$-dimension of a real spectral triple is determined by the sings + $\epsilon, \epsilon ' ,\epsilon '' \in \{-1, 1\}$ appearing in + \begin{align} + J^2 &= \epsilon, \\ + J\ D &= \epsilon \ D\ J,\\ + J\ \gamma &= \epsilon''\ \gamma\ J. + \end{align} +\end{mydefinition} +\begin{table}[h!] + \centering + \caption{$KO$-dimension $k$ modulo $8$ of a real spectral triple} + \begin{tabular}{ c | c c c c c c c c} + \hline + $k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ + \hline + $\epsilon$ & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ + $\epsilon '$ & 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\ + $\epsilon ''$ & 1 & & -1 & & 1 & & -1 & \\ + \hline + \end{tabular} +\end{table} +\noindent +Even thought the KO-dimension of a real spectral triple is important, we will +not be doing in-depth introduction of the KO-dimension, for this we reference +again to \cite{ncgwalter}. + +\begin{mydefinition} +An opposite-algebra $A^\circ$ of a $A$ is defined to be equal to $A$ as a +vector space with the opposite product +\begin{align} + &a\circ b := ba\\ + &\Rightarrow a^\circ = Ja^* J^{-1}, +\end{align} +which defines the left representation of $A^\circ$ on $H$ +\end{mydefinition} + + +%------------EXAMPLE EXERCISE +Let us examine an example of a matrix algebra $M_N(\mathbb{C})$ acting on +$H=M_N(\mathbb{C})$ by left matrix multiplication with the Hilbert Schmidt +inner product. +\begin{align} + \langle a , b \rangle = \text{Tr}(a^* b). +\end{align} +We can define $\gamma (a) = a$ and $J(a) = a^*$ with $a\in H$. Since $D$ +must be odd with respect to $\gamma$ it vanishes identically. Furthermore we +know the multiplicity space is $V_i = \mathbb{C}^{m_i}$, and also we know +that for $T\in H$ and$a\in A'$ to work we need $a\ T=T\ a$. Thus by laws of +matrix multiplication we need $A' \simeq \bigoplus _i M_{m_i}(\mathbb{C})$. For +this to work we naturally need $H = \bigoplus_i \mathbb{C}^{n_i} \otimes +\mathbb{C}^{m_i}$. Hence the right action of $M_N(\mathbb{C})$ on $H = +M_N(\mathbb{C})$ as defined by $a \mapsto a^\circ$ is given by right matrix +multiplication +\begin{align} + a^\circ \xi = J a^* J^{-1}\xi = Ja^* \xi^* = J\xi a=\xi^* a +\end{align} + +%------------EXAMPLE EXERCISE + +\begin{mydefinition} + We call $\xi \in H$ \textbf{cyclic vector} in $A$ if: + \begin{align} + A\xi := { a\xi:\;\; a\in A} = H + \end{align} + We call $\xi \in H$ \textbf{separating vector} in $A$ if: + \begin{align} + a\xi = 0\;\; \Rightarrow \;\; a=0;\;\;\; a\in A + \end{align} +\end{mydefinition} +%------------------- EXERCISE +Suppose $(A, H, D = 0)$ is a finite spectral triple such that $H$ possesses a +cyclic and separating vector for $A$ and let +\begin{align} + J: H \rightarrow H +\end{align} +be the operator in $S = J \Delta ^{1/2}$ with $\Delta = S^*S$. By composition +$S(a\xi) = a*\xi$ this is literally anti-linearity, then $S(a \xi) = a* \xi$ +defines a anti-linear operator. Furthermore the operator $S$ is invertible +because, if a $\xi \in H$ is cyclic then we have $S(A\xi) = A^*\xi = A\xi = +H$. Vice versa the same has to work for $S^{-1}$, otherwise $\xi$ wouldn't +exist. And hence $S^{-1}(A^*\xi) = S^{-1}(H) = H$. Additionally $J$ is +anti-unitary because firstly, $S$ is bijective thus $\Delta ^{1/2}$ and $J$ need to be bijective. +Also have $J = S \Delta^{-1/2}$ and $\Delta^* = \Delta$, so for a $\xi _1 , +\xi _2 \in H$ we can write +\begin{align} + \langle J \xi _1 , J \xi _2 \rangle &= \langle J^*J\xi_1 , \xi_2\rangle ^* =\nonumber\\ + &= \langle (\Delta ^{-1/2})^* S^* S \Delta ^{-1/2} \xi_1, \xi_2\rangle ^* =\nonumber \\ + &= \langle (\Delta^{-1/2})^* \Delta \Delta^{-1/2} \xi_1, \xi_2\rangle ^* =\nonumber\\ + &= \langle \Delta^{-1/2} \Delta^{1/2}\Delta^{1/2} \Delta^{-1/2} \xi_1, \xi_2\rangle ^* + =\nonumber\\ + &= \langle \xi _1, \xi_2\rangle ^* = \langle \xi_2 , \xi_1\rangle , +\end{align} +which concludes the anti-unitarity by definition. +%------------------- EXERCISE +\subsubsection{Morphisms Between Finite Real Spectral Triples} +Like the unitary equivalence relation for finite spectral triples, we can it +extend it to finite real spectral triples. +\begin{mydefinition} + We call two finite real spectral triples $(A_1, H_1 ,D_1 ; J_1 , \gamma_1)$ + and $(A_2, H_2, D_2; J_2, \gamma _2)$ unitarily equivalent if $A_1 = + A_2$ and if there exists a unitary operator $U: H_1 \rightarrow H_2$ such + that + \begin{align} + U\ \pi_1(a)\ U^* &= \pi _2(a),\\ + U\ D_1\ U^* &= D_2,\\ + U \gamma _1\ U^* &= \gamma _2,\\ + U\ J_1\ U^* &= J_2. + \end{align} +\end{mydefinition} +\begin{mydefinition} + Let $E$ be a $B$-$A$ bimodule. The \textit{conjugate Module} $E^\circ$ is + given by the $A$-$B$-bimodule. + \begin{align} + E^\circ = \{\bar{e} : e\in E\}, + \end{align} + with + \begin{align} + a \cdot \bar{e} \cdot b = b^*\ \bar{e}\ a^*, \;\;\;\; \forall a\in A, b \in + B. + \end{align} +\end{mydefinition} +We bear in mind that $E^\circ$ is not a Hilbert bimodule for $(A, B)$ because +it doesn't have a natural $B$-valued inner product. But there is a $A$-valued +inner product on the left $A$-module $E^\circ$ with +\begin{align} + \langle \bar{e}_1, \bar{e}_2 \rangle = \langle e_2 , e_1 \rangle, + \;\;\;\; e_1, e_2 \in E. +\end{align} +And linearity in $A$ by the terms +\begin{align} + \langle a\ \bar{e}_1, \bar{e}_2 \rangle = a \langle \bar{e}_1, \bar{e}_2 + \rangle, \;\;\;\; \forall a \in A. +\end{align} + +%------------- EXERCISE +It turns out that $E^\circ$ is a Hilbert bimodule +of $(B^{\circ}, A^{\circ})$. A straightforward calculation of the properties of the Hilbert bimodule and its $B^{\circ}$ +valued inner product gives the results. For $\bar{e}_1, \bar{e}_2 \in E^{\circ}$ and $a^\circ \in A, +b^\circ \in B$ we write +\begin{align} + \langle\bar{e}_1, a^\circ \bar{e}_2\rangle &= \langle\bar{e}_1, Ja^*J^{-1} + \bar{e}_2\rangle=\nonumber\\ + &= \langle\bar{e}_1 , J a^* e_2\rangle \nonumber \\ + &= \langle J^{-1} e_1, a^* e_2\rangle \nonumber\\ + & = \langle a^* e_1, e_2\rangle= \langle J^{-1}(a^\circ)^* J e_1, e_2\rangle \nonumber\\ + & = \langle J^{-1} (a^\circ)^* \bar{e}_1, e_2\rangle \nonumber\\ + & = \langle (a^\circ)^* \bar{e}_1 , \bar{e}_2\rangle. +\end{align} +Next for $\langle\bar{e}_1, \bar{e}_2 b^\circ\rangle = \langle\bar{e}_1, +\bar{e_2}\rangle b^\circ$ we obtain +\begin{align} + \langle\bar{e}_1, \bar{e}_2 b^\circ\rangle &= \langle\bar{e}_1, \bar{e}_2 Jb^*J^{-1}\rangle + \nonumber\\ + &= \langle\bar{e}_1, \bar{e_2}\rangle Jb^*J^{-1} \nonumber \\ + &= \langle\bar{e}_1, \bar{e}_2\rangle b^\circ. +\end{align} +Additionally we get +\begin{align} + (\langle\bar{e}_1, \bar{e}_2)\rangle_{E^\circ})^* &= (\langle e_2, e_1\rangle_E)^*\nonumber\\ + &= \langle e_1, e_2\rangle_E^* \nonumber\\ + &= \langle\bar{e}_2, \bar{e}_2\rangle_{E^\circ}. +\end{align} +And finally we have +\begin{align} + \langle\bar{e}, \bar{e}\rangle = \langle e, e\rangle \geq 0 +\end{align} +%------------- EXERCISE + +Given the results thus far, given a Hilbert bimodule $E$ for $(B, A)$ one can +construct a spectral triple $(B, H', D'; J', \gamma ')$ from $(A, H, D; J, +\gamma)$. For $H'$ we make a $\mathbb{C}$-valued inner product on $H'$ by combining +the $A$ valued inner product on $E$ and $E^\circ$ with the +$\mathbb{C}$-valued inner product on $H$ by defining +\begin{align} + H' := E\otimes _A H \otimes _A E^\circ. +\end{align} +Then the action of $B$ on $H'$ takes the following form +\begin{align} + b(e_2 \otimes \xi \otimes \bar{e}_2 ) = (be_1) \otimes \xi \otimes + \bar{e}_2. +\end{align} +The right action of $B$ on $H'$ defined by action on the right components of +$E^\circ$ is +\begin{align} + J'(e_1 \otimes \xi \otimes \bar{e}_2) = e_2 \otimes J \xi \otimes + \bar{e}_1, +\end{align} +where $b^\circ = J' b^* (J')^{-1}$ and $b^* \in B$ is the action on $H'$. +Hence the connection reads +\begin{align} + &\nabla: E \rightarrow E\otimes _A \Omega _D ^1(A) \\ + &\bar{\nabla}:E^\circ \rightarrow \Omega _D^1(A) \otimes _A E^\circ, +\end{align} +which gives the Dirac operator on $H' = E \otimes _A H \otimes _A +E^\circ$ as +\begin{align} + D'(e_1 \otimes \xi \otimes \bar{e}_2) = (\nabla e_1) \xi \otimes + \bar{e_2}+ e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes + \xi(\bar{\nabla}\bar{e}_2). +\end{align} +And the right action of $\omega \in \Omega _D ^1(A)$ on $\xi \in H$ is +defined by +\begin{align} + \xi \mapsto \epsilon' J \omega ^* J^{-1}\xi. +\end{align} +Finally for the grading one obtains +\begin{align} + \gamma ' = 1 \otimes \gamma \otimes 1. +\end{align} + +Summarizing we can write down the following theorem +\begin{mytheorem} + Suppose $(A, H, D; J, \gamma)$ is a finite spectral triple of + $KO$-dimension $k$, let $\nabla$ be a connection satisfying the + compatibility condition (same as with finite spectral triples). + Then $(B, H',D'; J', \gamma')$ is a finite spectral triple of + $KO$-Dimension $k$. ($H', D', J', \gamma'$) +\end{mytheorem} + +\begin{proof} + The only thing left is to check is, if the $KO$-dimension is preserved. + That is one needs to check if if the $\epsilon$'s are the same. + \begin{align} + &(J')^2 = 1 \otimes J^2 \otimes 1 = \epsilon,\\ + &J' \gamma '= \epsilon ''\gamma'J'. + \end{align} + Lastly for $\epsilon '$ one obtains + \begin{align} + J'D'(e_1 \otimes \xi \otimes \bar{e}_2)&=J'\big((\nabla e_1) \xi \otimes + \bar{e_2} + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau + \nabla e_2)\big)\nonumber \\ + &= \epsilon' D'\left(e_2 \otimes J\xi \otimes \bar{e}_2\right)\nonumber\\ + &= \epsilon' D'J'\left(e_1 \otimes \xi \bar{e}_2\right) + \end{align} +\end{proof} + +Let us take a look at $\nabla : E \Rightarrow E \otimes _A \Omega _d^1 (A)$, +the right connection on $E$ and consider the following anti-linear map +\begin{align} + \tau : E \otimes_A \Omega _D^1 (A) &\rightarrow \Omega _D^1 (A) \otimes_A E^\circ\\ + e \otimes \omega &\mapsto -\omega ^* \otimes \bar{e}. +\end{align} +Interestingly the map $\bar{\nabla} : E^\circ \rightarrow \Omega _D^1(A) \otimes E^\circ$ +with $\bar{\nabla}(\bar{e}) = \tau \circ \nabla(e)$ is a left connection, that means +show that it satisfied the left Leibniz rule, for one +\begin{align} + \tau \circ \nabla(ae) = \bar{\nabla}(a\bar{e}) = \bar{\nabla}(a^* + \bar{e}). +\end{align} +And for two +\begin{align} + \tau \circ \nabla(ae) &= \tau(\nabla(e)a) + \tau \circ(e \otimes + d(a))\nonumber \\ + &=a^*\bar{\nabla}(\bar{e}) - d(a)^* \otimes \bar{e}. \nonumber\\ + &= a^*\bar{\nabla}(\bar{e}) + d(a^*) \otimes \bar{e}. +\end{align} + diff --git a/src/thesis/chapters/heatkernel.tex b/src/thesis/chapters/4_heatkernel.tex diff --git a/src/thesis/chapters/5_twopointspace.tex b/src/thesis/chapters/5_twopointspace.tex @@ -0,0 +1,244 @@ +\subsection{Almost-commutative Manifold\label{sec:5}} +\subsubsection{Two-Point Space} +One of the basics forms of noncommutative space is the Two-Point space $X +:= \{x, y\}$. The Two-Point space can be represented by the following spectral triple +\begin{align} + F_X := (C(X) = \mathbb{C}^2, H_F, D_F; J_F, \gamma _f). +\end{align} +Three properties of $F_X$ stand out. First of all the action of $C(X)$ on +$H_F$ is faithful for $dim(H_F) \geq 2$, thus a simple choice for the +Hilbertspace can be made, for instance $H_F = \mathbb{C}^2$. Furthermore +$\gamma_F$ is the $\mathbb{Z}_2$ grading, which allows for a decomposition of +$H_F$ into +\begin{align} + H_F = H_F^+ \otimes H_F^- = \mathbb{C} \otimes \mathbb{C}, +\end{align} +where +\begin{align} + H_F^\pm = \{\psi \in H_F |\; \gamma_F\psi = \pm \psi\}, +\end{align} +are two eigenspaces. And lastly the Dirac operator $D_F$ lets us +interchange between the two eigenspaces $H_F^\pm$, +\begin{align} + D_F = + \begin{pmatrix}0 & t \\ \bar{t} & 0\end{pmatrix}, \;\;\;\;\; + \text{with} \;\; t\in\mathbb{C}. +\end{align} + +The Two-Point space $F_X$ can only have a real structure if the Dirac +operator vanishes, i.e. $D_F = 0$. In that case the KO-dimension is 0, +2 or 6. To elaborate further, we draw the only two diagram representations of +$F_X$ at $\underbrace{\mathbb{C} \oplus \mathbb{C}}_{C(X)}$ on +$\underbrace{\mathbb{C} \oplus\mathbb{C}}_{H_F}$, which are +\begin{figure}[h!] \centering +\begin{tikzpicture}[ + dot/.style = {draw, circle, inner sep=0.06cm}, + no/.style = {}, + ] + \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d) at (2, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (2,0) [] {}; + \node[dot](d0) at (1,-1) [] {}; + + \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b2) at (6, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d2) at (8, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (7,0) [] {}; + \node[dot](d0) at (8,-1) [] {}; + \end{tikzpicture} + \caption{Two diagram representations of $F_X$} +\end{figure}\newline +If the Two-Point space $F_X$ would be a real spectral triple then $D_F$ can +only go vertically or horizontally. This would mean that $D_F$ vanishes. +As for the KO-dimension The diagram on the left has KO-dimension 2 and 6, the diagram on the +right 0 and 4. Yet KO-dimension 4 is ruled out because +$dim(H_F^\pm) = 1$ (Lemma 3.8 in \cite{ncgwalter}) , which ultimately means $J_F^2 = -1$ is +not allowed. +\subsubsection{Product Space} +By Extending the Two-Point space with a four dimensional Riemannian spin +manifold, we get an almost commutative manifold $M\times F_X$, given by +\begin{align} + M\times F_X = \big(C^\infty(M, \mathbb{C}^2), L^2(S)\otimes \mathbb{C}^2, + D_M\otimes 1 ; J_M\otimes J_F, \gamma_M \otimes \gamma_F\big), +\end{align} +where +\begin{align} + C^\infty(M, \mathbb{C}^2) \simeq C^\infty(M) \oplus C^\infty(M). +\end{align} +According to Gelfand duality the algebra $C^\infty(M, \mathbb{C}^2)$ of the +spectral triple corresponds to the space +\begin{align} + N:= M\otimes X. +\end{align} +Keep in mind that we still need to find an appropriate real structure on the +Riemannian spin manifold, $J_M$. Furthermore the total Hilbertspace can be +decomposed into $H = L^2(S) \oplus L^2(S)$, such that for $\underbrace{a,b\in +C^\infty(M)}_{(a, b) \in C^\infty(N)}$ and $\underbrace{\psi, \phi \in +L^2(S)}_{(\psi, \phi) \in H}$ we have +\begin{align} + (a, b)(\psi, \phi) = (a\psi, b\phi). +\end{align} +Along with the decomposition of the total Hilbertspace a +distance formula on $M\times F_X$ can be considered with +\begin{align}\label{eq:commutator inequality} + d_{D_F}(x,y) = \sup\left\{ |a(x) - a(y)|:a\in A_F, ||[D_F, a]|| \leq + 1 \right\}. +\end{align} +To calculate the distance between two points on the Two-Point space $X= \{x, +y\}$, between $x$ and $y$, we consider an $a \in \mathbb{C}^2 = C(X)$, which is +specified by two complex numbers $a(x)$ and $a(y)$. Then we simplify the +commutator inequality in \eqref{eq:commutator inequality} +\begin{align} + &||[D_F , a]|| = ||(a(y) - a(x))\begin{pmatrix}0 &t\\\bar{t} &0 + \end{pmatrix}|| \leq 1,\\ + &\Leftrightarrow |a(y) - a(x)|\leq \frac{1}{|t|}. +\end{align} +The supremum then gives us the distance +\begin{align} + d_{D_F} (x,y) = \frac{1}{|t|}. +\end{align} +An interesting observation here is that, if the Riemannian spin manifold can be +represented by a real spectral triple then a real structure $J_M$ exists, +along the lines it follows that $t=0$ and the distance becomes infinite. This is a +purely mathematical observation and has no physical meaning. + +We can also construct a distance formula on $N$ (in reference to a point $p +\in M$) between two points on $N=M\times X$, $(p, x)$ and $(p,y)$. Then an $a +\in C^\infty(N)$ is determined by $a_x(p):=a(p, x)$ and $a_y(p):=a(p, y)$. +The distance between these two points is +\begin{align} + d_{D_F\otimes 1}(n_1, n_2) = \sup \left\{ |a(n_1) - a(n_2)|: a\in + A, ||[D\otimes 1, a]||\right\}. +\end{align} +On the other hand if we consider $n_1 = (p,x)$ and $n_2 = (q, x)$ +for $p,q \in M$ then +\begin{align} + d_{D_M \otimes 1} (n_1, n_2) = |a_x(p) - a_x(q)| \;\;\;\text{for}\;\; + a_x\in + C^\infty(M) \;\; \text{with} \;\; ||[D\otimes 1, a_x]|| \leq 1 +\end{align} +The distance formula turns to out to be the geodesic distance formula +\begin{align} + d_{D_M\otimes1}(n_1, n_2) = d_g(p, q), +\end{align} +which is to be expected since we are only looking at the manifold. +However if $n_1 = (p, x)$ and $n_2 = (q, y)$ then the two conditions are +\begin{align} + &||[D_M, a_x]|| \leq 1, \;\;\; \text{and}\\ + &||[D_M, a_y|| \leq 1. +\end{align} +These conditions have no restriction which results in the distance being +infinite! And $N = M\times X$ is given by two disjoint copies of M which are +separated by infinite distance + +The distance is only finite if $[D_F, a] < 1$. In this case the commutator +generates a scalar field and the finiteness of the distance is +related to the existence of scalar fields. + +\subsubsection{$U(1)$ Gauge Group} +To get a insight into the physical properties of the almost commutative +manifold $M\times F_X$, that is to calculate the spectral action, we need to +determine the corresponding Gauge group. +For this we set of with simple definitions and important propositions to +help us break down and search for the gauge group of the Two-Point $F_X$ +space which we then extend to $M\times F_X$. We will only be diving +superficially into this chapter, for further reading we refer to +\cite{ncgwalter}. +\begin{mydefinition} +Gauge Group of a real spectral triple is given by +\begin{align} + \mathfrak{B}(A, H; J) := \{ U = uJuJ^{-1} | u\in U(A)\}. +\end{align} +\end{mydefinition} +\begin{mydefinition} + A *-automorphism of a *-algebra $A$ is a linear invertible + map + \begin{align} + &\alpha:A \rightarrow A,\;\;\; \text{with}\\ + \nonumber\\ + &\alpha(ab) = \alpha(a)\alpha(b),\\ + &\alpha(a)^* = \alpha(a^*). + \end{align} + The \textbf{Group of automorphisms of the *-Algebra $A$} is denoted by + $(A)$.\newline + The automorphism $\alpha$ is called \textbf{inner} if + \begin{align} + \alpha(a) = u a u^* \;\;\; \text{for} \;\; U(A), + \end{align} + where $U(A)$ is + \begin{align} + U(A) = \{ u\in A|\;\; uu^* = u^*u=1\}. \;\;\; + \text{(unitary)} + \end{align} +\end{mydefinition} +The Gauge group of $F_X$ is given by the quotient $U(A)/U(A_J)$. +To get a nontrivial Gauge group so we need to choose a $U(A_J) \neq +U(A)$ and $U((A_F)_{J_F}) \neq U(A_F)$. +We consider our Two-Point space $F_X$ to be equipped with a real structure, +which means the operator vanishes, and the spectral triple representation is +\begin{align} + F_X := \left(\mathbb{C}^2,\mathbb{C}^2, D_F =\begin{pmatrix} + 0&0\\0&0\end{pmatrix}; J_f =\begin{pmatrix} + 0&C\\C&0\end{pmatrix}, + \gamma_F = \begin{pmatrix}1&0\\0&-1\end{pmatrix}\right). +\end{align} +Here $C$ is the complex conjugation, and $F_X$ is a real even finite +spectral triple (space) of KO-dimension 6. + +\begin{myproposition} +The Gauge group of the Two-Point space $\mathfrak{B}(F_X)$ is $U(1)$. +\end{myproposition} +\begin{proof} + Note that $U(A_F) = U(1) \times U(1)$. We need to show that $U(A_F) \cap + U(A_F)_{J_F}) \simeq U(1)$, such that $\mathfrak{B}(F) \simeq U(1)$. So + for an element $a \in \mathbb{C}^2$ to be in $(A_F)_{J_F}$, it has to + satisfy $J_F a^* J_F = a$, + \begin{align} + J_F a^* J^{-1} = + \begin{pmatrix}0&C\\C&0\end{pmatrix} + \begin{pmatrix}\bar{a}_1&0\\0&\bar{a}_2\end{pmatrix} + \begin{pmatrix}0&C\\C&0\end{pmatrix} + = + \begin{pmatrix}a_2&0\\0&a_1\end{pmatrix}. + \end{align} + This can only be the case if $a_1 = a_2$. So we have + $(A_F)_{J_F} \simeq \mathbb{C}$, whose unitary elements + from $U(1)$ are contained in the diagonal subgroup of + $U(A_F)$. +\end{proof} + +An arbitrary hermitian field $A_\mu = -ia\partial _\mu b$ is given by +two $U(1)$ Gauge fields $X_\mu^1, X_\mu^2 \in C^\infty(M, \mathbb{R})$. +However $A_\mu$ appears in combination $A_\mu - J_F A_\mu J_F^{-1}$: +\begin{align} + A_\mu - J_F A_\mu J_F^{-1} = + \begin{pmatrix}X_\mu^1&0\\0&X_\mu^2 \end{pmatrix} + - + \begin{pmatrix}X_\mu^2&0\\0&X_\mu^1 \end{pmatrix} + =: + \begin{pmatrix}Y_\mu&0\\0&-Y_\mu \end{pmatrix} + = Y_\mu \otimes \gamma _F, +\end{align} +where $Y_\mu$ the $U(1)$ Gauge field is defined as +\begin{align} + Y_\mu := X_\mu^1 - X_\mu^2 \in C^\infty(M, \mathbb{R}) = C^\infty(M, + i\ u(1)). +\end{align} + +\begin{myproposition} + The inner fluctuations of the almost-commutative manifold $M\times + F_X$ are parameterized by a $U(1)$-gauge field $Y_\mu$ as + \begin{align} + D \mapsto D' = D + \gamma ^\mu Y_\mu \otimes \gamma_F + \end{align} + The action of the gauge group $\mathfrak{B}(M\times F_X) \simeq + C^\infty (M, U(1))$ on $D'$ is implemented by + \begin{align} + Y_\mu \mapsto Y_\mu - i\ u\partial_\mu u^*; \;\;\;\;\; (u\in + \mathfrak{B}(M\times F_X)). + \end{align} +\end{myproposition} + diff --git a/src/thesis/chapters/6_electroncg.tex b/src/thesis/chapters/6_electroncg.tex @@ -0,0 +1,465 @@ +\subsection{Noncommutative Geometry of Electrodynamics\label{sec:5}} +In this chapter we go through a derivation Electrodynamics with +the almost commutative manifold $M\times F_X$ and the abelian gauge group +$U(1)$. The conclusion is an unified description of gravity and +electrodynamics although in the classical level. + +The almost commutative Manifold $M\times F_X$ outlines a local gauge group +$U(1)$. The inner fluctuations of the Dirac operator relate to $Y_\mu$ the +gauge field of $U(1)$. According to the setup we ultimately arrive at two +serious problems. + +First of all the operator $D_F$, in the Two-Point space $F_X$, must vanish +such that a real structure can exists. However this implies that the electrons +are massless. + +The second problem arises when looking at the Euclidean action for a free +Dirac field +\begin{align} + S = - \int i \bar{\psi}(\gamma ^\mu\partial _\mu - m) \psi d^4x, +\end{align} +where $\psi,\ \bar{\psi}$ must be considered as two independent variables. +This means that the fermionic action $S_f$ needs two independent Dirac spinors. +Let us try and construct two independent Dirac spinors with our data, first +take a look at the decomposition of the basis and of the total +Hilbertspace $H = L^2(S) \otimes H_F$. For the orthonormal basis of $H_F$ we +can write $\{e, \bar{e}\}$ , where $\{e\}$ is the orthonormal basis of +$H_F^+$ and $\{\bar{e}\}$ the orthonormal basis of $H_F^-$. Accompanied with +the real structure we arrive at the following relations +\begin{align} + J_F e &= \bar{e} \;\;\;\;\;\; J_F \bar{e} = e, \\ + \gamma_F e &= e \;\;\;\;\;\; \gamma_F \bar{e} = \bar{e}. +\end{align} +Along with the decomposition of $L^2(S) = L^2(S)^+ \oplus L^2(S)^-$ and $\gamma = \gamma _M +\otimes \gamma _F$ we can obtain the positive eigenspace +\begin{align} + H^+ = L^2(S)^+ \otimes H_F^+ \oplus L(S)^- \otimes H_F^-. +\end{align} +So, for an $\xi \in H^+$ we can write +\begin{align} + \xi = \psi _L \otimes e + \psi _R \otimes \bar{e}, +\end{align} +where $\psi_L \in L^2(S)^+$ and $\psi _R \in L^2(S)^-$ are the two Wheyl +spinors. We denote that $\xi$ is only determined by one Dirac spinor $\psi := +\psi_L + \psi _R$. Since \textbf{we require two independent spinors}, our +conclusion is that the definition of the fermionic action gives too much +restrictions to the Two-Point space $F_X$. +\subsubsection{The Finite Space} +To solve the two problems we simply enlarge (double) the Hilbertspace. This +is visualized by introducing multiplicities in Krajewski Diagrams +\cite{ncgwalter} which will also allow us to choose a nonzero Dirac operator +that will connect the two vertices and preserve real structure making our +particles massive and bringing anti-particles into the mix. + +We start of with the same algebra $C^\infty(M, \mathbb{C}^2)$, corresponding +to space $N= M\times X$. The Hilbertspace describes four particles, meaning +it has four orthonormal basis elements. It describes \textbf{left handed +electrons} and \textbf{right handed positrons}. This way we have +$\{ \underbrace{e_R, e_L}_{\text{left-handed}}, \underbrace{\bar{e}_R, +\bar{e}_L}_{\text{right-handed}}\}$ an orthonormal basis for $H_F = +\mathbb{C}^4$. Accompanied with the real structure $J_F$ allowing us to +interchange particles with antiparticles by the following equations +\begin{align} + &J_F e_R = \bar{e}_R, \\ + &J_F e_L = \bar{e_L}, \\ + \nonumber \\ + &\gamma _F e_R = -e_R,\\ + &\gamma_F e_L = e_L, +\end{align} +where $J_F$ and $\gamma_F$ have to following properties +\begin{align} + &J_F^2 = 1,\\ + & J_F \gamma_F = - \gamma_F J_F. +\end{align} +By the means of $\gamma_F$ we have two options to decompose the total +Hilbertspace $H$, firstly into +\begin{align} + H_F = \underbrace{H_F^+}_{\text{ONB } \{e_L, \bar{e}_L\}} + \oplus \underbrace{H_F^-}_{\text{ONB } \{e_R, \bar{e}_R\}}, +\end{align} +or alternatively into the eigenspace of particles and their +antiparticles (electrons and positrons) which is preferred in literature and +which will be used further out +\begin{align} + H_F = \underbrace{H_{e}}_{\text{ONB } \{e_L, e_R\}} \oplus + \underbrace{H_{\bar{e}}}_{\text{ONB } \{\bar{e}_L, \bar{e}_R\}}, +\end{align} +the shortening `ONB' means orthonormal basis. + +The action of $a \in A = \mathbb{C}^2$ on $H$ with respect to the ONB +$\{e_L, e_R, \bar{e}_L, \bar{e}_R\}$ is represented by +\begin{align}\label{eq:leftrightrepr} + a = + (a_1 , a_2 ) \mapsto + \begin{pmatrix} + a_1 &0 &0 &0\\ + 0&a_1 &0 &0\\ + 0 &0 &a_2 &0\\ + 0 &0 &0 &a_2\\ + \end{pmatrix} +\end{align} +Do note that this action commutes wit the grading and that $[a, b^\circ] = 0$ +with $b:= J_F b^*J_F$ because both the left and the right action are given by +diagonal matrices according to equation \eqref{eq:leftrightrepr}. Furthermore +note that we are still left with $D_F = 0$ and the following spectral triple +\begin{align}\label{eq:fedfail} + \left( \mathbb{C}^2, \mathbb{C}^2, D_F=0; J_F = + \begin{pmatrix} + 0 & C \\ C &0 + \end{pmatrix}, + \gamma _F = + \begin{pmatrix} + 1 & 0 \\ 0 &-1 + \end{pmatrix} + \right). + \end{align} +It can be represented in the following Krajewski diagram, +with two nodes of multiplicity two bellow + \begin{figure}[H] \centering + \begin{tikzpicture}[ + dot/.style = {draw, circle, inner sep=0.06cm}, + bigdot/.style = {draw, circle, inner sep=0.09cm}, + no/.style = {}, + ] + \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; + \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; + \node[no](c) at (0.5, 0.5) [label=above:$\textbf{1}$] {}; + \node[no](d) at (1.5, 0.5) [label=above:$\textbf{1}$] {}; + \node[dot](d0) at (1.5,0) [] {}; + \node[dot](d0) at (0.5,-1) [] {}; + \node[bigdot](d0) at (1.5,0) [] {}; + \node[bigdot](d0) at (0.5,-1) [] {}; + \end{tikzpicture} + \caption{Krajewski diagram of the spectral triple from equation \ref{eq:fedfail}} + \end{figure} +\subsubsection{A noncommutative Finite Dirac Operator} +To extend our spectral triple with a non-zero Operator, we need to take a +closer look at the Krajewski diagram above. Notice that edges only exist +between multiple vertices, meaning we can construct a Dirac operator mapping +between the two vertices. The operator can be represented by the following matrix +\begin{align}\label{eq:feddirac} + D_F = + \begin{pmatrix} + 0 & d & 0 & 0 \\ + \bar{d} & 0 & 0 & 0 \\ + 0 & 0 & 0 & \bar{d} \\ + 0 & 0 & d & 0 + \end{pmatrix} +\end{align} +We can now define the finite space $F_{ED}$. +\begin{align} + F_{ED} := (\mathbb{C}^2, \mathbb{C}^4, D_F; J_F, \gamma_F) +\end{align} +where $J_F$ and $\gamma_F$ are as in equation \eqref{eq:fedfail} and $D_F$ +from equation \eqref{eq:feddirac}. + +\subsubsection{Almost commutative Manifold of Electrodynamics} +The almost commutative manifold $M\times F_{ED}$ has KO-dimension 2, and is +represented by the following spectral triple +\begin{align}\label{eq:almost commutative manifold} + M\times F_{ED} := \big(C^\infty(M,\mathbb{C}^2),\ L^2(S)\otimes + \mathbb{C}^4,\ + D_M\otimes 1 +\gamma _M \otimes D_F;\; J_M\otimes J_F,\ \gamma_M\otimes + \gamma _F\big). +\end{align} +The algebra didn't change, thus we can decompose it like before +\begin{align} + C^\infty(M, \mathbb{C}^2) = C^\infty (M) \oplus C^\infty (M). +\end{align} +As for the Hilbertspace, we can decomposition it in the following way +\begin{align} + H = (L^2(S) \otimes H_e ) \oplus (L^2(S) \otimes H_{\bar{e}}). +\end{align} +Note that the one component of the algebra is acting on $L^2(S) \otimes H_e$, +and the other one acting on $L^2(S) \otimes H_{\bar{e}}$. In other words the components of +the decomposition of both the algebra and the Hilbertspace match by the action of +the algebra. + +The derivation of the gauge theory is the same for $F_{ED}$ as for the +Two-Point space $F_X$. We have $\mathfrak{B}(F) \simeq U(1)$ and for an +arbitrary gauge field $B_\mu = A_\mu - J_F A_\mu J_F^{-1}$ we can write +\begin{align} \label{field} + B_\mu = + \begin{pmatrix} + Y_\mu & 0 & 0 & 0 \\ + 0 & Y_\mu& 0 & 0 \\ + 0 & 0 & Y_\mu& 0 \\ + 0 & 0 & 0 & Y_\mu + \end{pmatrix} \;\;\;\;\;\ \text{for} \;\;\ Y_\mu (x) \in \mathbb{R}. +\end{align} +There is one single $U(1)$ gauge field $Y_\mu$, carrying the action of the +gauge group +\begin{align} + \text{$\mathfrak{B}$}(M\times F_{ED}) \simeq C^\infty(M, U(1)) +\end{align} + +The space $N = M\times X$ consists of two copies of $M$. +If $D_F = 0$ we have infinite distance between the two copies, yet now we have +adjusted the spectral triple to have a nonzero Dirac operator. The new +Dirac operator still has a commuting relation with the algebra $[D_F, a] = 0$ +$\forall a \in A$, and we should note that the distance between the two +copies of $M$ is still infinite. This is purely an mathematically abstract +observation and doesn't affect physical results. + +\subsubsection{Spectral Action} +In this chapter we bring all our results together to establish an +Action functional to describe a physical system. It turns out that +the Lagrangian of the almost commutative manifold $M\times F_{ED}$ +corresponds to the Lagrangian of Electrodynamics on a curved +background manifold (+ gravitational Lagrangian), consisting of the spectral +action $S_b$ (bosonic) and of the fermionic action $S_f$. + +The simplest spectral action of a spectral triple $(A, H, D)$ is given by the +trace of a function of $D$. We also consider inner fluctuations of the Dirac +operator +\begin{align} + D_\omega = D + \omega + \varepsilon' J\omega J^{-1}, +\end{align} +where $\omega = \omega ^* \in \Omega_D^1(A)$. +\begin{mydefinition} + Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a suitable function + \textbf{positive and even}. The spectral action is then + \begin{align} + S_b [\omega] := \text{Tr}\big(f(\frac{D_\omega}{\Lambda})\big) + \end{align} + where $\Lambda$ is a real cutoff parameter. The minimal condition on $f$ + is that $f(\frac{D_\omega}{\Lambda})$ is a trace class operator. A trace + class operator is a compact operator with a well defined finite trace + independent of the basis. The subscript $b$ in $S_b$ stands for bosonic, + because in physical applications $\omega$ will describe bosonic fields. + + In addition to the bosonic action $S_b$, we can define a topological spectral + action $S_{top}$. Leaning on the grading $\gamma$ the topological spectral action is + \begin{align} + S_{\text{top}}[\omega] := \text{Tr}(\gamma\ + f(\frac{D_\omega}{\Lambda})). + \end{align} +\end{mydefinition} +\begin{mydefinition}\label{def:fermionic action} + The fermionic action is defined by + \begin{align} + S_f[\omega, \psi] = (J\tilde{\psi}, D_\omega \tilde{\psi}) + \end{align} + with $\tilde{\psi} \in H_{cl}^+ := \{\tilde{\psi}: \psi \in H^+\}$, where + $H_{cl}^+$ is a set of Grassmann variables in $H$ in the $+1$-eigenspace + of the grading $\gamma$. +\end{mydefinition} + +%---------------------- APPENDIX ?????????????-------------------- +Grassmann variables are a set of Basis vectors of a vector space, they +form a unital algebra over a vector field $V$, where the generators are +anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have +\begin{align} + &\theta _i \theta _j = -\theta _j \theta _i, \\ + &\theta _i x = x\theta _j \;\;\;\; x\in V, \\ + &(\theta_i)^2 = 0 \;\;\; (\theta _i \theta _i = -\theta _i \theta _i). +\end{align} +%---------------------- APPENDIX ?????????????-------------------- +\begin{myproposition} + The spectral action of the almost commutative manifold $M$ with $\dim(M) + =4$ with a fluctuated Dirac operator is + \begin{align} + \text{Tr}(f\frac{D_\omega}{\Lambda}) \sim \int_M \mathcal{L}(g_{\mu\nu}, + B_\mu, \Phi) \sqrt{g}\ d^4x + O(\Lambda^{-1}), + \end{align} + where + \begin{align} + \mathcal{L}(g_{\mu\nu}, B_\mu, \Phi) = + N\mathcal{L}_M(g_{\mu\nu}) + \mathcal{L}_B(B_\mu)+ + \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi). + \end{align} + The Lagrangian $\mathcal{L}_M$ is of the spectral triple $(C^\infty(M) , + L^2(S), D_M)$, represented by the following term + \begin{align}\label{lagr} + \mathcal{L}_M(g_{\mu\nu}) := \frac{f_4 \Lambda ^4}{2\pi^2} - + \frac{f_2 \Lambda^2}{24\pi ^2}s - \frac{f(0)}{320\pi^2} C_{\mu\nu + \varrho \sigma}C^{\mu\nu \varrho \sigma}, + \end{align} + where $C^{\mu\nu \varrho \sigma}$ is the Weyl tensor defined in terms of the Riemannian + curvature tensor $R_{\mu\nu \varrho \sigma}$ and the Ricci tensor + $R_{\nu\sigma} = g^{\mu\varrho} R_{\mu\nu \varrho\sigma}$ such that + \begin{align} + C^{\mu\nu\varrho\sigma}C_{\mu\nu\varrho\sigma}= + R_{\mu\nu\varrho\sigma}R^{\mu\nu\varrho\sigma} - + 2R_{\nu\sigma}R^{\nu\sigma} + \frac{1}{2}s^2. + \end{align} + The kinetic term of the gauge field is described by the Lagrangian + $\mathcal{L}_B$, which takes the following shape + \begin{align} + \mathcal{L}_B(B_\mu) := \frac{f(0)}{24\pi^2} + \text{Tr}(F_{\mu\nu}F^{\mu\nu}). + \end{align} + Lastly $\mathcal{L}_\phi$ is the scalar-field Lagrangian with a boundary + term, given by + \begin{align} + \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi) := + &-\frac{2f_2\Lambda^2}{4\pi^2}\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2} + \text{Tr}(\Phi^4) + \frac{f(0)}{24\pi^2} + \Delta(\text{Tr}(\Phi^2))\nonumber\\ + &+ \frac{f(0)}{48\pi^2}s\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2}\text{Tr}((D_\mu \Phi)(D^\mu \Phi)). + \end{align} +\end{myproposition} +\begin{proof} + The dimension of the manifold $M$ is $\dim(M) = \text{Tr}(id) =4$. For + an $x \in M$, we have an asymptotic expansion of the term + $\text{Tr}(f(\frac{D_\omega}{\Lambda}))$ as $\Lambda$ goes to infinity, + which can be written as + \begin{align} + \text{Tr}(f(\frac{D_\omega}{\Lambda})) \simeq& \ 2f_4 \Lambda ^4 + a_0(D_\omega ^2)+ 2f_2\Lambda^2 a_2(D_\omega^2)\nonumber \\&+ f(0) a_4(D_\omega^4) + +O(\Lambda^{-1}).\label{eq:trheatkernel} + \end{align} + We have to note here that the heat kernel coefficients are zero for uneven $k$, + and they are dependent on the fluctuated Dirac operator + $D_\omega$. We can rewrite the heat kernel coefficients in terms of $D_M$, + for the first two terms $a_0$ and $a_2$ we use $N:= + \text{Tr}(\mathbbm{1}_{H_F})$ and one obtains + \begin{align} + a_0(D_\omega^2) &= Na_0(D_M^2),\\ + a_2(D_\omega^2) &= Na_2(D_M^2) - \frac{1}{4\pi^2}\int_M + \text{Tr}(\Phi^2)\sqrt{g}d^4x. + \end{align} + For $a_4$ we extend in terms of coefficients of $F$ from equation + \eqref{eq: a_4} + \begin{align} + &\frac{1}{360}\text{Tr}(60RE)= -\frac{1}{6}S(NR + 4 + \text{Tr}(\Phi^2))\\ + \nonumber\\ + &E^2 = \frac{1}{16}R^2\otimes 1 + 1\otimes \Phi^4 - \frac{1}{4} + \gamma^\mu\gamma^\nu \gamma^\varrho\gamma^\sigma + F_{\mu\nu}F^{\mu\nu}+\nonumber\\ + &\;\;\;\;\;\;\;+\gamma^\mu\gamma^\nu\otimes(D_\mu\Phi)(D_\nu + \Phi)+\frac{1}{2}s\otimes \Phi^2 + \ \text{traceless terms},\\ + \nonumber\\ + &\frac{1}{360}\text{Tr}(180E^2) = \frac{1}{8}R^2N + 2\text{Tr}(\Phi^4) + + \text{Tr}(F_{\mu\nu}F^{\mu\nu}) +\nonumber\\ + &\;\;\;\;\;\;\;+2\text{Tr}((D_\mu\Phi)(D^\mu\Phi)) + + s\text{Tr}(\Phi^2)\\ + \nonumber\\ + &\frac{1}{360}\text{Tr}(-60\Delta E)= + \frac{1}{6}\Delta(NR+4\text{Tr}(\Phi^2)). + \end{align} + The cross terms of the trace in $\Omega_{\mu\nu}^E\Omega^{E\mu\nu}$ + vanishes because of the antisymmetric property of the Riemannian + curvature tensor, reading + \begin{align} + \Omega_{\mu\nu}^E\Omega^{E\mu\nu} = \Omega_{\mu\nu}^S\Omega^{S\mu\nu} + \otimes 1 - 1\otimes F_{\mu\nu}F^{\mu\nu} + 2i\Omega_{\mu\nu}^S + \otimes F^{\mu\nu}. + \end{align} + The trace of the cross term $\Omega^{S}_{\mu\nu}$ vanishes because + \begin{align} + \text{Tr}(\Omega^{S}_{\mu\nu}) = \frac{1}{4} + R_{\mu\nu\varrho\sigma}\text{Tr}(\gamma^\mu\gamma^\nu) = \frac{1}{4} + R_{\mu\nu\varrho\sigma}g^{\mu\nu} =0, + \end{align} + then the trace of the whole term is given by + \begin{align} + \frac{1}{360}\text{Tr}(30\Omega^E_{\mu\nu}\Omega^{E\mu\nu}) = + \frac{N}{24}R_{\mu\nu\varrho\sigma}R^{\mu\nu\varrho\sigma} + -\frac{1}{3}\text{Tr}(F_{\mu\nu}F^{\mu\nu}). + \end{align} + Finally plugging the results into the coefficient $a_4$ and simplifying + one gets + \begin{align} + a_4(x, D_\omega^4) &= Na_4(x, D_M^2) + \frac{1}{4\pi^2}\bigg(\frac{1}{12} s + \text{Tr}(\Phi^2) + \frac{1}{2}\text{Tr}(\Phi^4) \nonumber \\ + &+ \frac{1}{4} + \text{Tr}((D_\mu\Phi)(D^\mu \Phi)) + \frac{1}{6} + \Delta\text{Tr}(\Phi^2) + \frac{1}{6} + \text{Tr}(F_{\mu\nu}F^{\mu\nu})\bigg). + \end{align} + The only thing left is to substitute the heat kernel coefficients into the + heat kernel expansion in equation \eqref{eq:trheatkernel}. +\end{proof} + +\subsubsection{Fermionic Action} +We remind ourselves the definition of the fermionic action in definition +\ref{def:fermionic action} and the manifold we are dealing with in equation +\eqref{eq:almost commutative manifold}. The Hilbertspace $H_F$ is separated +into the particle-antiparticle states with ONB $\{e_R, e_L, \bar{e}_R, +\bar{e}_L\}$. The orthonormal basis of $H_F^+$ is $\{e_L, \bar{e}_R\}$ and +consequently for $H_F^-$, $\{e_R, \bar{e}_L\}$. The decomposition of a spinor +$\psi \in L^2(S)$ in each of the eigenspaces $H_F^\pm$ is $\psi = \psi_R+ +\psi_L$. Meaning for an arbitrary $\psi \in H^+$ we can write +\begin{align} + \psi = \chi_R \otimes e_R + \chi_L \otimes e_L + \psi_L \otimes + \bar{e}_R+ + \psi_R \otimes \bar{e}_L, +\end{align} +where $\chi_L, \psi_L \in L^2(S)^+$ and $\chi_R, \psi_R \in L^2(S)^-$. + +Since the fermionic action yields too much restriction on $F_{ED}$ (modified +Two-Point space $F_X$) one redefines it by taking into account the fluctuated Dirac +operator +\begin{align} + D_\omega = D_M \otimes i + \gamma^\mu \otimes B_\mu + \gamma_M \otimes + D_F. +\end{align} +The Fermionic Action is +\begin{align} +S_F = (J\tilde{\xi}, D_\omega\tilde{\xi}) +\end{align} +for a $\xi \in H^+$. Then the straight forward calculation gives \begin{align} + \frac{1}{2}(J\tilde{\xi}, D_\omega\tilde{\xi}) + &=\frac{1}{2}(J\tilde{\xi}, (D_M \otimes + i)\tilde{\xi})\label{eq:fermionic1}\\ + &+\frac{1}{2}(J\tilde{\xi}, (\gamma^\mu \otimes B_\mu) + \tilde{\xi})\label{eq:fermionic2}\\ + &+\frac{1}{2}(J\tilde{\xi}, (\gamma_M\otimes + D_F)\tilde{\xi})\label{eq:fermionic3}, +\end{align} +(note that we add the constant $\frac{1}{2}$ to the action). +For the term in \eqref{eq:fermionic1} we calculate +\begin{align} + \frac{1}{2}(J\tilde{\xi}, (D_M\otimes 1)\tilde{\xi}) &= + \frac{1}{2}(J_M\tilde{\chi}_R,D_M\tilde{\psi}_L)+\nonumber + \frac{1}{2}(J_M\tilde{\chi}_L,D_M\tilde{\psi}_R)+ + \\&+\frac{1}{2}(J_M\tilde{\psi}_L,D_M\tilde{\psi}_R)+\nonumber + \frac{1}{2}(J_M\tilde{\chi}_R,D_M\tilde{\chi}_L)\\ + &= (J_M\tilde{\chi},D_M\tilde{\chi}). +\end{align} +For the term in \eqref{eq:fermionic2} we have +\begin{align} + \frac{1}{2}(J\tilde{\xi}, (\gamma^\mu \otimes B_\mu)\tilde{\xi})&= + -\frac{1}{2}(J_M\tilde{\chi}_R, \gamma^\mu Y_\mu\tilde{\psi}_R) + -\frac{1}{2}(J_M\tilde{\chi}_L, \gamma^\mu Y_\mu\tilde{\psi}_R)+\nonumber\\ + &+\frac{1}{2}(J_M\tilde{\psi}_L, \gamma^\mu Y_\mu\tilde{\chi}_R)+ + \frac{1}{2}(J_M\tilde{\psi}_R, \gamma^\mu Y_\mu\tilde{\chi}_L)=\nonumber\\ + &= -(J_M\tilde{\chi}, \gamma^\mu Y_\mu\tilde{\psi}). +\end{align} +And for \eqref{eq:fermionic3} we can write +\begin{align} + \frac{1}{2}(J\tilde{\xi}, (\gamma_M\otimes D_F)\tilde{\xi})&= + +\frac{1}{2}(J_M\tilde{\chi}_R, d\gamma_M\tilde{\chi}_R) + +\frac{1}{2}(J_M\tilde{\chi}_L, \bar{d}\gamma_M\tilde{\chi}_L)+\nonumber\\ + &+\frac{1}{2}(J_M\tilde{\chi}_L, \bar{d}\gamma_M\tilde{\chi}_L) + +\frac{1}{2}(J_M\tilde{\chi}_R, d\gamma_M\tilde{\chi}_R)=\nonumber\\ + &= i(J_M\tilde{\chi}, m\tilde{\psi}). +\end{align} +A small problem arises, we obtain a complex mass parameter $d$, but we can +write $d:=im$ for $m\in \mathbb{R}$, which stands for the real mass. + +Finally the fermionic action of $M\times F_{ED}$ takes the form + \begin{align} + S_f = -i\big(J_M\tilde{\chi}, \gamma(\nabla^S_\mu - i\Gamma_\mu) + \tilde{\Psi}\big) + \big(S_M\tilde{\chi}_L, \bar{d}\tilde{\psi}_L\big) - + \big(J_M\tilde{\chi}_R, d \tilde{\psi}_R\big). + \end{align} +Ultimately we arrive at the full Lagrangian of the almost commutative +manifold $M\times F_{ED}$, which is the sum of the purely gravitational +Lagrangian +\begin{align}\label{eq:final1} + \mathcal{L}_{grav}(g_{\mu\nu})=4\mathcal{L}_M(g_{\mu\nu})+ + \mathcal{L}_\phi (g_{\mu\nu}), + \end{align} +and the Lagrangian of electrodynamics +\begin{align}\label{eq:final2} + \mathcal{L}_{ED} = -i\bigg\langle + J_M\tilde{\chi},\big(\gamma^\mu(\nabla^S_\mu - iY_\mu) -m\big)\tilde{\psi}) + \bigg\rangle + +\frac{f(0)}{6\pi^2} Y_{\mu\nu}Y^{\mu\nu}. + \end{align} + diff --git a/src/thesis/chapters/acknowledgment.tex b/src/thesis/chapters/acknowledgment.tex @@ -1,3 +1,9 @@ - \section{Acknowledgment} -\lipsum[1] +First and foremost, I thank my supervisor Lisa Glaser for introducing me to +this rich field of study, where I had the chance to learn from a broad variety of +different mathematical and physical topics accompanied with great reflection sessions with +my supervisor every week. I thank my fellow students for the great time, +for the learning groups in preparation for exams and for on topic discussions +during my studies. And lastly I thank my friends and family for their continuous +love and support, for healthy breaks, and for discussions in different topics +outside of physics. diff --git a/src/thesis/chapters/basics.tex b/src/thesis/chapters/basics.tex @@ -1,564 +0,0 @@ -\subsection{Noncommutative Geometric Spaces\label{sec:1}} -\subsubsection{$*$-Algebra} -To grasp the idea of encoding geometrical data into a spectral triple we -introduce the first ingredient of a spectral triple, an unital $*$ algebra. -\begin{mydefinition} - A \textit{vector space} $A$ over $\mathbb{C}$ is called a - \textit{complex, unital Algebra} if for all $a,b \in A$: - \begin{align} - A \times A \rightarrow A\\ - (a,\ b)\ &\mapsto \ a\cdot b, - \end{align} - with an identity element: - \begin{align} - 1a = a1 =a. - \end{align} - Extending the definition, a $*$-algebra is an algebra $A$ with a \textit{conjugate linear map (involution)} $*:A\ \rightarrow A$, - $\forall a, b \in A$ satisfying - \begin{align} - (a\ b)^* &= b^*a^*,\\ - (a^*)^* &= a. - \end{align} -\end{mydefinition} -In the following all unital algebras are referred to as algebras. - -\subsubsection{Finite Discrete Space} -Let us consider an example, a $*$-algebra of continuous functions $C(X)$ -on a discrete topological space $X$ with $N$ points. Functions of a -continuous $*$-algebra $C(X)$ assign values to $\mathbb{C}$ and for $f,\ g \in -C(X)$, $\lambda \in \mathbb{C}$ and $x \in X$ they provide the following structure: -\begin{itemize} - \item \textit{pointwise linear} - \begin{align} - (f + g)(x) &= f(x) + g(x),\\ - (\lambda\ f)(x) &= \lambda (f(x)), - \end{align} - \item \textit{pointwise multiplication} - \begin{align} - f\ g\ (x) = f(x)g(x), - \end{align} - \item \textit{pointwise involution} - \begin{align} - f^*(x) = \overline{f(x)}. - \end{align} -\end{itemize} -The $*$-algebra $C(X)$ is \textit{isomorphic} to a $*$-algebra $\mathbb{C}^N$ -with involution ($N$ number of points in $X$), we write $C(X) \simeq -\mathbb{C}^N$. Isomorphisms are bijective maps that preserve structure and -don't lose physical information. A function $f:X\ \rightarrow\ \mathbb{C}$ -can be represented with $N \times N$ diagonal matrices, where each diagonal -value represents the function value at the corresponding $i$-th point for $i -= 1,...,N$. Matrix multiplication and hermitian conjugation of -matrices we have a preserving structure. - -Moreover we can \textit{map} between finite discrete spaces $X_1$ and $X_2$ with a -function -\begin{align} - \phi:\ X_1 \rightarrow\ X_2. -\end{align} -For every such map there exists a corresponding map -\begin{align} - \phi ^*:C(X_2)\ \rightarrow C(X_1), -\end{align} -which `pulls back' values even if $\phi$ is not bijective. -Note that the pullback does not map points back, but maps functions on an $*$-algebra $C(X)$. -The pullback, in literature often called a $*$-homomorphism or a $*$-algebra map under -pointwise product has the following properties -\begin{align} - \phi ^*(f\ g) = \phi ^*(f)\ \phi ^*(g),\\ - \phi ^*(\overline{f}) = \overline{\phi ^*(f)},\\ - \phi ^*(\lambda\ f + g) = \lambda\ \phi ^*(f) + \phi ^*(g). -\end{align} -%------------ Exercise - The map $\phi :X_1\ \rightarrow \ X_2$ is an injective (surjective) map, - if only and if the corresponding pullback $\phi ^* :C(X_2)\ \rightarrow \ - C(X_1)$ is surjective (injective). To clarify let us say that $X_1$ has $n$ points and - $X_2$ with $m$ points. Then there are three different cases, first $n=m$ and - obviously $\phi$ is bijective and $\phi ^*$ too. Then $n > m$, in this case - $\phi$ assigns $n$ points to $m$ points when $n > m$, which is by definition - surjective. On the other hand $\phi ^*$ assigns $m$ points to $n$ points when - $n > m$, which is by definition injective. Lastly $n < m $, which is - completely analogous to the case $n > m$. -%------------ Exercise - -\begin{mydefinition} - A \textit{(complex) matrix algebra} A is a direct sum, for $n_i, N \in - \mathbb{N}$ - \begin{align} - A = \bigoplus _{i=1}^{N} M_{n_i}(\mathbb{C}). - \end{align} - The involution is the hermitian conjugate. A $*$ algebra with involution is referred to as - a matrix algebra -\end{mydefinition} - -To summarize, from a topological discrete space $X$, we can construct a -$*$-algebra $C(X)$ which is isomorphic to a matrix algebra $A$. Then the -question instantly arises, if we can construct $X$ given $A$? For a matrix -algebra $A$, which in most cases is not commutative, the answer is generally -no. Hence there are two options. We can restrict ourselves to commutative -matrix algebras, which are the vast minority and not physically interesting. -Or we can allow more morphisms (isomorphisms) between matrix algebras. - -\subsubsection{Finite Inner Product Spaces and Representations} -Until now we have looked at finite topological discrete spaces, moreover we can consider a -finite dimensional inner product space $H$ (finite Hilbertspaces), with inner product -$(\cdot,\cdot)\rightarrow \mathbb{C}$. We denote $L(H)$ as the $*$-algebra of operators on $H$ -equipped with a product given by composition and involution of the adjoint, $T \mapsto T^*$. -Then $L(H)$ is a \textit{normed vector space} with -\begin{align} - \|T\|^2 &= \sup_{h \in H}\big\{(T\ h,\ T\ h): (h,\ h) \leq 1\big|\ T - \in L(H)\big \},\\ - \|T\| &= \sup\big\{\sqrt{\lambda}:\; \lambda \text{ eigenvalue of } T\big\}. -\end{align} -The Hilbert space allows us to define representations of $*$-algebras. -\begin{mydefinition} - The \textit{representation} of a finite dimensional $*$-algebra $A$ is a - pair $(H, \pi)$, where $H$ is a finite dimensional inner product space - and $\pi$ is a $*$-\textit{algebra map} - \begin{align} - \pi:A\ \rightarrow \ L(H). - \end{align} - We call the representation $(H, \pi)$ \textit{irreducible} if - \begin{itemize} - \item $H \neq \emptyset$, - \item only $\emptyset$ or $H$ is invariant under the action of $A$ on - $H$. - \end{itemize} -\end{mydefinition} -Here are some examples of reducible and irreducible representations -\begin{itemize} - \item For $A = M_n(\mathbb{C})$ the representation $H=\mathbb{C}^n$, $A$ acts as matrix multiplication\\ - $H$ is irreducible. - \item For $A = M_n(\mathbb{C})$ the representation $H=\mathbb{C}^n\oplus \mathbb{C}^n$, with $a \in A$ acting - in block form \\ $\pi: a \mapsto \big(\begin{smallmatrix} a & 0\\ 0 & a \end{smallmatrix}\big)$ is - reducible. -\end{itemize} -Naturally there are also certain equivalences between different -representations. -\begin{mydefinition} -Two representations of a $*$-algebra $A$, $(H_1, \pi _1)$ and -$(H_2, \pi _2)$ are called \textit{unitary equivalent} if there exists a map -$U: H_1 \rightarrow H_2$ such that. - \begin{align} - \pi _1(a) = U^* \pi _2(a) U - \end{align} -\end{mydefinition} - -Furthermore we define a mathematical structure called the structure space, -which will become important later when speaking of the duality between a -spectral triple and a geometrical space. -\begin{mydefinition} - Let $A$ be a $*$-algebra then, $\hat{A}$ is called the structure space of all \textit{unitary equivalence classes - of irreducible representations of A}. -\end{mydefinition} -%------------- EXERCISE - Given a representation $(H, \pi)$ of a $*$-algebra $A$, the \textbf{commutant} $\pi (A)'$ of $\pi (A)$ is defined as a set - of operators in $L(H)$ that commute with all $\pi (a)$ - \begin{align} - \pi (A)' = \big\{T \in L(H):\ \pi(a)\ T = T\ \pi(a) \;\; \forall a\in - A\big\} - \end{align} - The commutant $\pi (A)'$ is also a $*$-algebra, since it has unital, - associative and involutive properties. The unitary property is given by - the unital operator of the $*$-algebra of operators $L(H)$, which exists - by definition because $H$ is a inner product space. Associativity is - given by the $*$-algebra of $L(H)$, where $L(H) \times L(H)~\mapsto - L(H)$, which is associative by definition. The involutive property is - also given by the $*$-algebra $L(H)$ with a map $*: L(H) \mapsto L(H)$ - only for a $T \in H$ that commutes with $\pi (a)$. -%------------- EXERCISE - -%------------- EXERCISE - For a unital algebra $*$-algebra $A$, the matrices $M_n(A)$ with entries - in $A$ form a unital $*$-algebra, because the unitary operation in - $M_n(A)$ is given by the identity Matrix, which exists in every - entry in $M_n(A)$ and behaves like in $A$. Associativity is given by - matrix multiplication. Lastly, involution is given by the conjugate - transpose. - - Consider a representation $\pi :A\ \rightarrow \ L(H)$ of a $*$-algebra - $A$ and set $H^n = H \oplus ... \oplus H$, $n$ times. Then we have the following - representation $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ for the Matrix - Algebra with $\tilde{\pi}((a_{ij})) = (\tilde{\pi}(a_{ij})) \in M_n(A)$, - since a direct isomorphisms of $A \simeq M_n(A)$ and $H \simeq H^n$ - exists. Meaning $\tilde{\pi}$ is a valid reducible representation. - - By looking at $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ a $*$ algebra - representation of $M_n(A)$. We see that $\pi: A \rightarrow L(H^n)$ is a representation of $A$. - The fact that $\tilde{\pi}$ and $\pi$ are unitary equivalent, there is - a map $U: H^n \rightarrow H^n$ given by $U=\mathbbm{1}_n$, thus - \begin{align} - \pi (a) &= \mathbbm{1}_n^*\ \tilde{\pi}((a_{ij})), \\ - \mathbbm{1}_n &= \tilde{\pi}((a_{ij})) = \pi (a_{ij}) - \Rightarrow a_{ij} = a\ \mathbbm{1}_n. - \end{align} -%------------- EXERCISE - - -With help of the structure space $\hat{A}$, a commutative matrix algebra can be used to reconstruct a discrete space. -Since $A \simeq \mathbb{C}^N$ all irreducible representation are of the form -\begin{align} - \pi _i:(\lambda_1,...,\lambda_N)\in \mathbb{C}^N \mapsto \lambda_i \in - \mathbb{C} -\end{align} -for $i = 1,...,N$, and thus $\hat{A} \simeq \{1,...,N\}$. -We can conclude that there is a duality between discrete spaces and -commutative matrix algebras. This duality is called the \textit{finite -dimensional Gelfand duality} - -Our aim is to make a further generalization by constructing a duality between -finite dimensional spaces and \textit{equivalence classes} of matrix -algebras that preserves general non-commutativity of matrices. Equivalence -classes are described by a concept of isomorphisms between matrix -algebras called \textit{Morita Equivalence}. - -\subsubsection{Algebraic Modules} -An important part of the Morita Equivalence are algebraic modules, later -extended by Hilbert bimodules. -\begin{mydefinition} - Let $A$, $B$ be algebras (need not be matrix algebras) - \begin{enumerate} - \item \textit{left} A-module is a vector space $E$, that carries a left - representation of $A$, that is $\exists$ a bilinear map $\gamma: A - \times E \rightarrow E$ with - \begin{align} - (a_1\ a_2)\cdot e = a_1 \cdot (a_2 \cdot e);\;\;\; a_1, a_2 \in - A, e \in E. - \end{align} - \item \textit{right} B-module is a vector space $F$, that carries a - right representation of $A$, that is there exists a bilinear map - $\gamma: F \times B \rightarrow F$ with - \begin{align} - f \cdot (b_1\ b_2)= (f \cdot b_1) \cdot b_2;\;\;\; b_1, b_2 \in B, f \in F - \end{align} - \item \textit{left} A-module and \textit{right} B-module is a - \textit{bimodule}, a vector space $E$ satisfying - \begin{align} - a \cdot (e \cdot b)= (a \cdot e) \cdot b;\;\;\; a \in A, b \in B, e \in E - \end{align} - \end{enumerate} -\end{mydefinition} -An $A$-\textbf{module homomorphism} is linear map $\phi: E\rightarrow F$ which respects the -representation of A, e.g.\ for left module. -\begin{align} - \phi (a\ e) = a \phi (e); \;\;\; a \in A, e \in E. -\end{align} -We will use the notation -\begin{itemize} - \item ${}_A E$, for left $A$-module $E$; - \item ${}_A E_B$, for right $B$-module $F$; - \item ${}_A E_B$, for $A$-$B$-bimodule $E$, simply bimodule. -\end{itemize} -%------------------- EXERCISE -From a simple observation, we see that an arbitrary representation $\pi : A -\rightarrow L(H)$ of a $*$-algebra A, turns H into a left module ${}_A H$. If -$_A H$ than $(a_1\ a_2) h = a_1 (a_2\ h)$ for $a_1, a_2 \in A$ and $h \in H$. We -take the representation of an $a \in A$, $\pi (a)$, and write -\begin{align} - \big(\pi(a_1)\ \pi(a_2)\big)h = \pi(a_1)\big(\pi(a_2)\ h\big) = - \big(T_1\ T_2\big) h = T_1 \big(T_2\ h\big) -\end{align} -For $T_1, T_2 \in L(H)$, which operate naturally from the left on $h$. - -%------------------- EXERCISE -%------------------- EXERCISE - -Furthermore notice that that an $*$-algebra $A$ is a bimodule ${}_A A_A$ with -itself, given by the map -\begin{align} - \gamma: A\times A\times A \rightarrow A, -\end{align} -which is the inner product of a $*$-algebra. -%------------------- EXERCISE - -\subsubsection{Balanced Tensor Product and Hilbert Bimodules} -In this chapter we introduce the balanced tensor product later called the -Kasparov product. This operation allows us to naturally construct a bimodule -of a third algebra in chapter \ref{chap: kasparov product}. -\begin{mydefinition} - Let $A$ be an algebra, $E$ be a \textit{right} $A$-module and $F$ be a - \textit{left} $A$-module. The \textit{balanced tensor product} of $E$ and - $F$ forms a $A$-bimodule. - \begin{align} - E \otimes _A F := E \otimes F / \left\{\sum _i e_i a_i \otimes f_i - - e_i \otimes a_i f_i : \;\;\; a_i \in A,\ e_i \in E,\ f_i \in F - \right\}. - \end{align} -\end{mydefinition} -The symbol $/$ denotes the quotient space. By careful examination we can say -that the operation $\otimes _A$ takes two left/right modules and makes a -bimodule. Additionally with the help of the tensor product of the two modules and the quotient -space which takes out all the elements from the tensor product that don't -preserver the left/right representation and that are duplicates. -\begin{mydefinition} - Let $A$, $B$ be \textit{matrix algebras}. The \textit{Hilbert bimodule} for - $(A, B)$ is given by an $A$-$B$-bimodue $E$ and by an $B$-valued - \textit{inner product} $\langle \cdot,\cdot\rangle_E: E\times E \rightarrow - B$, which satisfies the following conditions for $e, e_1, e_2 \in - E,\ a \in A$ and $b \in B$ -\begin{align} - \langle e_1,\ a\cdot e_2\rangle_E &= \langle a^*\cdot e_1,\ e_2\rangle_E - \;\;\;\; & \text{sesquilinear in $A$},\\ - \langle e_1,\ e_2 \cdot b\rangle_E - &= \langle e_1,\ e_2\rangle_E b \;\;\;\; & \text{scalar in $B$},\\ - \langle e_1,\ e_2\rangle_E &= \langle e_2,\ e_1\rangle^*_E \;\;\;\; & - \text{hermitian}, \\ - \langle e,\ e\rangle_E &\ge 0 \;\;\;\; & \text{equality - holds iff $e=0$}. -\end{align} -We denote $KK_f(A,\ B)$ as the set of all \textit{Hilbert bimodules} of $(A,\ B)$. -\end{mydefinition} -%-------------- EXERCISE - -And indeed the Hilbert bimodule extension takes a representation $\pi:\ A \ -\rightarrow L(H)$ of a matrix algebra $A$ and turns $H$ into a Hilbert bimodule for -$(A, \mathbb{C})$, because the representation for a $a \in A$, $\pi(a)=T \in L(H)$ fulfills -the conditions of the $\mathbb{C}$-valued inner product for $h_1, h_2 \in H$ -\begin{itemize} - \item $\langle h_1,\ \pi(a)\ h_2\rangle _\mathbb{C} = \langle h_1,\ T\ h_2\rangle _\mathbb{C} = - \langle T^* h_1, h_2\rangle _\mathbb{C}$, $T^*$ given by the adjoint, - \item $\langle h_1,\ h_2\ \pi(a)\rangle _\mathbb{C} = \langle h_1,\ h_2\ - T\rangle _\mathbb{C} = \langle h_1,\ h_2\rangle _\mathbb{C}$ , $T$ acts - from the left, - \item $\langle h_1,\ h_2\rangle _\mathbb{C}^* = \langle h_2,\ h_1\rangle _\mathbb{C}$, hermitian because of the - $\mathbb{C}$-valued inner product - \item $\langle h_1,\ h_2\rangle \ge 0$, $\mathbb{C}$-valued inner product. -\end{itemize} -%-------------- EXERCISE - -%-------------- EXERCISE -Take again the $A-A$ bimodule given by an $*$-algebra $A$. By looking at the -following inner product $\langle \cdot,\cdot\rangle_A:A \times A \rightarrow A$ -\begin{align} - \langle a,\ a\rangle_A = a^*a' \;\;\;\; a,a'\in A. - \label{eq:inner-product}, -\end{align} -it becomes clear that $A \in KK_f(A,\ A)$. -Simply checking the conditions in $\langle \cdot, \cdot\rangle _A$ for -$a, a_1, a_2 \in~A$ -\begin{align} - &\langle a_1,\ a\cdot a_2\rangle _A = a^* a\cdot a_2 = - (a^*a_1)^*\ a_2 = \langle a^*\ a_1,\ a_2\rangle, \\ - &\langle a_1,\ a_2 \cdot a\rangle _A = a^*_1\ (a_2\cdot a) = - (a^*a_2)\cdot a = \langle a_1,\ a_2\rangle _A\ a,\\ - &\langle a_1,\ a_2\rangle _A^* = (a_1^*\ a_2)^* = a_2^*\ - (a_1^*)^* = a_2^*\ a_1 = \langle a_2,\ a_1\rangle. -\end{align} - -%-------------- EXERCISE - -%-------------- EXAMPLE -%As an for overview consider a $*$ homomorphism between two matrix -%algebras $\phi:A\rightarrow B$, we can construct a Hilbert bimodule -%$E_{\phi} \in KK_f(A, B)$ in the following way. We let $E_{\phi}$ be $B$ in -%as an vector space and an inner product from above in equation -%\eqref{eq:inner-product}, with $A$ acting on the left with $\phi$. -%\begin{align} -% a\cdot b = \phi(a)\ b -%\end{align} -%for $a\in A, b\in E_{\phi}$. -%-------------- EXAMPLE - -\subsubsection{Kasparov Product and Morita Equivalence\label{chap: kasparov -product}} -\begin{mydefinition} - Let $E \in KK_f(A, B)$ and $F \in KK_F(B, D)$ the \textit{Kasparov product} is defined as - with the balanced tensor product - \begin{align} - F \circ E := E \otimes _B F. - \end{align} - Then $F\circ E \in KK_f(A,D)$ is equipped with a $D$-valued inner product - \begin{align} - \langle e_1 \otimes f_1,\ e_2 \otimes f_2\rangle _{E\otimes _B F} = - \langle f_1,\langle e_1,\ e_2\rangle _E f_2\rangle _F - \end{align} -\end{mydefinition} - -%-------------- EXERCISE -The Kasparov product for $*$-algebra homomorphism $\phi: A \rightarrow B$ and -$\psi: B \rightarrow C$ are isomorphisms in the sense that -\begin{align} - E_{\psi} \circ E_{\phi}\ \equiv\ E_{\phi} \otimes _B E_{\psi}\ - \simeq\ - E_{\psi \circ \phi} \in KK_f(A,C). -\end{align} - -The direct computation for $a \in A$, $b\in B$, and $c\in C$ which is $\psi -\circ \phi$ shows us -\begin{align} -a \cdot b \cdot c = \psi(\phi (a) \cdot b) \cdot c -\end{align} -An interesting case arises when looking at $E_{\text{id}_A} \simeq A \in -KK_f(A,A)$, where $\text{id}_A$ is the identity in $A$. Let $E_{\phi}$ be $A$ -with a natural right representation. It follows that $E_{\phi}\simeq A$, where -an inner product, acting from the left on $A$ for $\phi$, $a', a\in A$ reads -\begin{align} - a'\ a = (\phi(a')\ a) \in A, -\end{align} -which is satisfied only by $\phi = \text{id}_A$. - -\begin{mydefinition} - Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita equivalent} if there - exists an $E \in KK_f(A, B)$ and an $F \in KK_f(B, A)$ such that - \begin{align} - E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq - B, - \end{align} - where $\simeq$ denotes the isomorphism between Hilbert bimodules and note - that $A$ or $B$ is a bimodule by itself. -\end{mydefinition} - -Since we land in the same space as we started, the modules $E$ and $F$ are -each others inverse in regards to the Kasparov Product. More clearly, in the -definition we have $E \in KK_f(A, B)$. Naturally we start from $A$ and $E -\otimes _B F$, which lands in $A$. On the other hand we have $F \in KK_f(B, -D)$ and start from $B$, $F \otimes _A E$, which lands in $B$. - -%------------- EXERCISE -By definition $E \otimes _B F$ is a $A-D$ bimodule. Since -\begin{align} - E \otimes _B F = E \otimes F / \bigg\{\sum_i\ e_i\ b_i \otimes f_i - e_i - \otimes b_i\ f_i\ \big|\;\; e_i \in E_i,\ b_i \in B,\ f_i \in F\bigg\}, -\end{align} -the last part takes out all tensor product elements of $E$ and $F$ that don't -preserver the left/right representation and that are duplicates. - -Additionally $\langle \cdot,\cdot\rangle _{E\oplus _B F}$ defines a $D$ valued -inner product, as $\langle e_1,\ e_2\rangle _E \in B$ and $\langle f_1,\ f_2\rangle _F \in C$ by -definition. So for $\langle e_1,\ e_2\rangle _E =b$ we have -\begin{align} - \langle e_1 \otimes f_1,\ e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle - f_1,\ \langle e_1,\ e_2\rangle _E\ f_2\rangle _F = \langle f_1,\ b\ f_2\rangle _F \in C -\end{align} -%------------- EXERCISE -%------------- EXAMPLE -Picking up the example of $(A, A)$, the Hilbert bimodule $A$, we can -consider an $E \in KK_f(A,B)$ for -\begin{align} - E \circ A = A\oplus _A E \simeq E. -\end{align} -We conclude, that $_A A_A$ is the identity element in the Kasparov product (up -to isomorphism). -%------------- EXAMPLE -%------------- EXAMPLE -Let us examine another example for $E = \mathbb{C}^n$, which is a -$(M_n(\mathbb{C}), \mathbb{C})$ Hilbert bimodule with the standard $\mathbb{C}$ -inner product. Further let $F = \mathbb{C}^n$, which is a $(\mathbb{C}, -M_n(\mathbb{C}))$ Hilbert bimodule by right matrix multiplication with -$M_n(\mathbb{C})$ valued inner product, we can write - \begin{align} - \langle v_1, v_2\rangle =\bar{v_1}v_2^t \;\; \in M_n(\mathbb{C}). - \end{align} -If we take the Kasparov product of $E$ and $F$ - \begin{align} - F\circ E\ &=\ E\otimes _{\mathbb{C}}F\ \;\;\;\;\;\; \simeq \ - M_n(\mathbb{C}),\\ - E\circ F\ &=\ F\otimes _{M_n(\mathbb{C})}E\ \simeq\ \mathbb{C}, - \end{align} -we see that $M_n(\mathbb{C})$ and $\mathbb{C}$ are Morita equivalent! -%------------- EXAMPLE - -\begin{mylemma} - Two matrix algebras are Morita Equivalent if, and only if their their structure spaces - are isomorphic as discreet spaces (have the same cardinality / same number - of elements). -\end{mylemma} -\begin{proof} - Let $A$, $B$ be \textit{Morita equivalent}. Then there exist the modules - $_A E_B$ and $_B F_A$ with - \begin{align} - E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq - B. - \end{align} - Also consider $[(\pi _B, H)] \in \hat{B}$. We can construct a - representation of $A$, which reads - \begin{align} - \pi _A \rightarrow L(E \otimes _B H)\;\;\; \text{with} \;\;\; \pi _A(a) - (e \otimes v) = a e \otimes w - \end{align} - Vice versa, we have $[(\pi _A, W)] \in \hat{A}$ and we can construct $\pi _B$ - as - \begin{align} - \pi _B: B \rightarrow L(F \otimes _A W) \;\;\; \text{and}\;\;\; \pi - _B(b) (f\otimes w) = bf\otimes w. - \end{align} - Now we need to show that the representation $\pi _A$ is irreducible if and - only if $\pi _B$ is irreducible. For $(\pi _B, H)$ to be irreducible, we - need $H \neq \emptyset$ and only $\emptyset$ or $H$ to be invariant under - the Action of $B$ on $H$. Than $E\otimes _B H$ and $E\otimes _B H \simeq A$ - cannot be empty, because $E$ preserves left representation of $A$. - - Lastly we need to check if the association of the class $[\pi _A]$ to $[\pi - _B]$ is independent of the choice of representatives $\pi _A$ and $\pi _B$. - The important thing is that $[\pi _A] \in \hat{A}$ respectively $[\pi _B] \in - \hat{B}$, hence any choice of representation is irreducible, because the - structure space denotes all unitary equivalence classes of irreducible - representations. - - Note that the statements $E \simeq H$ and $F \simeq W$ are not particularly - true, since all infinite dimensional Hilbert spaces are isomorphic. Here - we are looking at finite dimensional Hilbert spaces. Another thing to keep - in mind, is that for $[\pi _B, H] \in \hat{B}$ and looking at algebraic - bimodules, we know that $H$ is a bimodule of $B$, hence $E \otimes _B - H\simeq A$, and for $[\pi _A, W]$, which is the same. - Finally we can conclude, that these maps are each others inverses, thus - $\hat{A} \simeq \hat{B}$. -\end{proof} - -\begin{mylemma} - The matrix algebra $M_n(\mathbb{C})$ has a unique irreducible - representation (up to isomorphism) given by the defining representation on - $\mathbb{C}^n$. -\end{mylemma} -\begin{proof} - We know $\mathbb{C}^n$ is a irreducible representation of $A= - M_n(\mathbb{C})$. Let $H$ be irreducible and of dimension $k$, then we - define a map - \begin{align} - \phi : A\oplus...\oplus A &\rightarrow H^* \\ - (a_1,...,a_k)&\mapsto e^1\circ a_1^t+...+e^k\circ a_k^t, - \end{align} -where $\{e^1,...,e^k\}$ is the basis of the dual space $H^*$ and -$(\circ)$ being the pre-composition of elements in $H^*$ and $A$ acting on $H$. -This forms a morphism of $M_n(\mathbb{C})$ modules, provided a matrix $a \in A$ -acts on $H^*$ with $v\mapsto v\circ a^t$ ($v\in H^*$). Furthermore this -morphism is surjective, thus making the pullback $\phi ^*:H\mapsto (A^k)^*$ -injective. Now identify $(A^k)^*$ with $A^k$ as a $A$-module and note that -$A=M_n(\mathbb{C}) \simeq \oplus ^n \mathbb{C}^n$ as a n A module. It follows -that $H$ is a submodule of $A^k \simeq \oplus ^{nk}\mathbb{C}$. By -irreducibility $H \simeq \mathbb{C}$. -\end{proof} - -%---------------- EXAMPLE -Let us look at an example, two matrix algebras $A$, and $B$. -\begin{align} - A = \bigoplus ^N_{i=1} M_{n_i}(\mathbb{C}), \;\;\; - B = \bigoplus ^M_{j=1} M_{m_j}(\mathbb{C}). -\end{align} -Let $\hat{A} \simeq \hat{B}$, this implies $N=M$. Further define $E$ with $A$ -acting by block-diagonal matrices on the first tensor and B acting in the same -manner on the second tensor. Define $F$ vice versa, ultimately reading -\begin{align} - E:= \bigoplus _{i=1}^N \mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i}, \;\;\; - F:= \bigoplus _{i=1}^N \mathbb{C}^{m_i} \otimes \mathbb{C}^{n_i}. -\end{align} -When we calculate the Kasparov product we get the following -\begin{align} - E \otimes _B F &\simeq \bigoplus _{i=1}^N (\mathbb{C}^{n_i}\otimes\mathbb{C}^{m_i}) - \otimes _{M_{m_i}(\mathbb{C})} (\mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i}) \\ - &\simeq \bigoplus _{i=1}^N \mathbb{C}^{n_i}\otimes - \left(\mathbb{C}^{m_i}\otimes _{M_{m_i}(\mathbb{C})}\mathbb{C}^{m_i}\right) - \oplus \mathbb{C}^{n_i} \\ - &\simeq \bigoplus _{i=1}^N - \mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i} \simeq A. -\end{align} -On the other hand we get -\begin{align} - F \otimes _A E \simeq B. -\end{align} -%---------------- EXAMPLE - -To summarize, there is a duality between finite spaces and Morita equivalence -classes of matrix algebras. Furthermore by replacing $*$-homomorphism $A\rightarrow B$ -with Hilbert bimodules $(A,B)$ we introduce a richer structure of morphism -between matrix algebras. diff --git a/src/thesis/chapters/conclusion.tex b/src/thesis/chapters/conclusion.tex @@ -1,2 +1,17 @@ \section{Conclusion} -\lipsum +We conclude that the framework of noncommutative geometry can fully describe +the physics of electrodynamics. This is done by introducing the spectral and +fermionic action principles of the almost commutative manifold $M \times F_{ED}$ +constructed from a four dimensional Riemannian spin manifold and a +modification of the two point space $F_X$. By going through rough +calculations of the heat kernel coefficients to describe the Lagrangian in +terms of geometrical invariants we finally arrive at the Lagrangians in +equations \eqref{eq:final1} and \eqref{eq:final2}. + +With a similar complex ansatz Walter D. Suijlekom describes in his book +\cite{ncgwalter} how to figure out a specific version of a spectral triple +corresponding the almost commutative manifold which delivers the physics of +the full Standard Model and with this information accurately calculating the +mass of the Higgs boson. Moreover he describes more accurately the +correspondence of the gauge theory of an almost commutative manifold, which +brings this noncommutative geometry to the interest of physicists in the first place. diff --git a/src/thesis/chapters/electroncg.tex b/src/thesis/chapters/electroncg.tex @@ -1,465 +0,0 @@ -\subsection{Noncommutative Geometry of Electrodynamics\label{sec:5}} -In this chapter we go through a derivation Electrodynamics with -the almost commutative manifold $M\times F_X$ and the abelian gauge group -$U(1)$. The conclusion is an unified description of gravity and -electrodynamics although in the classical level. - -The almost commutative Manifold $M\times F_X$ outlines a local gauge group -$U(1)$. The inner fluctuations of the Dirac operator relate to $Y_\mu$ the -gauge field of $U(1)$. According to the setup we ultimately arrive at two -serious problems. - -First of all the operator $D_F$, in the Two-Point space $F_X$, must vanish -such that a real structure can exists. However this implies that the electrons -are massless. - -The second problem arises when looking at the Euclidean action for a free -Dirac field -\begin{align} - S = - \int i \bar{\psi}(\gamma ^\mu\partial _\mu - m) \psi d^4x, -\end{align} -where $\psi,\ \bar{\psi}$ must be considered as two independent variables. -This means that the fermionic action $S_f$ needs two independent Dirac spinors. -Let us try and construct two independent Dirac spinors with our data, first -take a look at the decomposition of the basis and of the total -Hilbertspace $H = L^2(S) \otimes H_F$. For the orthonormal basis of $H_F$ we -can write $\{e, \bar{e}\}$ , where $\{e\}$ is the orthonormal basis of -$H_F^+$ and $\{\bar{e}\}$ the orthonormal basis of $H_F^-$. Accompanied with -the real structure we arrive at the following relations -\begin{align} - J_F e &= \bar{e} \;\;\;\;\;\; J_F \bar{e} = e, \\ - \gamma_F e &= e \;\;\;\;\;\; \gamma_F \bar{e} = \bar{e}. -\end{align} -Along with the decomposition of $L^2(S) = L^2(S)^+ \oplus L^2(S)^-$ and $\gamma = \gamma _M -\otimes \gamma _F$ we can obtain the positive eigenspace -\begin{align} - H^+ = L^2(S)^+ \otimes H_F^+ \oplus L(S)^- \otimes H_F^-. -\end{align} -So, for an $\xi \in H^+$ we can write -\begin{align} - \xi = \psi _L \otimes e + \psi _R \otimes \bar{e}, -\end{align} -where $\psi_L \in L^2(S)^+$ and $\psi _R \in L^2(S)^-$ are the two Wheyl -spinors. We denote that $\xi$ is only determined by one Dirac spinor $\psi := -\psi_L + \psi _R$. Since \textbf{we require two independent spinors}, our -conclusion is that the definition of the fermionic action gives too much -restrictions to the Two-Point space $F_X$. -\subsubsection{The Finite Space} -To solve the two problems we simply enlarge (double) the Hilbertspace. This -is visualized by introducing multiplicities in Krajewski Diagrams -\cite{ncgwalter} which will also allow us to choose a nonzero Dirac operator -that will connect the two vertices and preserve real structure making our -particles massive and bringing anti-particles into the mix. - -We start of with the same algebra $C^\infty(M, \mathbb{C}^2)$, corresponding -to space $N= M\times X$. The Hilbertspace describes four particles, meaning -it has four orthonormal basis elements. It describes \textbf{left handed -electrons} and \textbf{right handed positrons}. This way we have -$\{ \underbrace{e_R, e_L}_{\text{left-handed}}, \underbrace{\bar{e}_R, -\bar{e}_L}_{\text{right-handed}}\}$ an orthonormal basis for $H_F = -\mathbb{C}^4$. Accompanied with the real structure $J_F$ allowing us to -interchange particles with antiparticles by the following equations -\begin{align} - &J_F e_R = \bar{e}_R, \\ - &J_F e_L = \bar{e_L}, \\ - \nonumber \\ - &\gamma _F e_R = -e_R,\\ - &\gamma_F e_L = e_L, -\end{align} -where $J_F$ and $\gamma_F$ have to following properties -\begin{align} - &J_F^2 = 1,\\ - & J_F \gamma_F = - \gamma_F J_F. -\end{align} -By the means of $\gamma_F$ we have two options to decompose the total -Hilbertspace $H$, firstly into -\begin{align} - H_F = \underbrace{H_F^+}_{\text{ONB } \{e_L, \bar{e}_L\}} - \oplus \underbrace{H_F^-}_{\text{ONB } \{e_R, \bar{e}_R\}}, -\end{align} -or alternatively into the eigenspace of particles and their -antiparticles (electrons and positrons) which is preferred in literature and -which will be used further out -\begin{align} - H_F = \underbrace{H_{e}}_{\text{ONB } \{e_L, e_R\}} \oplus - \underbrace{H_{\bar{e}}}_{\text{ONB } \{\bar{e}_L, \bar{e}_R\}}, -\end{align} -the shortening `ONB' means orthonormal basis. - -The action of $a \in A = \mathbb{C}^2$ on $H$ with respect to the ONB -$\{e_L, e_R, \bar{e}_L, \bar{e}_R\}$ is represented by -\begin{align}\label{eq:leftrightrepr} - a = - (a_1 , a_2 ) \mapsto - \begin{pmatrix} - a_1 &0 &0 &0\\ - 0&a_1 &0 &0\\ - 0 &0 &a_2 &0\\ - 0 &0 &0 &a_2\\ - \end{pmatrix} -\end{align} -Do note that this action commutes wit the grading and that $[a, b^\circ] = 0$ -with $b:= J_F b^*J_F$ because both the left and the right action are given by -diagonal matrices according to equation \eqref{eq:leftrightrepr}. Furthermore -note that we are still left with $D_F = 0$ and the following spectral triple -\begin{align}\label{eq:fedfail} - \left( \mathbb{C}^2, \mathbb{C}^2, D_F=0; J_F = - \begin{pmatrix} - 0 & C \\ C &0 - \end{pmatrix}, - \gamma _F = - \begin{pmatrix} - 1 & 0 \\ 0 &-1 - \end{pmatrix} - \right). - \end{align} -It can be represented in the following Krajewski diagram, -with two nodes of multiplicity two bellow - \begin{figure}[H] \centering - \begin{tikzpicture}[ - dot/.style = {draw, circle, inner sep=0.06cm}, - bigdot/.style = {draw, circle, inner sep=0.09cm}, - no/.style = {}, - ] - \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; - \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; - \node[no](c) at (0.5, 0.5) [label=above:$\textbf{1}$] {}; - \node[no](d) at (1.5, 0.5) [label=above:$\textbf{1}$] {}; - \node[dot](d0) at (1.5,0) [] {}; - \node[dot](d0) at (0.5,-1) [] {}; - \node[bigdot](d0) at (1.5,0) [] {}; - \node[bigdot](d0) at (0.5,-1) [] {}; - \end{tikzpicture} - \caption{Krajewski diagram of the spectral triple from equation \ref{eq:fedfail}} - \end{figure} -\subsubsection{A noncommutative Finite Dirac Operator} -To extend our spectral triple with a non-zero Operator, we need to take a -closer look at the Krajewski diagram above. Notice that edges only exist -between multiple vertices, meaning we can construct a Dirac operator mapping -between the two vertices. The operator can be represented by the following matrix -\begin{align}\label{eq:feddirac} - D_F = - \begin{pmatrix} - 0 & d & 0 & 0 \\ - \bar{d} & 0 & 0 & 0 \\ - 0 & 0 & 0 & \bar{d} \\ - 0 & 0 & d & 0 - \end{pmatrix} -\end{align} -We can now define the finite space $F_{ED}$. -\begin{align} - F_{ED} := (\mathbb{C}^2, \mathbb{C}^4, D_F; J_F, \gamma_F) -\end{align} -where $J_F$ and $\gamma_F$ are as in equation \eqref{eq:fedfail} and $D_F$ -from equation \eqref{eq:feddirac}. - -\subsubsection{Almost commutative Manifold of Electrodynamics} -The almost commutative manifold $M\times F_{ED}$ has KO-dimension 2, and is -represented by the following spectral triple -\begin{align}\label{eq:almost commutative manifold} - M\times F_{ED} := \big(C^\infty(M,\mathbb{C}^2),\ L^2(S)\otimes - \mathbb{C}^4,\ - D_M\otimes 1 +\gamma _M \otimes D_F;\; J_M\otimes J_F,\ \gamma_M\otimes - \gamma _F\big). -\end{align} -The algebra didn't change, thus we can decompose it like before -\begin{align} - C^\infty(M, \mathbb{C}^2) = C^\infty (M) \oplus C^\infty (M). -\end{align} -As for the Hilbertspace, we can decomposition it in the following way -\begin{align} - H = (L^2(S) \otimes H_e ) \oplus (L^2(S) \otimes H_{\bar{e}}). -\end{align} -Note that the one component of the algebra is acting on $L^2(S) \otimes H_e$, -and the other one acting on $L^2(S) \otimes H_{\bar{e}}$. In other words the components of -the decomposition of both the algebra and the Hilbertspace match by the action of -the algebra. - -The derivation of the gauge theory is the same for $F_{ED}$ as for the -Two-Point space $F_X$. We have $\mathfrak{B}(F) \simeq U(1)$ and for an -arbitrary gauge field $B_\mu = A_\mu - J_F A_\mu J_F^{-1}$ we can write -\begin{align} \label{field} - B_\mu = - \begin{pmatrix} - Y_\mu & 0 & 0 & 0 \\ - 0 & Y_\mu& 0 & 0 \\ - 0 & 0 & Y_\mu& 0 \\ - 0 & 0 & 0 & Y_\mu - \end{pmatrix} \;\;\;\;\;\ \text{for} \;\;\ Y_\mu (x) \in \mathbb{R}. -\end{align} -There is one single $U(1)$ gauge field $Y_\mu$, carrying the action of the -gauge group -\begin{align} - \text{$\mathfrak{B}$}(M\times F_{ED}) \simeq C^\infty(M, U(1)) -\end{align} - -The space $N = M\times X$ consists of two copies of $M$. -If $D_F = 0$ we have infinite distance between the two copies, yet now we have -adjusted the spectral triple to have a nonzero Dirac operator. The new -Dirac operator still has a commuting relation with the algebra $[D_F, a] = 0$ -$\forall a \in A$, and we should note that the distance between the two -copies of $M$ is still infinite. This is purely an mathematically abstract -observation and doesn't affect physical results. - -\subsubsection{Spectral Action} -In this chapter we bring all our results together to establish an -Action functional to describe a physical system. It turns out that -the Lagrangian of the almost commutative manifold $M\times F_{ED}$ -corresponds to the Lagrangian of Electrodynamics on a curved -background manifold (+ gravitational Lagrangian), consisting of the spectral -action $S_b$ (bosonic) and of the fermionic action $S_f$. - -The simplest spectral action of a spectral triple $(A, H, D)$ is given by the -trace of a function of $D$. We also consider inner fluctuations of the Dirac -operator -\begin{align} - D_\omega = D + \omega + \varepsilon' J\omega J^{-1}, -\end{align} -where $\omega = \omega ^* \in \Omega_D^1(A)$. -\begin{mydefinition} - Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a suitable function - \textbf{positive and even}. The spectral action is then - \begin{align} - S_b [\omega] := \text{Tr}\big(f(\frac{D_\omega}{\Lambda})\big) - \end{align} - where $\Lambda$ is a real cutoff parameter. The minimal condition on $f$ - is that $f(\frac{D_\omega}{\Lambda})$ is a trace class operator. A trace - class operator is a compact operator with a well defined finite trace - independent of the basis. The subscript $b$ in $S_b$ stands for bosonic, - because in physical applications $\omega$ will describe bosonic fields. - - In addition to the bosonic action $S_b$, we can define a topological spectral - action $S_{top}$. Leaning on the grading $\gamma$ the topological spectral action is - \begin{align} - S_{\text{top}}[\omega] := \text{Tr}(\gamma\ - f(\frac{D_\omega}{\Lambda})). - \end{align} -\end{mydefinition} -\begin{mydefinition}\label{def:fermionic action} - The fermionic action is defined by - \begin{align} - S_f[\omega, \psi] = (J\tilde{\psi}, D_\omega \tilde{\psi}) - \end{align} - with $\tilde{\psi} \in H_{cl}^+ := \{\tilde{\psi}: \psi \in H^+\}$, where - $H_{cl}^+$ is a set of Grassmann variables in $H$ in the $+1$-eigenspace - of the grading $\gamma$. -\end{mydefinition} - -%---------------------- APPENDIX ?????????????-------------------- -Grassmann variables are a set of Basis vectors of a vector space, they -form a unital algebra over a vector field $V$, where the generators are -anti commuting, that is for Grassmann variables $\theta _i, \theta _j$ we have -\begin{align} - &\theta _i \theta _j = -\theta _j \theta _i, \\ - &\theta _i x = x\theta _j \;\;\;\; x\in V, \\ - &(\theta_i)^2 = 0 \;\;\; (\theta _i \theta _i = -\theta _i \theta _i). -\end{align} -%---------------------- APPENDIX ?????????????-------------------- -\begin{myproposition} - The spectral action of the almost commutative manifold $M$ with $\dim(M) - =4$ with a fluctuated Dirac operator is - \begin{align} - \text{Tr}(f\frac{D_\omega}{\Lambda}) \sim \int_M \mathcal{L}(g_{\mu\nu}, - B_\mu, \Phi) \sqrt{g}\ d^4x + O(\Lambda^{-1}), - \end{align} - where - \begin{align} - \mathcal{L}(g_{\mu\nu}, B_\mu, \Phi) = - N\mathcal{L}_M(g_{\mu\nu}) - \mathcal{L}_B(B_\mu)+ - \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi). - \end{align} - The Lagrangian $\mathcal{L}_M$ is of the spectral triple $(C^\infty(M) , - L^2(S), D_M)$, represented by the following term - \begin{align}\label{lagr} - \mathcal{L}_M(g_{\mu\nu}) := \frac{f_4 \Lambda ^4}{2\pi^2} - - \frac{f_2 \Lambda^2}{24\pi ^2}s - \frac{f(0)}{320\pi^2} C_{\mu\nu - \varrho \sigma}C^{\mu\nu \varrho \sigma}, - \end{align} - where $C^{\mu\nu \varrho \sigma}$ is the Weyl tensor defined in terms of the Riemannian - curvature tensor $R_{\mu\nu \varrho \sigma}$ and the Ricci tensor - $R_{\nu\sigma} = g^{\mu\varrho} R_{\mu\nu \varrho\sigma}$ such that - \begin{align} - C^{\mu\nu\varrho\sigma}C_{\mu\nu\varrho\sigma}= - R_{\mu\nu\varrho\sigma}R^{\mu\nu\varrho\sigma} - - 2R_{\nu\sigma}R^{\nu\sigma} + \frac{1}{2}s^2. - \end{align} - The kinetic term of the gauge field is described by the Lagrangian - $\mathcal{L}_B$, which takes the following shape - \begin{align} - \mathcal{L}_B(B_\mu) := \frac{f(0)}{24\pi^2} - \text{Tr}(F_{\mu\nu}F^{\mu\nu}). - \end{align} - Lastly $\mathcal{L}_\phi$ is the scalar-field Lagrangian with a boundary - term, given by - \begin{align} - \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi) := - &-\frac{2f_2\Lambda^2}{4\pi^2}\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2} - \text{Tr}(\Phi^4) + \frac{f(0)}{24\pi^2} - \Delta(\text{Tr}(\Phi^2))\nonumber\\ - &+ \frac{f(0)}{48\pi^2}s\text{Tr}(\Phi^2) - \frac{f(0)}{8\pi^2}\text{Tr}((D_\mu \Phi)(D^\mu \Phi)). - \end{align} -\end{myproposition} -\begin{proof} - The dimension of the manifold $M$ is $\dim(M) = \text{Tr}(id) =4$. For - an $x \in M$, we have an asymptotic expansion of the term - $\text{Tr}(f(\frac{D_\omega}{\Lambda}))$ as $\Lambda$ goes to infinity, - which can be written as - \begin{align} - \text{Tr}(f(\frac{D_\omega}{\Lambda})) \simeq& \ 2f_4 \Lambda ^4 - a_0(D_\omega ^2)+ 2f_2\Lambda^2 a_2(D_\omega^2)\nonumber \\&+ f(0) a_4(D_\omega^4) - +O(\Lambda^{-1}).\label{eq:trheatkernel} - \end{align} - We have to note here that the heat kernel coefficients are zero for uneven $k$, - and they are dependent on the fluctuated Dirac operator - $D_\omega$. We can rewrite the heat kernel coefficients in terms of $D_M$, - for the first two terms $a_0$ and $a_2$ we use $N:= - \text{Tr}(\mathbbm{1}_{H_F})$ and one obtains - \begin{align} - a_0(D_\omega^2) &= Na_0(D_M^2),\\ - a_2(D_\omega^2) &= Na_2(D_M^2) - \frac{1}{4\pi^2}\int_M - \text{Tr}(\Phi^2)\sqrt{g}d^4x. - \end{align} - For $a_4$ we extend in terms of coefficients of $F$ from equation - \eqref{eq: a_4} - \begin{align} - &\frac{1}{360}\text{Tr}(60RE)= -\frac{1}{6}S(NR + 4 - \text{Tr}(\Phi^2))\\ - \nonumber\\ - &E^2 = \frac{1}{16}R^2\otimes 1 + 1\otimes \Phi^4 - \frac{1}{4} - \gamma^\mu\gamma^\nu \gamma^\varrho\gamma^\sigma - F_{\mu\nu}F^{\mu\nu}+\nonumber\\ - &\;\;\;\;\;\;\;+\gamma^\mu\gamma^\nu\otimes(D_\mu\Phi)(D_\nu - \Phi)+\frac{1}{2}s\otimes \Phi^2 + \ \text{traceless terms},\\ - \nonumber\\ - &\frac{1}{360}\text{Tr}(180E^2) = \frac{1}{8}R^2N + 2\text{Tr}(\Phi^4) - + \text{Tr}(F_{\mu\nu}F^{\mu\nu}) +\nonumber\\ - &\;\;\;\;\;\;\;+2\text{Tr}((D_\mu\Phi)(D^\mu\Phi)) - + s\text{Tr}(\Phi^2)\\ - \nonumber\\ - &\frac{1}{360}\text{Tr}(-60\Delta E)= - \frac{1}{6}\Delta(NR+4\text{Tr}(\Phi^2)). - \end{align} - The cross terms of the trace in $\Omega_{\mu\nu}^E\Omega^{E\mu\nu}$ - vanishes because of the antisymmetric property of the Riemannian - curvature tensor, reading - \begin{align} - \Omega_{\mu\nu}^E\Omega^{E\mu\nu} = \Omega_{\mu\nu}^S\Omega^{S\mu\nu} - \otimes 1 - 1\otimes F_{\mu\nu}F^{\mu\nu} + 2i\Omega_{\mu\nu}^S - \otimes F^{\mu\nu}. - \end{align} - The trace of the cross term $\Omega^{S}_{\mu\nu}$ vanishes because - \begin{align} - \text{Tr}(\Omega^{S}_{\mu\nu}) = \frac{1}{4} - R_{\mu\nu\varrho\sigma}\text{Tr}(\gamma^\mu\gamma^\nu) = \frac{1}{4} - R_{\mu\nu\varrho\sigma}g^{\mu\nu} =0, - \end{align} - then the trace of the whole term is given by - \begin{align} - \frac{1}{360}\text{Tr}(30\Omega^E_{\mu\nu}\Omega^{E\mu\nu}) = - \frac{N}{24}R_{\mu\nu\varrho\sigma}R^{\mu\nu\varrho\sigma} - -\frac{1}{3}\text{Tr}(F_{\mu\nu}F^{\mu\nu}). - \end{align} - Finally plugging the results into the coefficient $a_4$ and simplifying - one gets - \begin{align} - a_4(x, D_\omega^4) &= Na_4(x, D_M^2) + \frac{1}{4\pi^2}\bigg(\frac{1}{12} s - \text{Tr}(\Phi^2) + \frac{1}{2}\text{Tr}(\Phi^4) \nonumber \\ - &+ \frac{1}{4} - \text{Tr}((D_\mu\Phi)(D^\mu \Phi)) + \frac{1}{6} - \Delta\text{Tr}(\Phi^2) + \frac{1}{6} - \text{Tr}(F_{\mu\nu}F^{\mu\nu})\bigg). - \end{align} - The only thing left is to substitute the heat kernel coefficients into the - heat kernel expansion in equation \eqref{eq:trheatkernel}. -\end{proof} - -\subsubsection{Fermionic Action} -We remind ourselves the definition of the fermionic action in definition -\ref{def:fermionic action} and the manifold we are dealing with in equation -\eqref{eq:almost commutative manifold}. The Hilbertspace $H_F$ is separated -into the particle-antiparticle states with ONB $\{e_R, e_L, \bar{e}_R, -\bar{e}_L\}$. The orthonormal basis of $H_F^+$ is $\{e_L, \bar{e}_R\}$ and -consequently for $H_F^-$, $\{e_R, \bar{e}_L\}$. The decomposition of a spinor -$\psi \in L^2(S)$ in each of the eigenspaces $H_F^\pm$ is $\psi = \psi_R+ -\psi_L$. Meaning for an arbitrary $\psi \in H^+$ we can write -\begin{align} - \psi = \chi_R \otimes e_R + \chi_L \otimes e_L + \psi_L \otimes - \bar{e}_R+ - \psi_R \otimes \bar{e}_L, -\end{align} -where $\chi_L, \psi_L \in L^2(S)^+$ and $\chi_R, \psi_R \in L^2(S)^-$. - -Since the fermionic action yields too much restriction on $F_{ED}$ (modified -Two-Point space $F_X$) one redefines it by taking into account the fluctuated Dirac -operator -\begin{align} - D_\omega = D_M \otimes i + \gamma^\mu \otimes B_\mu + \gamma_M \otimes - D_F. -\end{align} -The Fermionic Action is -\begin{align} -S_F = (J\tilde{\xi}, D_\omega\tilde{\xi}) -\end{align} -for a $\xi \in H^+$. Then the straight forward calculation gives \begin{align} - \frac{1}{2}(J\tilde{\xi}, D_\omega\tilde{\xi}) - &=\frac{1}{2}(J\tilde{\xi}, (D_M \otimes - i)\tilde{\xi})\label{eq:fermionic1}\\ - &+\frac{1}{2}(J\tilde{\xi}, (\gamma^\mu \otimes B_\mu) - \tilde{\xi})\label{eq:fermionic2}\\ - &+\frac{1}{2}(J\tilde{\xi}, (\gamma_M\otimes - D_F)\tilde{\xi})\label{eq:fermionic3}, -\end{align} -(note that we add the constant $\frac{1}{2}$ to the action). -For the term in \eqref{eq:fermionic1} we calculate -\begin{align} - \frac{1}{2}(J\tilde{\xi}, (D_M\otimes 1)\tilde{\xi}) &= - \frac{1}{2}(J_M\tilde{\chi}_R,D_M\tilde{\psi}_L)+\nonumber - \frac{1}{2}(J_M\tilde{\chi}_L,D_M\tilde{\psi}_R)+ - \\&+\frac{1}{2}(J_M\tilde{\psi}_L,D_M\tilde{\psi}_R)+\nonumber - \frac{1}{2}(J_M\tilde{\chi}_R,D_M\tilde{\chi}_L)\\ - &= (J_M\tilde{\chi},D_M\tilde{\chi}). -\end{align} -For the term in \eqref{eq:fermionic2} we have -\begin{align} - \frac{1}{2}(J\tilde{\xi}, (\gamma^\mu \otimes B_\mu)\tilde{\xi})&= - -\frac{1}{2}(J_M\tilde{\chi}_R, \gamma^\mu Y_\mu\tilde{\psi}_R) - -\frac{1}{2}(J_M\tilde{\chi}_L, \gamma^\mu Y_\mu\tilde{\psi}_R)+\nonumber\\ - &+\frac{1}{2}(J_M\tilde{\psi}_L, \gamma^\mu Y_\mu\tilde{\chi}_R)+ - \frac{1}{2}(J_M\tilde{\psi}_R, \gamma^\mu Y_\mu\tilde{\chi}_L)=\nonumber\\ - &= -(J_M\tilde{\chi}, \gamma^\mu Y_\mu\tilde{\psi}). -\end{align} -And for \eqref{eq:fermionic3} we can write -\begin{align} - \frac{1}{2}(J\tilde{\xi}, (\gamma_M\otimes D_F)\tilde{\xi})&= - +\frac{1}{2}(J_M\tilde{\chi}_R, d\gamma_M\tilde{\chi}_R) - +\frac{1}{2}(J_M\tilde{\chi}_L, \bar{d}\gamma_M\tilde{\chi}_L)+\nonumber\\ - &+\frac{1}{2}(J_M\tilde{\chi}_L, \bar{d}\gamma_M\tilde{\chi}_L) - +\frac{1}{2}(J_M\tilde{\chi}_R, d\gamma_M\tilde{\chi}_R)=\nonumber\\ - &= i(J_M\tilde{\chi}, m\tilde{\psi}). -\end{align} -A small problem arises, we obtain a complex mass parameter $d$, but we can -write $d:=im$ for $m\in \mathbb{R}$, which stands for the real mass. - -Finally the fermionic action of $M\times F_{ED}$ takes the form - \begin{align} - S_f = -i\big(J_M\tilde{\chi}, \gamma(\nabla^S_\mu - i\Gamma_\mu) - \tilde{\Psi}\big) + \big(S_M\tilde{\chi}_L, \bar{d}\tilde{\psi}_L\big) - - \big(J_M\tilde{\chi}_R, d \tilde{\psi}_R\big). - \end{align} -Ultimately we arrive at the full Lagrangian of the almost commutative -manifold $M\times F_{ED}$, which is the sum of the purely gravitational -Lagrangian - \begin{align} - \mathcal{L}_{grav}(g_{\mu\nu})=4\mathcal{L}_M(g_{\mu\nu})+ - \mathcal{L}_\phi (g_{\mu\nu}), - \end{align} -and the Lagrangian of electrodynamics - \begin{align} - \mathcal{L}_{ED} = -i\bigg\langle - J_M\tilde{\chi},\big(\gamma^\mu(\nabla^S_\mu - iY_\mu) -m\big)\tilde{\psi}) - \bigg\rangle - +\frac{f(0)}{6\pi^2} Y_{\mu\nu}Y^{\mu\nu}. - \end{align} - diff --git a/src/thesis/chapters/intro.tex b/src/thesis/chapters/intro.tex @@ -16,8 +16,39 @@ invariants, a method called the heat kernel expansion is used. The aim of this thesis is to give a basic foundation of noncommutative geometry and to present a physical application which can be derived from this theory. Additionally we emphasize that this thesis is only literature work, -where chapters \ref{sec:1}-\ref{sec:3} and \ref{sec:5} are from +where chapters \ref{sec:1}, \ref{sec:2}, \ref{sec:3}, \ref{sec:5} and \ref{sec:6} are from the work of Walter D. Suijlekom's book \cite{ncgwalter} and chapter \ref{sec:4} from D.V. Vassilevich's paper \cite{heatkernel}. -\textbf{NOW:CHAPTER OVERVIEW} +The prominent structure of noncommutative geometry is the spectral triple. +The most basic form of a spectral triple consists of an unital $C^*$ algebra +$A$ acting on a Hilbertspace $H$. Together with a self-adjoint operator $D$ in +$H$, with specific conditions coinciding with the Dirac operator on +Riemannian spin$^c$ manifold which square is the Laplacian (up to a scalar +term). + +The structure of the thesis is based on first getting the background +knowledge of noncommutative geometry and the heat kernel expansion. Then by +combining this insight we work out the Lagrangian of electrodynamics. In this +regard the first two chapters \ref{sec:1} and \ref{sec:2} go through the +basic version of noncommutative geometry, in the sense of finite discrete +spaces. It is important to understand these basics, since the they build up +the ground work of constructing the almost commutative manifold of +electrodynamics, that is the Two-Point space $F_X$. Additionally the notion +of equivalence relations between spectral triples, called Morita equivalence is +introduced + +The next chapter \ref{sec:3} extends the finite spectral triple with a real +structure, called the real finite spectral triple, we also examine Morita +equivalence within this extension. + +Chapter \ref{sec:4} explains the heat kernel and leads off to the heat kernel +expansion, where the famous heat kernel coefficients arise. Hereof we +calculate the heat kernel coefficients, which become important when +calculating the Lagrangian of the almost commutative manifold of +electrodynamics. + +In the last two chapters \ref{sec:5} and \ref{sec:6} we go over the ideas and +the process of constructing the almost commutative manifold, that will give +rise to the Lagrangian of electrodynamics and an additional purely +gravitational Lagrangian. diff --git a/src/thesis/chapters/realncg.tex b/src/thesis/chapters/realncg.tex @@ -1,292 +0,0 @@ -\subsection{Finite Real Noncommutative Spaces\label{sec:3}} -\subsubsection{Finite Real Spectral Triples} -In this chapter we supplement the finite spectral triples with a \textit{real -structure}. We additionally require a symmetry condition that that $H$ is an -$A$-$A$-bimodule rather than only a $A$-left module. This ansatz has tight -bounds with physical properties such as charge conjugation, into which we will -dive in deeper in later chapters. In regards to this we will need to set a basis -of definitions to get an overview. -First we introduce a $\mathbb{Z}_2$-grading $\gamma$ with the following -properties -\begin{align} - \gamma ^* &= \gamma, \\ - \gamma ^2 &= 1, \\ - \gamma D &= - D \gamma,\\ - \gamma a &= a \gamma, \;\;\;\; a\in A. -\end{align} -Then we can define a finite real spectral triple. -\begin{mydefinition} - A \textit{finite real spectral triple} is given by a finite spectral - triple $(A, H, D)$ and a anti-unitary operator $J:H\rightarrow H$ called - the \textit{real structure}, such that - \begin{align} - a^\circ := J\ a^*\ J^{-1}, - \end{align} - is a right representation of $A$ on $H$, that is $(ab)^\circ = b^\circ - a^\circ$. With two requirements - \begin{align} - &[a, b^\circ] = 0,\\ - &[[D, a],\ b^\circ] = 0. - \end{align} - The two properties are called the \textit{commutant property}, they - require that the left action of an element in $A$ and $\Omega _D^1(A)$ commutes with the right - action on $A$. -\end{mydefinition} -\begin{mydefinition} - The $KO$-dimension of a real spectral triple is determined by the sings - $\epsilon, \epsilon ' ,\epsilon '' \in \{-1, 1\}$ appearing in - \begin{align} - J^2 &= \epsilon, \\ - J\ D &= \epsilon \ D\ J,\\ - J\ \gamma &= \epsilon''\ \gamma\ J. - \end{align} -\end{mydefinition} -\begin{table}[h!] - \centering - \caption{$KO$-dimension $k$ modulo $8$ of a real spectral triple} - \begin{tabular}{ c | c c c c c c c c} - \hline - $k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ - \hline - $\epsilon$ & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ - $\epsilon '$ & 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\ - $\epsilon ''$ & 1 & & -1 & & 1 & & -1 & \\ - \hline - \end{tabular} -\end{table} -\noindent -Even thought the KO-dimension of a real spectral triple is important, we will -not be doing in-depth introduction of the KO-dimension, for this we reference -again to \cite{ncgwalter}. - -\begin{mydefinition} -An opposite-algebra $A^\circ$ of a $A$ is defined to be equal to $A$ as a -vector space with the opposite product -\begin{align} - &a\circ b := ba\\ - &\Rightarrow a^\circ = Ja^* J^{-1}, -\end{align} -which defines the left representation of $A^\circ$ on $H$ -\end{mydefinition} - - -%------------EXAMPLE EXERCISE -Let us examine an example of a matrix algebra $M_N(\mathbb{C})$ acting on -$H=M_N(\mathbb{C})$ by left matrix multiplication with the Hilbert Schmidt -inner product. -\begin{align} - \langle a , b \rangle = \text{Tr}(a^* b). -\end{align} -We can define $\gamma (a) = a$ and $J(a) = a^*$ with $a\in H$. Since $D$ -must be odd with respect to $\gamma$ it vanishes identically. Furthermore we -know the multiplicity space is $V_i = \mathbb{C}^{m_i}$, and also we know -that for $T\in H$ and$a\in A'$ to work we need $a\ T=T\ a$. Thus by laws of -matrix multiplication we need $A' \simeq \bigoplus _i M_{m_i}(\mathbb{C})$. For -this to work we naturally need $H = \bigoplus_i \mathbb{C}^{n_i} \otimes -\mathbb{C}^{m_i}$. Hence the right action of $M_N(\mathbb{C})$ on $H = -M_N(\mathbb{C})$ as defined by $a \mapsto a^\circ$ is given by right matrix -multiplication -\begin{align} - a^\circ \xi = J a^* J^{-1}\xi = Ja^* \xi^* = J\xi a=\xi^* a -\end{align} - -%------------EXAMPLE EXERCISE - -\begin{mydefinition} - We call $\xi \in H$ \textbf{cyclic vector} in $A$ if: - \begin{align} - A\xi := { a\xi:\;\; a\in A} = H - \end{align} - We call $\xi \in H$ \textbf{separating vector} in $A$ if: - \begin{align} - a\xi = 0\;\; \Rightarrow \;\; a=0;\;\;\; a\in A - \end{align} -\end{mydefinition} -%------------------- EXERCISE -Suppose $(A, H, D = 0)$ is a finite spectral triple such that $H$ possesses a -cyclic and separating vector for $A$ and let -\begin{align} - J: H \rightarrow H -\end{align} -be the operator in $S = J \Delta ^{1/2}$ with $\Delta = S^*S$. By composition -$S(a\xi) = a*\xi$ this is literally anti-linearity, then $S(a \xi) = a* \xi$ -defines a anti-linear operator. Furthermore the operator $S$ is invertible -because, if a $\xi \in H$ is cyclic then we have $S(A\xi) = A^*\xi = A\xi = -H$. Vice versa the same has to work for $S^{-1}$, otherwise $\xi$ wouldn't -exist. And hence $S^{-1}(A^*\xi) = S^{-1}(H) = H$. Additionally $J$ is -anti-unitary because firstly, $S$ is bijective thus $\Delta ^{1/2}$ and $J$ need to be bijective. -Also have $J = S \Delta^{-1/2}$ and $\Delta^* = \Delta$, so for a $\xi _1 , -\xi _2 \in H$ we can write -\begin{align} - <J \xi _1 , J \xi _2 > &= < J^*J\xi_1 , \xi_2>^* =\nonumber\\ - &= <(\Delta ^{-1/2})^* S^* S \Delta ^{-1/2} \xi_1, \xi_2>^* =\nonumber \\ - &= <(\Delta^{-1/2})^* \Delta \Delta^{-1/2} \xi_1, \xi_2>^* =\nonumber\\ - &= <\Delta^{-1/2} \Delta^{1/2}\Delta^{1/2} \Delta^{-1/2} \xi_1, \xi_2>^* - =\nonumber\\ - &= <\xi _1, \xi_2>^* = <\xi_2 , \xi_1>, -\end{align} -which concludes the anti-unitarity by definition. -%------------------- EXERCISE -\subsubsection{Morphisms Between Finite Real Spectral Triples} -Like the unitary equivalence relation for finite spectral triples, we can it -extend it to finite real spectral triples. -\begin{mydefinition} - We call two finite real spectral triples $(A_1, H_1 ,D_1 ; J_1 , \gamma_1)$ - and $(A_2, H_2, D_2; J_2, \gamma _2)$ unitarily equivalent if $A_1 = - A_2$ and if there exists a unitary operator $U: H_1 \rightarrow H_2$ such - that - \begin{align} - U\ \pi_1(a)\ U^* &= \pi _2(a),\\ - U\ D_1\ U^* &= D_2,\\ - U \gamma _1\ U^* &= \gamma _2,\\ - U\ J_1\ U^* &= J_2. - \end{align} -\end{mydefinition} -\begin{mydefinition} - Let $E$ be a $B$-$A$ bimodule. The \textit{conjugate Module} $E^\circ$ is - given by the $A$-$B$-bimodule. - \begin{align} - E^\circ = \{\bar{e} : e\in E\}, - \end{align} - with - \begin{align} - a \cdot \bar{e} \cdot b = b^*\ \bar{e}\ a^*, \;\;\;\; \forall a\in A, b \in - B. - \end{align} -\end{mydefinition} -We bear in mind that $E^\circ$ is not a Hilbert bimodule for $(A, B)$ because -it doesn't have a natural $B$-valued inner product. But there is a $A$-valued -inner product on the left $A$-module $E^\circ$ with -\begin{align} - \langle \bar{e}_1, \bar{e}_2 \rangle = \langle e_2 , e_1 \rangle, - \;\;\;\; e_1, e_2 \in E. -\end{align} -And linearity in $A$ by the terms -\begin{align} - \langle a\ \bar{e}_1, \bar{e}_2 \rangle = a \langle \bar{e}_1, \bar{e}_2 - \rangle, \;\;\;\; \forall a \in A. -\end{align} - -%------------- EXERCISE -It turns out that $E^\circ$ is a Hilbert bimodule -of $(B^{\circ}, A^{\circ})$. A straightforward calculation of the properties of the Hilbert bimodule and its $B^{\circ}$ -valued inner product gives the results. For $\bar{e}_1, \bar{e}_2 \in E^{\circ}$ and $a^\circ \in A, -b^\circ \in B$ we write -\begin{align} - \langle\bar{e}_1, a^\circ \bar{e}_2\rangle &= \langle\bar{e}_1, Ja^*J^{-1} - \bar{e}_2\rangle=\nonumber\\ - &= \langle\bar{e}_1 , J a^* e_2\rangle \nonumber \\ - &= \langle J^{-1} e_1, a^* e_2\rangle \nonumber\\ - & = \langle a^* e_1, e_2\rangle= \langle J^{-1}(a^\circ)^* J e_1, e_2\rangle \nonumber\\ - & = \langle J^{-1} (a^\circ)^* \bar{e}_1, e_2\rangle \nonumber\\ - & = \langle (a^\circ)^* \bar{e}_1 , \bar{e}_2\rangle. -\end{align} -Next for $\langle\bar{e}_1, \bar{e}_2 b^\circ\rangle = \langle\bar{e}_1, -\bar{e_2}\rangle b^\circ$ we obtain -\begin{align} - \langle\bar{e}_1, \bar{e}_2 b^\circ\rangle &= \langle\bar{e}_1, \bar{e}_2 Jb^*J^{-1}\rangle - \nonumber\\ - &= \langle\bar{e}_1, \bar{e_2}\rangle Jb^*J^{-1} \nonumber \\ - &= \langle\bar{e}_1, \bar{e}_2\rangle b^\circ. -\end{align} -Additionally we get -\begin{align} - (\langle\bar{e}_1, \bar{e}_2)\rangle_{E^\circ})^* &= (\langle e_2, e_1\rangle_E)^*\nonumber\\ - &= \langle e_1, e_2\rangle_E^* \nonumber\\ - &= \langle\bar{e}_2, \bar{e}_2\rangle_{E^\circ}. -\end{align} -And finally we have -\begin{align} - \langle\bar{e}, \bar{e}\rangle = \langle e, e\rangle \geq 0 -\end{align} -%------------- EXERCISE - -Given the results thus far, given a Hilbert bimodule $E$ for $(B, A)$ one can -construct a spectral triple $(B, H', D'; J', \gamma ')$ from $(A, H, D; J, -\gamma)$. For $H'$ we make a $\mathbb{C}$-valued inner product on $H'$ by combining -the $A$ valued inner product on $E$ and $E^\circ$ with the -$\mathbb{C}$-valued inner product on $H$ by defining -\begin{align} - H' := E\otimes _A H \otimes _A E^\circ. -\end{align} -Then the action of $B$ on $H'$ takes the following form -\begin{align} - b(e_2 \otimes \xi \otimes \bar{e}_2 ) = (be_1) \otimes \xi \otimes - \bar{e}_2. -\end{align} -The right action of $B$ on $H'$ defined by action on the right components of -$E^\circ$ is -\begin{align} - J'(e_1 \otimes \xi \otimes \bar{e}_2) = e_2 \otimes J \xi \otimes - \bar{e}_1, -\end{align} -where $b^\circ = J' b^* (J')^{-1}$ and $b^* \in B$ is the action on $H'$. -Hence the connection reads -\begin{align} - &\nabla: E \rightarrow E\otimes _A \Omega _D ^1(A) \\ - &\bar{\nabla}:E^\circ \rightarrow \Omega _D^1(A) \otimes _A E^\circ, -\end{align} -which gives the Dirac operator on $H' = E \otimes _A H \otimes _A -E^\circ$ as -\begin{align} - D'(e_1 \otimes \xi \otimes \bar{e}_2) = (\nabla e_1) \xi \otimes - \bar{e_2}+ e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes - \xi(\bar{\nabla}\bar{e}_2). -\end{align} -And the right action of $\omega \in \Omega _D ^1(A)$ on $\xi \in H$ is -defined by -\begin{align} - \xi \mapsto \epsilon' J \omega ^* J^{-1}\xi. -\end{align} -Finally for the grading one obtains -\begin{align} - \gamma ' = 1 \otimes \gamma \otimes 1. -\end{align} - -Summarizing we can write down the following theorem -\begin{mytheorem} - Suppose $(A, H, D; J, \gamma)$ is a finite spectral triple of - $KO$-dimension $k$, let $\nabla$ be a connection satisfying the - compatibility condition (same as with finite spectral triples). - Then $(B, H',D'; J', \gamma')$ is a finite spectral triple of - $KO$-Dimension $k$. ($H', D', J', \gamma'$) -\end{mytheorem} - -\begin{proof} - The only thing left is to check is, if the $KO$-dimension is preserved. - That is one needs to check if if the $\epsilon$'s are the same. - \begin{align} - &(J')^2 = 1 \otimes J^2 \otimes 1 = \epsilon,\\ - &J' \gamma '= \epsilon ''\gamma'J'. - \end{align} - Lastly for $\epsilon '$ one obtains - \begin{align} - J'D'(e_1 \otimes \xi \otimes \bar{e}_2)&=J'\big((\nabla e_1) \xi \otimes - \bar{e_2} + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau - \nabla e_2)\big)\nonumber \\ - &= \epsilon' D'\left(e_2 \otimes J\xi \otimes \bar{e}_2\right)\nonumber\\ - &= \epsilon' D'J'\left(e_1 \otimes \xi \bar{e}_2\right) - \end{align} -\end{proof} - -Let us take a look at $\nabla : E \Rightarrow E \otimes _A \Omega _d^1 (A)$, -the right connection on $E$ and consider the following anti-linear map -\begin{align} - \tau : E \otimes_A \Omega _D^1 (A) &\rightarrow \Omega _D^1 (A) \otimes_A E^\circ\\ - e \otimes \omega &\mapsto -\omega ^* \otimes \bar{e}. -\end{align} -Interestingly the map $\bar{\nabla} : E^\circ \rightarrow \Omega _D^1(A) \otimes E^\circ$ -with $\bar{\nabla}(\bar{e}) = \tau \circ \nabla(e)$ is a left connection, that means -show that it satisfied the left Leibniz rule, for one -\begin{align} - \tau \circ \nabla(ae) = \bar{\nabla}(a\bar{e}) = \bar{\nabla}(a^* - \bar{e}). -\end{align} -And for two -\begin{align} - \tau \circ \nabla(ae) &= \tau(\nabla(e)a) + \tau \circ(e \otimes - d(a))\nonumber \\ - &=a^*\bar{\nabla}(\bar{e}) - d(a)^* \otimes \bar{e}. \nonumber\\ - &= a^*\bar{\nabla}(\bar{e}) + d(a^*) \otimes \bar{e}. -\end{align} - diff --git a/src/thesis/chapters/twopointspace.tex b/src/thesis/chapters/twopointspace.tex @@ -1,244 +0,0 @@ -\subsection{Almost-commutative Manifold\label{sec:4}} -\subsubsection{Two-Point Space} -One of the basics forms of noncommutative space is the Two-Point space $X -:= \{x, y\}$. The Two-Point space can be represented by the following spectral triple -\begin{align} - F_X := (C(X) = \mathbb{C}^2, H_F, D_F; J_F, \gamma _f). -\end{align} -Three properties of $F_X$ stand out. First of all the action of $C(X)$ on -$H_F$ is faithful for $dim(H_F) \geq 2$, thus a simple choice for the -Hilbertspace can be made, for instance $H_F = \mathbb{C}^2$. Furthermore -$\gamma_F$ is the $\mathbb{Z}_2$ grading, which allows for a decomposition of -$H_F$ into -\begin{align} - H_F = H_F^+ \otimes H_F^- = \mathbb{C} \otimes \mathbb{C}, -\end{align} -where -\begin{align} - H_F^\pm = \{\psi \in H_F |\; \gamma_F\psi = \pm \psi\}, -\end{align} -are two eigenspaces. And lastly the Dirac operator $D_F$ lets us -interchange between the two eigenspaces $H_F^\pm$, -\begin{align} - D_F = - \begin{pmatrix}0 & t \\ \bar{t} & 0\end{pmatrix}, \;\;\;\;\; - \text{with} \;\; t\in\mathbb{C}. -\end{align} - -The Two-Point space $F_X$ can only have a real structure if the Dirac -operator vanishes, i.e. $D_F = 0$. In that case the KO-dimension is 0, -2 or 6. To elaborate further, we draw the only two diagram representations of -$F_X$ at $\underbrace{\mathbb{C} \oplus \mathbb{C}}_{C(X)}$ on -$\underbrace{\mathbb{C} \oplus\mathbb{C}}_{H_F}$, which are -\begin{figure}[h!] \centering -\begin{tikzpicture}[ - dot/.style = {draw, circle, inner sep=0.06cm}, - no/.style = {}, - ] - \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {}; - \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {}; - \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {}; - \node[no](d) at (2, 0.5) [label=above:$\textbf{1}$] {}; - \node[dot](d0) at (2,0) [] {}; - \node[dot](d0) at (1,-1) [] {}; - - \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {}; - \node[no](b2) at (6, -1) [label=left:$\textbf{1}^\circ$] {}; - \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {}; - \node[no](d2) at (8, 0.5) [label=above:$\textbf{1}$] {}; - \node[dot](d0) at (7,0) [] {}; - \node[dot](d0) at (8,-1) [] {}; - \end{tikzpicture} - \caption{Two diagram representations of $F_X$} -\end{figure}\newline -If the Two-Point space $F_X$ would be a real spectral triple then $D_F$ can -only go vertically or horizontally. This would mean that $D_F$ vanishes. -As for the KO-dimension The diagram on the left has KO-dimension 2 and 6, the diagram on the -right 0 and 4. Yet KO-dimension 4 is ruled out because -$dim(H_F^\pm) = 1$ (Lemma 3.8 in \cite{ncgwalter}) , which ultimately means $J_F^2 = -1$ is -not allowed. -\subsubsection{Product Space} -By Extending the Two-Point space with a four dimensional Riemannian spin -manifold, we get an almost commutative manifold $M\times F_X$, given by -\begin{align} - M\times F_X = \big(C^\infty(M, \mathbb{C}^2), L^2(S)\otimes \mathbb{C}^2, - D_M\otimes 1 ; J_M\otimes J_F, \gamma_M \otimes \gamma_F\big), -\end{align} -where -\begin{align} - C^\infty(M, \mathbb{C}^2) \simeq C^\infty(M) \oplus C^\infty(M). -\end{align} -According to Gelfand duality the algebra $C^\infty(M, \mathbb{C}^2)$ of the -spectral triple corresponds to the space -\begin{align} - N:= M\otimes X. -\end{align} -Keep in mind that we still need to find an appropriate real structure on the -Riemannian spin manifold, $J_M$. Furthermore the total Hilbertspace can be -decomposed into $H = L^2(S) \oplus L^2(S)$, such that for $\underbrace{a,b\in -C^\infty(M)}_{(a, b) \in C^\infty(N)}$ and $\underbrace{\psi, \phi \in -L^2(S)}_{(\psi, \phi) \in H}$ we have -\begin{align} - (a, b)(\psi, \phi) = (a\psi, b\phi). -\end{align} -Along with the decomposition of the total Hilbertspace a -distance formula on $M\times F_X$ can be considered with -\begin{align}\label{eq:commutator inequality} - d_{D_F}(x,y) = \sup\left\{ |a(x) - a(y)|:a\in A_F, ||[D_F, a]|| \leq - 1 \right\}. -\end{align} -To calculate the distance between two points on the Two-Point space $X= \{x, -y\}$, between $x$ and $y$, we consider an $a \in \mathbb{C}^2 = C(X)$, which is -specified by two complex numbers $a(x)$ and $a(y)$. Then we simplify the -commutator inequality in \eqref{eq:commutator inequality} -\begin{align} - &||[D_F , a]|| = ||(a(y) - a(x))\begin{pmatrix}0 &t\\\bar{t} &0 - \end{pmatrix}|| \leq 1,\\ - &\Leftrightarrow |a(y) - a(x)|\leq \frac{1}{|t|}. -\end{align} -The supremum then gives us the distance -\begin{align} - d_{D_F} (x,y) = \frac{1}{|t|}. -\end{align} -An interesting observation here is that, if the Riemannian spin manifold can be -represented by a real spectral triple then a real structure $J_M$ exists, -along the lines it follows that $t=0$ and the distance becomes infinite. This is a -purely mathematical observation and has no physical meaning. - -We can also construct a distance formula on $N$ (in reference to a point $p -\in M$) between two points on $N=M\times X$, $(p, x)$ and $(p,y)$. Then an $a -\in C^\infty(N)$ is determined by $a_x(p):=a(p, x)$ and $a_y(p):=a(p, y)$. -The distance between these two points is -\begin{align} - d_{D_F\otimes 1}(n_1, n_2) = \sup \left\{ |a(n_1) - a(n_2)|: a\in - A, ||[D\otimes 1, a]||\right\}. -\end{align} -On the other hand if we consider $n_1 = (p,x)$ and $n_2 = (q, x)$ -for $p,q \in M$ then -\begin{align} - d_{D_M \otimes 1} (n_1, n_2) = |a_x(p) - a_x(q)| \;\;\;\text{for}\;\; - a_x\in - C^\infty(M) \;\; \text{with} \;\; ||[D\otimes 1, a_x]|| \leq 1 -\end{align} -The distance formula turns to out to be the geodesic distance formula -\begin{align} - d_{D_M\otimes1}(n_1, n_2) = d_g(p, q), -\end{align} -which is to be expected since we are only looking at the manifold. -However if $n_1 = (p, x)$ and $n_2 = (q, y)$ then the two conditions are -\begin{align} - &||[D_M, a_x]|| \leq 1, \;\;\; \text{and}\\ - &||[D_M, a_y|| \leq 1. -\end{align} -These conditions have no restriction which results in the distance being -infinite! And $N = M\times X$ is given by two disjoint copies of M which are -separated by infinite distance - -The distance is only finite if $[D_F, a] < 1$. In this case the commutator -generates a scalar field and the finiteness of the distance is -related to the existence of scalar fields. - -\subsubsection{$U(1)$ Gauge Group} -To get a insight into the physical properties of the almost commutative -manifold $M\times F_X$, that is to calculate the spectral action, we need to -determine the corresponding Gauge group. -For this we set of with simple definitions and important propositions to -help us break down and search for the gauge group of the Two-Point $F_X$ -space which we then extend to $M\times F_X$. We will only be diving -superficially into this chapter, for further reading we refer to -\cite{ncgwalter}. -\begin{mydefinition} -Gauge Group of a real spectral triple is given by -\begin{align} - \mathfrak{B}(A, H; J) := \{ U = uJuJ^{-1} | u\in U(A)\}. -\end{align} -\end{mydefinition} -\begin{mydefinition} - A *-automorphism of a *-algebra $A$ is a linear invertible - map - \begin{align} - &\alpha:A \rightarrow A,\;\;\; \text{with}\\ - \nonumber\\ - &\alpha(ab) = \alpha(a)\alpha(b),\\ - &\alpha(a)^* = \alpha(a^*). - \end{align} - The \textbf{Group of automorphisms of the *-Algebra $A$} is denoted by - $(A)$.\newline - The automorphism $\alpha$ is called \textbf{inner} if - \begin{align} - \alpha(a) = u a u^* \;\;\; \text{for} \;\; U(A), - \end{align} - where $U(A)$ is - \begin{align} - U(A) = \{ u\in A|\;\; uu^* = u^*u=1\}. \;\;\; - \text{(unitary)} - \end{align} -\end{mydefinition} -The Gauge group of $F_X$ is given by the quotient $U(A)/U(A_J)$. -To get a nontrivial Gauge group so we need to choose a $U(A_J) \neq -U(A)$ and $U((A_F)_{J_F}) \neq U(A_F)$. -We consider our Two-Point space $F_X$ to be equipped with a real structure, -which means the operator vanishes, and the spectral triple representation is -\begin{align} - F_X := \left(\mathbb{C}^2,\mathbb{C}^2, D_F =\begin{pmatrix} - 0&0\\0&0\end{pmatrix}; J_f =\begin{pmatrix} - 0&C\\C&0\end{pmatrix}, - \gamma_F = \begin{pmatrix}1&0\\0&-1\end{pmatrix}\right). -\end{align} -Here $C$ is the complex conjugation, and $F_X$ is a real even finite -spectral triple (space) of KO-dimension 6. - -\begin{myproposition} -The Gauge group of the Two-Point space $\mathfrak{B}(F_X)$ is $U(1)$. -\end{myproposition} -\begin{proof} - Note that $U(A_F) = U(1) \times U(1)$. We need to show that $U(A_F) \cap - U(A_F)_{J_F}) \simeq U(1)$, such that $\mathfrak{B}(F) \simeq U(1)$. So - for an element $a \in \mathbb{C}^2$ to be in $(A_F)_{J_F}$, it has to - satisfy $J_F a^* J_F = a$, - \begin{align} - J_F a^* J^{-1} = - \begin{pmatrix}0&C\\C&0\end{pmatrix} - \begin{pmatrix}\bar{a}_1&0\\0&\bar{a}_2\end{pmatrix} - \begin{pmatrix}0&C\\C&0\end{pmatrix} - = - \begin{pmatrix}a_2&0\\0&a_1\end{pmatrix}. - \end{align} - This can only be the case if $a_1 = a_2$. So we have - $(A_F)_{J_F} \simeq \mathbb{C}$, whose unitary elements - from $U(1)$ are contained in the diagonal subgroup of - $U(A_F)$. -\end{proof} - -An arbitrary hermitian field $A_\mu = -ia\partial _\mu b$ is given by -two $U(1)$ Gauge fields $X_\mu^1, X_\mu^2 \in C^\infty(M, \mathbb{R})$. -However $A_\mu$ appears in combination $A_\mu - J_F A_\mu J_F^{-1}$: -\begin{align} - A_\mu - J_F A_\mu J_F^{-1} = - \begin{pmatrix}X_\mu^1&0\\0&X_\mu^2 \end{pmatrix} - - - \begin{pmatrix}X_\mu^2&0\\0&X_\mu^1 \end{pmatrix} - =: - \begin{pmatrix}Y_\mu&0\\0&-Y_\mu \end{pmatrix} - = Y_\mu \otimes \gamma _F, -\end{align} -where $Y_\mu$ the $U(1)$ Gauge field is defined as -\begin{align} - Y_\mu := X_\mu^1 - X_\mu^2 \in C^\infty(M, \mathbb{R}) = C^\infty(M, - i\ u(1)). -\end{align} - -\begin{myproposition} - The inner fluctuations of the almost-commutative manifold $M\times - F_X$ are parameterized by a $U(1)$-gauge field $Y_\mu$ as - \begin{align} - D \mapsto D' = D + \gamma ^\mu Y_\mu \otimes \gamma_F - \end{align} - The action of the gauge group $\mathfrak{B}(M\times F_X) \simeq - C^\infty (M, U(1))$ on $D'$ is implemented by - \begin{align} - Y_\mu \mapsto Y_\mu - i\ u\partial_\mu u^*; \;\;\;\;\; (u\in - \mathfrak{B}(M\times F_X)). - \end{align} -\end{myproposition} - diff --git a/src/thesis/main.aux b/src/thesis/main.aux diff --git a/src/thesis/main.bcf b/src/thesis/main.bcf @@ -0,0 +1,2260 @@ +<?xml version="1.0" encoding="UTF-8"?> +<bcf:controlfile version="3.7" bltxversion="3.16" xmlns:bcf="https://sourceforge.net/projects/biblatex"> + <!-- BIBER OPTIONS --> + <bcf:options component="biber" type="global"> + <bcf:option type="singlevalued"> + <bcf:key>output_encoding</bcf:key> + <bcf:value>utf8</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>input_encoding</bcf:key> + <bcf:value>utf8</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>debug</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>mincrossrefs</bcf:key> + <bcf:value>2</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>minxrefs</bcf:key> + <bcf:value>2</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>sortcase</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>sortupper</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + </bcf:options> + <!-- BIBLATEX OPTIONS --> + <!-- GLOBAL --> + <bcf:options component="biblatex" type="global"> + <bcf:option type="singlevalued"> + <bcf:key>alphaothers</bcf:key> + <bcf:value>+</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>labelalpha</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="multivalued"> + <bcf:key>labelnamespec</bcf:key> + <bcf:value order="1">shortauthor</bcf:value> + <bcf:value order="2">author</bcf:value> + <bcf:value order="3">shorteditor</bcf:value> + <bcf:value order="4">editor</bcf:value> + <bcf:value order="5">translator</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>labeltitle</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="multivalued"> + <bcf:key>labeltitlespec</bcf:key> + <bcf:value order="1">shorttitle</bcf:value> + <bcf:value order="2">title</bcf:value> + <bcf:value order="3">maintitle</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>labeltitleyear</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>labeldateparts</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="multivalued"> + <bcf:key>labeldatespec</bcf:key> + <bcf:value order="1" type="field">date</bcf:value> + <bcf:value order="2" type="field">year</bcf:value> + <bcf:value order="3" type="field">eventdate</bcf:value> + <bcf:value order="4" type="field">origdate</bcf:value> + <bcf:value order="5" type="field">urldate</bcf:value> + <bcf:value order="6" type="string">nodate</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>julian</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>gregorianstart</bcf:key> + <bcf:value>1582-10-15</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>maxalphanames</bcf:key> + <bcf:value>3</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>maxbibnames</bcf:key> + <bcf:value>3</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>maxcitenames</bcf:key> + <bcf:value>3</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>maxsortnames</bcf:key> + <bcf:value>3</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>maxitems</bcf:key> + <bcf:value>3</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>minalphanames</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>minbibnames</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>mincitenames</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>minsortnames</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>minitems</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>nohashothers</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>noroman</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>nosortothers</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>singletitle</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>skipbib</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>skipbiblist</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>skiplab</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>sortalphaothers</bcf:key> + <bcf:value>+</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>sortlocale</bcf:key> + <bcf:value>english</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>sortingtemplatename</bcf:key> + <bcf:value>none</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>sortsets</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniquelist</bcf:key> + <bcf:value>false</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniquename</bcf:key> + <bcf:value>false</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniqueprimaryauthor</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniquetitle</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniquebaretitle</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniquework</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useprefix</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useafterword</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useannotator</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useauthor</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usebookauthor</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usecommentator</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useeditor</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useeditora</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useeditorb</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useeditorc</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useforeword</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useholder</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useintroduction</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usenamea</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usenameb</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usenamec</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usetranslator</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useshortauthor</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useshorteditor</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + </bcf:options> + <!-- online --> + <bcf:options component="biblatex" type="online"> + <bcf:option type="singlevalued"> + <bcf:key>labelalpha</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="multivalued"> + <bcf:key>labelnamespec</bcf:key> + <bcf:value order="1">shortauthor</bcf:value> + <bcf:value order="2">author</bcf:value> + <bcf:value order="3">shorteditor</bcf:value> + <bcf:value order="4">editor</bcf:value> + <bcf:value order="5">translator</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>labeltitle</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="multivalued"> + <bcf:key>labeltitlespec</bcf:key> + <bcf:value order="1">shorttitle</bcf:value> + <bcf:value order="2">title</bcf:value> + <bcf:value order="3">maintitle</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>labeltitleyear</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>labeldateparts</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="multivalued"> + <bcf:key>labeldatespec</bcf:key> + <bcf:value order="1" type="field">date</bcf:value> + <bcf:value order="2" type="field">year</bcf:value> + <bcf:value order="3" type="field">eventdate</bcf:value> + <bcf:value order="4" type="field">origdate</bcf:value> + <bcf:value order="5" type="field">urldate</bcf:value> + <bcf:value order="6" type="string">nodate</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>maxalphanames</bcf:key> + <bcf:value>3</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>maxbibnames</bcf:key> + <bcf:value>3</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>maxcitenames</bcf:key> + <bcf:value>3</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>maxsortnames</bcf:key> + <bcf:value>3</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>maxitems</bcf:key> + <bcf:value>3</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>minalphanames</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>minbibnames</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>mincitenames</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>minsortnames</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>minitems</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>nohashothers</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>noroman</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>nosortothers</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>singletitle</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>skipbib</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>skiplab</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>skipbiblist</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniquelist</bcf:key> + <bcf:value>false</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniquename</bcf:key> + <bcf:value>false</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniqueprimaryauthor</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniquetitle</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniquebaretitle</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>uniquework</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useprefix</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useafterword</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useannotator</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useauthor</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usebookauthor</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usecommentator</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useeditor</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useeditora</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useeditorb</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useeditorc</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useforeword</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useholder</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useintroduction</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usenamea</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usenameb</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usenamec</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>usetranslator</bcf:key> + <bcf:value>0</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useshortauthor</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + <bcf:option type="singlevalued"> + <bcf:key>useshorteditor</bcf:key> + <bcf:value>1</bcf:value> + </bcf:option> + </bcf:options> + <!-- BIBLATEX OPTION SCOPE --> + <bcf:optionscope type="GLOBAL"> + <bcf:option datatype="xml">datamodel</bcf:option> + <bcf:option datatype="xml">labelalphanametemplate</bcf:option> + <bcf:option datatype="xml">labelalphatemplate</bcf:option> + <bcf:option datatype="xml">inheritance</bcf:option> + <bcf:option datatype="xml">translit</bcf:option> + <bcf:option datatype="xml">uniquenametemplate</bcf:option> + <bcf:option datatype="xml">sortingnamekeytemplate</bcf:option> + <bcf:option datatype="xml">sortingtemplate</bcf:option> + <bcf:option datatype="xml">extradatespec</bcf:option> + <bcf:option datatype="xml">labelnamespec</bcf:option> + <bcf:option datatype="xml">labeltitlespec</bcf:option> + <bcf:option datatype="xml">labeldatespec</bcf:option> + <bcf:option datatype="string">controlversion</bcf:option> + <bcf:option datatype="string">alphaothers</bcf:option> + <bcf:option datatype="string">sortalphaothers</bcf:option> + <bcf:option datatype="string">presort</bcf:option> + <bcf:option datatype="string">texencoding</bcf:option> + <bcf:option datatype="string">bibencoding</bcf:option> + <bcf:option datatype="string">sortingtemplatename</bcf:option> + <bcf:option datatype="string">sortlocale</bcf:option> + <bcf:option datatype="string">language</bcf:option> + <bcf:option datatype="string">autolang</bcf:option> + <bcf:option datatype="string">langhook</bcf:option> + <bcf:option datatype="string">indexing</bcf:option> + <bcf:option datatype="string">hyperref</bcf:option> + <bcf:option datatype="string">backrefsetstyle</bcf:option> + <bcf:option datatype="string">block</bcf:option> + <bcf:option datatype="string">pagetracker</bcf:option> + <bcf:option datatype="string">citecounter</bcf:option> + <bcf:option datatype="string">citetracker</bcf:option> + <bcf:option datatype="string">ibidtracker</bcf:option> + <bcf:option datatype="string">idemtracker</bcf:option> + <bcf:option datatype="string">opcittracker</bcf:option> + <bcf:option datatype="string">loccittracker</bcf:option> + <bcf:option datatype="string">labeldate</bcf:option> + <bcf:option datatype="string">labeltime</bcf:option> + <bcf:option datatype="string">dateera</bcf:option> + <bcf:option datatype="string">date</bcf:option> + <bcf:option datatype="string">time</bcf:option> + <bcf:option datatype="string">eventdate</bcf:option> + <bcf:option datatype="string">eventtime</bcf:option> + <bcf:option datatype="string">origdate</bcf:option> + <bcf:option datatype="string">origtime</bcf:option> + <bcf:option datatype="string">urldate</bcf:option> + <bcf:option datatype="string">urltime</bcf:option> + <bcf:option datatype="string">alldatesusetime</bcf:option> + <bcf:option datatype="string">alldates</bcf:option> + <bcf:option datatype="string">alltimes</bcf:option> + <bcf:option datatype="string">gregorianstart</bcf:option> + <bcf:option datatype="string">autocite</bcf:option> + <bcf:option datatype="string">notetype</bcf:option> + <bcf:option datatype="string">uniquelist</bcf:option> + <bcf:option datatype="string">uniquename</bcf:option> + <bcf:option datatype="string">refsection</bcf:option> + <bcf:option datatype="string">refsegment</bcf:option> + <bcf:option datatype="string">citereset</bcf:option> + <bcf:option datatype="string">sortlos</bcf:option> + <bcf:option datatype="string">babel</bcf:option> + <bcf:option datatype="string">datelabel</bcf:option> + <bcf:option datatype="string">backrefstyle</bcf:option> + <bcf:option datatype="string">arxiv</bcf:option> + <bcf:option datatype="boolean">familyinits</bcf:option> + <bcf:option datatype="boolean">giveninits</bcf:option> + <bcf:option datatype="boolean">prefixinits</bcf:option> + <bcf:option datatype="boolean">suffixinits</bcf:option> + <bcf:option datatype="boolean">useafterword</bcf:option> + <bcf:option datatype="boolean">useannotator</bcf:option> + <bcf:option datatype="boolean">useauthor</bcf:option> + <bcf:option datatype="boolean">usebookauthor</bcf:option> + <bcf:option datatype="boolean">usecommentator</bcf:option> + <bcf:option datatype="boolean">useeditor</bcf:option> + <bcf:option datatype="boolean">useeditora</bcf:option> + <bcf:option datatype="boolean">useeditorb</bcf:option> + <bcf:option datatype="boolean">useeditorc</bcf:option> + <bcf:option datatype="boolean">useforeword</bcf:option> + <bcf:option datatype="boolean">useholder</bcf:option> + <bcf:option datatype="boolean">useintroduction</bcf:option> + <bcf:option datatype="boolean">usenamea</bcf:option> + <bcf:option datatype="boolean">usenameb</bcf:option> + <bcf:option datatype="boolean">usenamec</bcf:option> + <bcf:option datatype="boolean">usetranslator</bcf:option> + <bcf:option datatype="boolean">useshortauthor</bcf:option> + <bcf:option datatype="boolean">useshorteditor</bcf:option> + <bcf:option datatype="boolean">debug</bcf:option> + <bcf:option datatype="boolean">loadfiles</bcf:option> + <bcf:option datatype="boolean">safeinputenc</bcf:option> + <bcf:option datatype="boolean">sortcase</bcf:option> + <bcf:option datatype="boolean">sortupper</bcf:option> + <bcf:option datatype="boolean">terseinits</bcf:option> + <bcf:option datatype="boolean">abbreviate</bcf:option> + <bcf:option datatype="boolean">dateabbrev</bcf:option> + <bcf:option datatype="boolean">clearlang</bcf:option> + <bcf:option datatype="boolean">sortcites</bcf:option> + <bcf:option datatype="boolean">sortsets</bcf:option> + <bcf:option datatype="boolean">backref</bcf:option> + <bcf:option datatype="boolean">backreffloats</bcf:option> + <bcf:option datatype="boolean">trackfloats</bcf:option> + <bcf:option datatype="boolean">parentracker</bcf:option> + <bcf:option datatype="boolean">labeldateusetime</bcf:option> + <bcf:option datatype="boolean">datecirca</bcf:option> + <bcf:option datatype="boolean">dateuncertain</bcf:option> + <bcf:option datatype="boolean">dateusetime</bcf:option> + <bcf:option datatype="boolean">eventdateusetime</bcf:option> + <bcf:option datatype="boolean">origdateusetime</bcf:option> + <bcf:option datatype="boolean">urldateusetime</bcf:option> + <bcf:option datatype="boolean">julian</bcf:option> + <bcf:option datatype="boolean">datezeros</bcf:option> + <bcf:option datatype="boolean">timezeros</bcf:option> + <bcf:option datatype="boolean">timezones</bcf:option> + <bcf:option datatype="boolean">seconds</bcf:option> + <bcf:option datatype="boolean">autopunct</bcf:option> + <bcf:option datatype="boolean">punctfont</bcf:option> + <bcf:option datatype="boolean">labelnumber</bcf:option> + <bcf:option datatype="boolean">labelalpha</bcf:option> + <bcf:option datatype="boolean">labeltitle</bcf:option> + <bcf:option datatype="boolean">labeltitleyear</bcf:option> + <bcf:option datatype="boolean">labeldateparts</bcf:option> + <bcf:option datatype="boolean">nohashothers</bcf:option> + <bcf:option datatype="boolean">nosortothers</bcf:option> + <bcf:option datatype="boolean">noroman</bcf:option> + <bcf:option datatype="boolean">singletitle</bcf:option> + <bcf:option datatype="boolean">uniquetitle</bcf:option> + <bcf:option datatype="boolean">uniquebaretitle</bcf:option> + <bcf:option datatype="boolean">uniquework</bcf:option> + <bcf:option datatype="boolean">uniqueprimaryauthor</bcf:option> + <bcf:option datatype="boolean">defernumbers</bcf:option> + <bcf:option datatype="boolean">locallabelwidth</bcf:option> + <bcf:option datatype="boolean">bibwarn</bcf:option> + <bcf:option datatype="boolean">useprefix</bcf:option> + <bcf:option datatype="boolean">skipbib</bcf:option> + <bcf:option datatype="boolean">skipbiblist</bcf:option> + <bcf:option datatype="boolean">skiplab</bcf:option> + <bcf:option datatype="boolean">dataonly</bcf:option> + <bcf:option datatype="boolean">defernums</bcf:option> + <bcf:option datatype="boolean">firstinits</bcf:option> + <bcf:option datatype="boolean">sortfirstinits</bcf:option> + <bcf:option datatype="boolean">sortgiveninits</bcf:option> + <bcf:option datatype="boolean">labelyear</bcf:option> + <bcf:option datatype="boolean">isbn</bcf:option> + <bcf:option datatype="boolean">url</bcf:option> + <bcf:option datatype="boolean">doi</bcf:option> + <bcf:option datatype="boolean">eprint</bcf:option> + <bcf:option datatype="boolean">related</bcf:option> + <bcf:option datatype="boolean">subentry</bcf:option> + <bcf:option datatype="boolean">bibtexcaseprotection</bcf:option> + <bcf:option datatype="integer">mincrossrefs</bcf:option> + <bcf:option datatype="integer">minxrefs</bcf:option> + <bcf:option datatype="integer">maxnames</bcf:option> + <bcf:option datatype="integer">minnames</bcf:option> + <bcf:option datatype="integer">maxbibnames</bcf:option> + <bcf:option datatype="integer">minbibnames</bcf:option> + <bcf:option datatype="integer">maxcitenames</bcf:option> + <bcf:option datatype="integer">mincitenames</bcf:option> + <bcf:option datatype="integer">maxsortnames</bcf:option> + <bcf:option datatype="integer">minsortnames</bcf:option> + <bcf:option datatype="integer">maxitems</bcf:option> + <bcf:option datatype="integer">minitems</bcf:option> + <bcf:option datatype="integer">maxalphanames</bcf:option> + <bcf:option datatype="integer">minalphanames</bcf:option> + <bcf:option datatype="integer">maxparens</bcf:option> + <bcf:option datatype="integer">dateeraauto</bcf:option> + </bcf:optionscope> + <bcf:optionscope type="ENTRYTYPE"> + <bcf:option datatype="string">alphaothers</bcf:option> + <bcf:option datatype="string">sortalphaothers</bcf:option> + <bcf:option datatype="string">presort</bcf:option> + <bcf:option datatype="string">indexing</bcf:option> + <bcf:option datatype="string">citetracker</bcf:option> + <bcf:option datatype="string">ibidtracker</bcf:option> + <bcf:option datatype="string">idemtracker</bcf:option> + <bcf:option datatype="string">opcittracker</bcf:option> + <bcf:option datatype="string">loccittracker</bcf:option> + <bcf:option datatype="string">uniquelist</bcf:option> + <bcf:option datatype="string">uniquename</bcf:option> + <bcf:option datatype="boolean">familyinits</bcf:option> + <bcf:option datatype="boolean">giveninits</bcf:option> + <bcf:option datatype="boolean">prefixinits</bcf:option> + <bcf:option datatype="boolean">suffixinits</bcf:option> + <bcf:option datatype="boolean">useafterword</bcf:option> + <bcf:option datatype="boolean">useannotator</bcf:option> + <bcf:option datatype="boolean">useauthor</bcf:option> + <bcf:option datatype="boolean">usebookauthor</bcf:option> + <bcf:option datatype="boolean">usecommentator</bcf:option> + <bcf:option datatype="boolean">useeditor</bcf:option> + <bcf:option datatype="boolean">useeditora</bcf:option> + <bcf:option datatype="boolean">useeditorb</bcf:option> + <bcf:option datatype="boolean">useeditorc</bcf:option> + <bcf:option datatype="boolean">useforeword</bcf:option> + <bcf:option datatype="boolean">useholder</bcf:option> + <bcf:option datatype="boolean">useintroduction</bcf:option> + <bcf:option datatype="boolean">usenamea</bcf:option> + <bcf:option datatype="boolean">usenameb</bcf:option> + <bcf:option datatype="boolean">usenamec</bcf:option> + <bcf:option datatype="boolean">usetranslator</bcf:option> + <bcf:option datatype="boolean">useshortauthor</bcf:option> + <bcf:option datatype="boolean">useshorteditor</bcf:option> + <bcf:option datatype="boolean">terseinits</bcf:option> + <bcf:option datatype="boolean">abbreviate</bcf:option> + <bcf:option datatype="boolean">dateabbrev</bcf:option> + <bcf:option datatype="boolean">clearlang</bcf:option> + <bcf:option datatype="boolean">labelnumber</bcf:option> + <bcf:option datatype="boolean">labelalpha</bcf:option> + <bcf:option datatype="boolean">labeltitle</bcf:option> + <bcf:option datatype="boolean">labeltitleyear</bcf:option> + <bcf:option datatype="boolean">labeldateparts</bcf:option> + <bcf:option datatype="boolean">nohashothers</bcf:option> + <bcf:option datatype="boolean">nosortothers</bcf:option> + <bcf:option datatype="boolean">noroman</bcf:option> + <bcf:option datatype="boolean">singletitle</bcf:option> + <bcf:option datatype="boolean">uniquetitle</bcf:option> + <bcf:option datatype="boolean">uniquebaretitle</bcf:option> + <bcf:option datatype="boolean">uniquework</bcf:option> + <bcf:option datatype="boolean">uniqueprimaryauthor</bcf:option> + <bcf:option datatype="boolean">useprefix</bcf:option> + <bcf:option datatype="boolean">skipbib</bcf:option> + <bcf:option datatype="boolean">skipbiblist</bcf:option> + <bcf:option datatype="boolean">skiplab</bcf:option> + <bcf:option datatype="boolean">dataonly</bcf:option> + <bcf:option datatype="boolean">skiplos</bcf:option> + <bcf:option datatype="boolean">labelyear</bcf:option> + <bcf:option datatype="boolean">isbn</bcf:option> + <bcf:option datatype="boolean">url</bcf:option> + <bcf:option datatype="boolean">doi</bcf:option> + <bcf:option datatype="boolean">eprint</bcf:option> + <bcf:option datatype="boolean">related</bcf:option> + <bcf:option datatype="boolean">subentry</bcf:option> + <bcf:option datatype="boolean">bibtexcaseprotection</bcf:option> + <bcf:option datatype="xml">labelalphatemplate</bcf:option> + <bcf:option datatype="xml">translit</bcf:option> + <bcf:option datatype="xml">sortexclusion</bcf:option> + <bcf:option datatype="xml">sortinclusion</bcf:option> + <bcf:option datatype="xml">labelnamespec</bcf:option> + <bcf:option datatype="xml">labeltitlespec</bcf:option> + <bcf:option datatype="xml">labeldatespec</bcf:option> + <bcf:option datatype="integer">maxnames</bcf:option> + <bcf:option datatype="integer">minnames</bcf:option> + <bcf:option datatype="integer">maxbibnames</bcf:option> + <bcf:option datatype="integer">minbibnames</bcf:option> + <bcf:option datatype="integer">maxcitenames</bcf:option> + <bcf:option datatype="integer">mincitenames</bcf:option> + <bcf:option datatype="integer">maxsortnames</bcf:option> + <bcf:option datatype="integer">minsortnames</bcf:option> + <bcf:option datatype="integer">maxitems</bcf:option> + <bcf:option datatype="integer">minitems</bcf:option> + <bcf:option datatype="integer">maxalphanames</bcf:option> + <bcf:option datatype="integer">minalphanames</bcf:option> + </bcf:optionscope> + <bcf:optionscope type="ENTRY"> + <bcf:option datatype="string">noinherit</bcf:option> + <bcf:option datatype="string" backendin="sortingnamekeytemplatename,uniquenametemplatename,labelalphanametemplatename">nametemplates</bcf:option> + <bcf:option datatype="string" backendout="1">labelalphanametemplatename</bcf:option> + <bcf:option datatype="string" backendout="1">uniquenametemplatename</bcf:option> + <bcf:option datatype="string" backendout="1">sortingnamekeytemplatename</bcf:option> + <bcf:option datatype="string">presort</bcf:option> + <bcf:option datatype="string" backendout="1">indexing</bcf:option> + <bcf:option datatype="string" backendout="1">citetracker</bcf:option> + <bcf:option datatype="string" backendout="1">ibidtracker</bcf:option> + <bcf:option datatype="string" backendout="1">idemtracker</bcf:option> + <bcf:option datatype="string" backendout="1">opcittracker</bcf:option> + <bcf:option datatype="string" backendout="1">loccittracker</bcf:option> + <bcf:option datatype="string">uniquelist</bcf:option> + <bcf:option datatype="string">uniquename</bcf:option> + <bcf:option datatype="boolean" backendout="1">familyinits</bcf:option> + <bcf:option datatype="boolean" backendout="1">giveninits</bcf:option> + <bcf:option datatype="boolean" backendout="1">prefixinits</bcf:option> + <bcf:option datatype="boolean" backendout="1">suffixinits</bcf:option> + <bcf:option datatype="boolean" backendout="1">useafterword</bcf:option> + <bcf:option datatype="boolean" backendout="1">useannotator</bcf:option> + <bcf:option datatype="boolean" backendout="1">useauthor</bcf:option> + <bcf:option datatype="boolean" backendout="1">usebookauthor</bcf:option> + <bcf:option datatype="boolean" backendout="1">usecommentator</bcf:option> + <bcf:option datatype="boolean" backendout="1">useeditor</bcf:option> + <bcf:option datatype="boolean" backendout="1">useeditora</bcf:option> + <bcf:option datatype="boolean" backendout="1">useeditorb</bcf:option> + <bcf:option datatype="boolean" backendout="1">useeditorc</bcf:option> + <bcf:option datatype="boolean" backendout="1">useforeword</bcf:option> + <bcf:option datatype="boolean" backendout="1">useholder</bcf:option> + <bcf:option datatype="boolean" backendout="1">useintroduction</bcf:option> + <bcf:option datatype="boolean" backendout="1">usenamea</bcf:option> + <bcf:option datatype="boolean" backendout="1">usenameb</bcf:option> + <bcf:option datatype="boolean" backendout="1">usenamec</bcf:option> + <bcf:option datatype="boolean" backendout="1">usetranslator</bcf:option> + <bcf:option datatype="boolean" backendout="1">useshortauthor</bcf:option> + <bcf:option datatype="boolean" backendout="1">useshorteditor</bcf:option> + <bcf:option datatype="boolean" backendout="1">terseinits</bcf:option> + <bcf:option datatype="boolean" backendout="1">abbreviate</bcf:option> + <bcf:option datatype="boolean" backendout="1">dateabbrev</bcf:option> + <bcf:option datatype="boolean" backendout="1">clearlang</bcf:option> + <bcf:option datatype="boolean" backendout="1">labelnumber</bcf:option> + <bcf:option datatype="boolean" backendout="1">labelalpha</bcf:option> + <bcf:option datatype="boolean" backendout="1">labeltitle</bcf:option> + <bcf:option datatype="boolean" backendout="1">labeltitleyear</bcf:option> + <bcf:option datatype="boolean" backendout="1">labeldateparts</bcf:option> + <bcf:option datatype="boolean">nohashothers</bcf:option> + <bcf:option datatype="boolean">nosortothers</bcf:option> + <bcf:option datatype="boolean">noroman</bcf:option> + <bcf:option datatype="boolean">singletitle</bcf:option> + <bcf:option datatype="boolean">uniquetitle</bcf:option> + <bcf:option datatype="boolean">uniquebaretitle</bcf:option> + <bcf:option datatype="boolean">uniquework</bcf:option> + <bcf:option datatype="boolean">uniqueprimaryauthor</bcf:option> + <bcf:option datatype="boolean" backendout="1">useprefix</bcf:option> + <bcf:option datatype="boolean" backendout="1">skipbib</bcf:option> + <bcf:option datatype="boolean" backendout="1">skipbiblist</bcf:option> + <bcf:option datatype="boolean" backendout="1">skiplab</bcf:option> + <bcf:option datatype="boolean" backendin="uniquename=false,uniquelist=false,skipbib=true,skipbiblist=true,skiplab=true">dataonly</bcf:option> + <bcf:option datatype="boolean" backendout="1">skiplos</bcf:option> + <bcf:option datatype="boolean" backendout="1">isbn</bcf:option> + <bcf:option datatype="boolean" backendout="1">url</bcf:option> + <bcf:option datatype="boolean" backendout="1">doi</bcf:option> + <bcf:option datatype="boolean" backendout="1">eprint</bcf:option> + <bcf:option datatype="boolean" backendout="1">related</bcf:option> + <bcf:option datatype="boolean" backendout="1">subentry</bcf:option> + <bcf:option datatype="boolean" backendout="1">bibtexcaseprotection</bcf:option> + <bcf:option datatype="integer" backendin="maxcitenames,maxbibnames,maxsortnames">maxnames</bcf:option> + <bcf:option datatype="integer" backendin="mincitenames,minbibnames,minsortnames">minnames</bcf:option> + <bcf:option datatype="integer" backendout="1">maxbibnames</bcf:option> + <bcf:option datatype="integer" backendout="1">minbibnames</bcf:option> + <bcf:option datatype="integer" backendout="1">maxcitenames</bcf:option> + <bcf:option datatype="integer" backendout="1">mincitenames</bcf:option> + <bcf:option datatype="integer" backendout="1">maxsortnames</bcf:option> + <bcf:option datatype="integer" backendout="1">minsortnames</bcf:option> + <bcf:option datatype="integer" backendout="1">maxitems</bcf:option> + <bcf:option datatype="integer" backendout="1">minitems</bcf:option> + <bcf:option datatype="integer" backendout="1">maxalphanames</bcf:option> + <bcf:option datatype="integer" backendout="1">minalphanames</bcf:option> + </bcf:optionscope> + <bcf:optionscope type="NAMELIST"> + <bcf:option datatype="string" backendin="sortingnamekeytemplatename,uniquenametemplatename,labelalphanametemplatename">nametemplates</bcf:option> + <bcf:option datatype="string" backendout="1">labelalphanametemplatename</bcf:option> + <bcf:option datatype="string" backendout="1">uniquenametemplatename</bcf:option> + <bcf:option datatype="string" backendout="1">sortingnamekeytemplatename</bcf:option> + <bcf:option datatype="string">uniquelist</bcf:option> + <bcf:option datatype="string">uniquename</bcf:option> + <bcf:option datatype="boolean" backendout="1">familyinits</bcf:option> + <bcf:option datatype="boolean" backendout="1">giveninits</bcf:option> + <bcf:option datatype="boolean" backendout="1">prefixinits</bcf:option> + <bcf:option datatype="boolean" backendout="1">suffixinits</bcf:option> + <bcf:option datatype="boolean" backendout="1">terseinits</bcf:option> + <bcf:option datatype="boolean">nohashothers</bcf:option> + <bcf:option datatype="boolean">nosortothers</bcf:option> + <bcf:option datatype="boolean" backendout="1">useprefix</bcf:option> + </bcf:optionscope> + <bcf:optionscope type="NAME"> + <bcf:option datatype="string" backendin="sortingnamekeytemplatename,uniquenametemplatename,labelalphanametemplatename">nametemplates</bcf:option> + <bcf:option datatype="string" backendout="1">labelalphanametemplatename</bcf:option> + <bcf:option datatype="string" backendout="1">uniquenametemplatename</bcf:option> + <bcf:option datatype="string" backendout="1">sortingnamekeytemplatename</bcf:option> + <bcf:option datatype="string">uniquename</bcf:option> + <bcf:option datatype="boolean" backendout="1">familyinits</bcf:option> + <bcf:option datatype="boolean" backendout="1">giveninits</bcf:option> + <bcf:option datatype="boolean" backendout="1">prefixinits</bcf:option> + <bcf:option datatype="boolean" backendout="1">suffixinits</bcf:option> + <bcf:option datatype="boolean" backendout="1">terseinits</bcf:option> + <bcf:option datatype="boolean" backendout="1">useprefix</bcf:option> + </bcf:optionscope> + <!-- DATAFIELDSETS --> + <bcf:datafieldset name="setnames"> + <bcf:member datatype="name" fieldtype="list"/> + </bcf:datafieldset> + <bcf:datafieldset name="settitles"> + <bcf:member field="title"/> + <bcf:member field="booktitle"/> + <bcf:member field="eventtitle"/> + <bcf:member field="issuetitle"/> + <bcf:member field="journaltitle"/> + <bcf:member field="maintitle"/> + <bcf:member field="origtitle"/> + </bcf:datafieldset> + <!-- SOURCEMAP --> + <bcf:sourcemap> + <bcf:maps datatype="bibtex" level="driver"> + <bcf:map> + <bcf:map_step map_field_set="day" map_null="1"/> + </bcf:map> + <bcf:map> + <bcf:map_step map_type_source="conference" map_type_target="inproceedings"/> + <bcf:map_step map_type_source="electronic" map_type_target="online"/> + <bcf:map_step map_type_source="www" map_type_target="online"/> + </bcf:map> + <bcf:map> + <bcf:map_step map_type_source="mastersthesis" map_type_target="thesis" map_final="1"/> + <bcf:map_step map_field_set="type" map_field_value="mathesis"/> + </bcf:map> + <bcf:map> + <bcf:map_step map_type_source="phdthesis" map_type_target="thesis" map_final="1"/> + <bcf:map_step map_field_set="type" map_field_value="phdthesis"/> + </bcf:map> + <bcf:map> + <bcf:map_step map_type_source="techreport" map_type_target="report" map_final="1"/> + <bcf:map_step map_field_set="type" map_field_value="techreport"/> + </bcf:map> + <bcf:map> + <bcf:map_step map_field_source="hyphenation" map_field_target="langid"/> + <bcf:map_step map_field_source="address" map_field_target="location"/> + <bcf:map_step map_field_source="school" map_field_target="institution"/> + <bcf:map_step map_field_source="annote" map_field_target="annotation"/> + <bcf:map_step map_field_source="archiveprefix" map_field_target="eprinttype"/> + <bcf:map_step map_field_source="journal" map_field_target="journaltitle"/> + <bcf:map_step map_field_source="primaryclass" map_field_target="eprintclass"/> + <bcf:map_step map_field_source="key" map_field_target="sortkey"/> + <bcf:map_step map_field_source="pdf" map_field_target="file"/> + </bcf:map> + </bcf:maps> + </bcf:sourcemap> + <!-- LABELALPHA NAME TEMPLATE --> + <bcf:labelalphanametemplate name="global"> + <bcf:namepart order="1" use="1" pre="1" substring_width="1" substring_compound="1">prefix</bcf:namepart> + <bcf:namepart order="2">family</bcf:namepart> + </bcf:labelalphanametemplate> + <!-- LABELALPHA TEMPLATE --> + <bcf:labelalphatemplate type="global"> + <bcf:labelelement order="1"> + <bcf:labelpart final="1">shorthand</bcf:labelpart> + <bcf:labelpart>label</bcf:labelpart> + <bcf:labelpart substring_width="3" substring_side="left" ifnames="1">labelname</bcf:labelpart> + <bcf:labelpart substring_width="1" substring_side="left">labelname</bcf:labelpart> + </bcf:labelelement> + <bcf:labelelement order="2"> + <bcf:labelpart substring_width="2" substring_side="right">year</bcf:labelpart> + </bcf:labelelement> + </bcf:labelalphatemplate> + <!-- EXTRADATE --> + <bcf:extradatespec> + <bcf:scope> + <bcf:field order="1">labelyear</bcf:field> + <bcf:field order="2">year</bcf:field> + </bcf:scope> + </bcf:extradatespec> + <!-- INHERITANCE --> + <bcf:inheritance> + <bcf:defaults inherit_all="true" override_target="false"> + </bcf:defaults> + <bcf:inherit> + <bcf:type_pair source="mvbook" target="inbook"/> + <bcf:type_pair source="mvbook" target="bookinbook"/> + <bcf:type_pair source="mvbook" target="suppbook"/> + <bcf:type_pair source="book" target="inbook"/> + <bcf:type_pair source="book" target="bookinbook"/> + <bcf:type_pair source="book" target="suppbook"/> + <bcf:field source="author" target="author"/> + <bcf:field source="author" target="bookauthor"/> + </bcf:inherit> + <bcf:inherit> + <bcf:type_pair source="mvbook" target="book"/> + <bcf:type_pair source="mvbook" target="inbook"/> + <bcf:type_pair source="mvbook" target="bookinbook"/> + <bcf:type_pair source="mvbook" target="suppbook"/> + <bcf:field source="title" target="maintitle"/> + <bcf:field source="subtitle" target="mainsubtitle"/> + <bcf:field source="titleaddon" target="maintitleaddon"/> + <bcf:field source="shorttitle" skip="true"/> + <bcf:field source="sorttitle" skip="true"/> + <bcf:field source="indextitle" skip="true"/> + <bcf:field source="indexsorttitle" skip="true"/> + </bcf:inherit> + <bcf:inherit> + <bcf:type_pair source="mvcollection" target="collection"/> + <bcf:type_pair source="mvcollection" target="reference"/> + <bcf:type_pair source="mvcollection" target="incollection"/> + <bcf:type_pair source="mvcollection" target="inreference"/> + <bcf:type_pair source="mvcollection" target="suppcollection"/> + <bcf:type_pair source="mvreference" target="collection"/> + <bcf:type_pair source="mvreference" target="reference"/> + <bcf:type_pair source="mvreference" target="incollection"/> + <bcf:type_pair source="mvreference" target="inreference"/> + <bcf:type_pair source="mvreference" target="suppcollection"/> + <bcf:field source="title" target="maintitle"/> + <bcf:field source="subtitle" target="mainsubtitle"/> + <bcf:field source="titleaddon" target="maintitleaddon"/> + <bcf:field source="shorttitle" skip="true"/> + <bcf:field source="sorttitle" skip="true"/> + <bcf:field source="indextitle" skip="true"/> + <bcf:field source="indexsorttitle" skip="true"/> + </bcf:inherit> + <bcf:inherit> + <bcf:type_pair source="mvproceedings" target="proceedings"/> + <bcf:type_pair source="mvproceedings" target="inproceedings"/> + <bcf:field source="title" target="maintitle"/> + <bcf:field source="subtitle" target="mainsubtitle"/> + <bcf:field source="titleaddon" target="maintitleaddon"/> + <bcf:field source="shorttitle" skip="true"/> + <bcf:field source="sorttitle" skip="true"/> + <bcf:field source="indextitle" skip="true"/> + <bcf:field source="indexsorttitle" skip="true"/> + </bcf:inherit> + <bcf:inherit> + <bcf:type_pair source="book" target="inbook"/> + <bcf:type_pair source="book" target="bookinbook"/> + <bcf:type_pair source="book" target="suppbook"/> + <bcf:field source="title" target="booktitle"/> + <bcf:field source="subtitle" target="booksubtitle"/> + <bcf:field source="titleaddon" target="booktitleaddon"/> + <bcf:field source="shorttitle" skip="true"/> + <bcf:field source="sorttitle" skip="true"/> + <bcf:field source="indextitle" skip="true"/> + <bcf:field source="indexsorttitle" skip="true"/> + </bcf:inherit> + <bcf:inherit> + <bcf:type_pair source="collection" target="incollection"/> + <bcf:type_pair source="collection" target="inreference"/> + <bcf:type_pair source="collection" target="suppcollection"/> + <bcf:type_pair source="reference" target="incollection"/> + <bcf:type_pair source="reference" target="inreference"/> + <bcf:type_pair source="reference" target="suppcollection"/> + <bcf:field source="title" target="booktitle"/> + <bcf:field source="subtitle" target="booksubtitle"/> + <bcf:field source="titleaddon" target="booktitleaddon"/> + <bcf:field source="shorttitle" skip="true"/> + <bcf:field source="sorttitle" skip="true"/> + <bcf:field source="indextitle" skip="true"/> + <bcf:field source="indexsorttitle" skip="true"/> + </bcf:inherit> + <bcf:inherit> + <bcf:type_pair source="proceedings" target="inproceedings"/> + <bcf:field source="title" target="booktitle"/> + <bcf:field source="subtitle" target="booksubtitle"/> + <bcf:field source="titleaddon" target="booktitleaddon"/> + <bcf:field source="shorttitle" skip="true"/> + <bcf:field source="sorttitle" skip="true"/> + <bcf:field source="indextitle" skip="true"/> + <bcf:field source="indexsorttitle" skip="true"/> + </bcf:inherit> + <bcf:inherit> + <bcf:type_pair source="periodical" target="article"/> + <bcf:type_pair source="periodical" target="suppperiodical"/> + <bcf:field source="title" target="journaltitle"/> + <bcf:field source="subtitle" target="journalsubtitle"/> + <bcf:field source="titleaddon" target="journaltitleaddon"/> + <bcf:field source="shorttitle" skip="true"/> + <bcf:field source="sorttitle" skip="true"/> + <bcf:field source="indextitle" skip="true"/> + <bcf:field source="indexsorttitle" skip="true"/> + </bcf:inherit> + <bcf:inherit> + <bcf:type_pair source="*" target="*"/> + <bcf:field source="ids" skip="true"/> + <bcf:field source="crossref" skip="true"/> + <bcf:field source="xref" skip="true"/> + <bcf:field source="entryset" skip="true"/> + <bcf:field source="entrysubtype" skip="true"/> + <bcf:field source="execute" skip="true"/> + <bcf:field source="label" skip="true"/> + <bcf:field source="options" skip="true"/> + <bcf:field source="presort" skip="true"/> + <bcf:field source="related" skip="true"/> + <bcf:field source="relatedoptions" skip="true"/> + <bcf:field source="relatedstring" skip="true"/> + <bcf:field source="relatedtype" skip="true"/> + <bcf:field source="shorthand" skip="true"/> + <bcf:field source="shorthandintro" skip="true"/> + <bcf:field source="sortkey" skip="true"/> + </bcf:inherit> + </bcf:inheritance> + <!-- UNIQUENAME TEMPLATES --> + <bcf:uniquenametemplate name="global"> + <bcf:namepart order="1" use="1" base="1">prefix</bcf:namepart> + <bcf:namepart order="2" base="1">family</bcf:namepart> + <bcf:namepart order="3">given</bcf:namepart> + </bcf:uniquenametemplate> + <!-- SORTING NAME KEY TEMPLATES --> + <bcf:sortingnamekeytemplate name="global"> + <bcf:keypart order="1"> + <bcf:part type="namepart" order="1" use="1">prefix</bcf:part> + <bcf:part type="namepart" order="2">family</bcf:part> + </bcf:keypart> + <bcf:keypart order="2"> + <bcf:part type="namepart" order="1">given</bcf:part> + </bcf:keypart> + <bcf:keypart order="3"> + <bcf:part type="namepart" order="1">suffix</bcf:part> + </bcf:keypart> + <bcf:keypart order="4"> + <bcf:part type="namepart" order="1" use="0">prefix</bcf:part> + </bcf:keypart> + </bcf:sortingnamekeytemplate> + <bcf:presort>mm</bcf:presort> + <!-- DATA MODEL --> + <bcf:datamodel> + <bcf:constants> + <bcf:constant type="list" name="gender">sf,sm,sn,pf,pm,pn,pp</bcf:constant> + <bcf:constant type="list" name="nameparts">family,given,prefix,suffix</bcf:constant> + <bcf:constant type="list" name="optiondatatypes">boolean,integer,string,xml</bcf:constant> + <bcf:constant type="list" name="multiscriptforms">default,transliteration,transcription,translation</bcf:constant> + </bcf:constants> + <bcf:entrytypes> + <bcf:entrytype>article</bcf:entrytype> + <bcf:entrytype>artwork</bcf:entrytype> + <bcf:entrytype>audio</bcf:entrytype> + <bcf:entrytype>bibnote</bcf:entrytype> + <bcf:entrytype>book</bcf:entrytype> + <bcf:entrytype>bookinbook</bcf:entrytype> + <bcf:entrytype>booklet</bcf:entrytype> + <bcf:entrytype>collection</bcf:entrytype> + <bcf:entrytype>commentary</bcf:entrytype> + <bcf:entrytype>customa</bcf:entrytype> + <bcf:entrytype>customb</bcf:entrytype> + <bcf:entrytype>customc</bcf:entrytype> + <bcf:entrytype>customd</bcf:entrytype> + <bcf:entrytype>custome</bcf:entrytype> + <bcf:entrytype>customf</bcf:entrytype> + <bcf:entrytype>dataset</bcf:entrytype> + <bcf:entrytype>inbook</bcf:entrytype> + <bcf:entrytype>incollection</bcf:entrytype> + <bcf:entrytype>inproceedings</bcf:entrytype> + <bcf:entrytype>inreference</bcf:entrytype> + <bcf:entrytype>image</bcf:entrytype> + <bcf:entrytype>jurisdiction</bcf:entrytype> + <bcf:entrytype>legal</bcf:entrytype> + <bcf:entrytype>legislation</bcf:entrytype> + <bcf:entrytype>letter</bcf:entrytype> + <bcf:entrytype>manual</bcf:entrytype> + <bcf:entrytype>misc</bcf:entrytype> + <bcf:entrytype>movie</bcf:entrytype> + <bcf:entrytype>music</bcf:entrytype> + <bcf:entrytype>mvcollection</bcf:entrytype> + <bcf:entrytype>mvreference</bcf:entrytype> + <bcf:entrytype>mvproceedings</bcf:entrytype> + <bcf:entrytype>mvbook</bcf:entrytype> + <bcf:entrytype>online</bcf:entrytype> + <bcf:entrytype>patent</bcf:entrytype> + <bcf:entrytype>performance</bcf:entrytype> + <bcf:entrytype>periodical</bcf:entrytype> + <bcf:entrytype>proceedings</bcf:entrytype> + <bcf:entrytype>reference</bcf:entrytype> + <bcf:entrytype>report</bcf:entrytype> + <bcf:entrytype>review</bcf:entrytype> + <bcf:entrytype>set</bcf:entrytype> + <bcf:entrytype>software</bcf:entrytype> + <bcf:entrytype>standard</bcf:entrytype> + <bcf:entrytype>suppbook</bcf:entrytype> + <bcf:entrytype>suppcollection</bcf:entrytype> + <bcf:entrytype>suppperiodical</bcf:entrytype> + <bcf:entrytype>thesis</bcf:entrytype> + <bcf:entrytype>unpublished</bcf:entrytype> + <bcf:entrytype>video</bcf:entrytype> + <bcf:entrytype skip_output="true">xdata</bcf:entrytype> + </bcf:entrytypes> + <bcf:fields> + <bcf:field fieldtype="field" datatype="integer">sortyear</bcf:field> + <bcf:field fieldtype="field" datatype="integer">volume</bcf:field> + <bcf:field fieldtype="field" datatype="integer">volumes</bcf:field> + <bcf:field fieldtype="field" datatype="literal">abstract</bcf:field> + <bcf:field fieldtype="field" datatype="literal">addendum</bcf:field> + <bcf:field fieldtype="field" datatype="literal">annotation</bcf:field> + <bcf:field fieldtype="field" datatype="literal">booksubtitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">booktitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">booktitleaddon</bcf:field> + <bcf:field fieldtype="field" datatype="literal">chapter</bcf:field> + <bcf:field fieldtype="field" datatype="literal">edition</bcf:field> + <bcf:field fieldtype="field" datatype="literal">eid</bcf:field> + <bcf:field fieldtype="field" datatype="literal">entrysubtype</bcf:field> + <bcf:field fieldtype="field" datatype="literal">eprintclass</bcf:field> + <bcf:field fieldtype="field" datatype="literal">eprinttype</bcf:field> + <bcf:field fieldtype="field" datatype="literal">eventtitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">eventtitleaddon</bcf:field> + <bcf:field fieldtype="field" datatype="literal">gender</bcf:field> + <bcf:field fieldtype="field" datatype="literal">howpublished</bcf:field> + <bcf:field fieldtype="field" datatype="literal">indexsorttitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">indextitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">isan</bcf:field> + <bcf:field fieldtype="field" datatype="literal">isbn</bcf:field> + <bcf:field fieldtype="field" datatype="literal">ismn</bcf:field> + <bcf:field fieldtype="field" datatype="literal">isrn</bcf:field> + <bcf:field fieldtype="field" datatype="literal">issn</bcf:field> + <bcf:field fieldtype="field" datatype="literal">issue</bcf:field> + <bcf:field fieldtype="field" datatype="literal">issuesubtitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">issuetitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">issuetitleaddon</bcf:field> + <bcf:field fieldtype="field" datatype="literal">iswc</bcf:field> + <bcf:field fieldtype="field" datatype="literal">journalsubtitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">journaltitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">journaltitleaddon</bcf:field> + <bcf:field fieldtype="field" datatype="literal">label</bcf:field> + <bcf:field fieldtype="field" datatype="literal">langid</bcf:field> + <bcf:field fieldtype="field" datatype="literal">langidopts</bcf:field> + <bcf:field fieldtype="field" datatype="literal">library</bcf:field> + <bcf:field fieldtype="field" datatype="literal">mainsubtitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">maintitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">maintitleaddon</bcf:field> + <bcf:field fieldtype="field" datatype="literal">nameaddon</bcf:field> + <bcf:field fieldtype="field" datatype="literal">note</bcf:field> + <bcf:field fieldtype="field" datatype="literal">number</bcf:field> + <bcf:field fieldtype="field" datatype="literal">origtitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">pagetotal</bcf:field> + <bcf:field fieldtype="field" datatype="literal">part</bcf:field> + <bcf:field fieldtype="field" datatype="literal">relatedstring</bcf:field> + <bcf:field fieldtype="field" datatype="literal">relatedtype</bcf:field> + <bcf:field fieldtype="field" datatype="literal">reprinttitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">series</bcf:field> + <bcf:field fieldtype="field" datatype="literal">shorthandintro</bcf:field> + <bcf:field fieldtype="field" datatype="literal">subtitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal">title</bcf:field> + <bcf:field fieldtype="field" datatype="literal">titleaddon</bcf:field> + <bcf:field fieldtype="field" datatype="literal">usera</bcf:field> + <bcf:field fieldtype="field" datatype="literal">userb</bcf:field> + <bcf:field fieldtype="field" datatype="literal">userc</bcf:field> + <bcf:field fieldtype="field" datatype="literal">userd</bcf:field> + <bcf:field fieldtype="field" datatype="literal">usere</bcf:field> + <bcf:field fieldtype="field" datatype="literal">userf</bcf:field> + <bcf:field fieldtype="field" datatype="literal">venue</bcf:field> + <bcf:field fieldtype="field" datatype="literal">version</bcf:field> + <bcf:field fieldtype="field" datatype="literal" label="true">shorthand</bcf:field> + <bcf:field fieldtype="field" datatype="literal" label="true">shortjournal</bcf:field> + <bcf:field fieldtype="field" datatype="literal" label="true">shortseries</bcf:field> + <bcf:field fieldtype="field" datatype="literal" label="true">shorttitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal" skip_output="true">sorttitle</bcf:field> + <bcf:field fieldtype="field" datatype="literal" skip_output="true">sortshorthand</bcf:field> + <bcf:field fieldtype="field" datatype="literal" skip_output="true">sortkey</bcf:field> + <bcf:field fieldtype="field" datatype="literal" skip_output="true">presort</bcf:field> + <bcf:field fieldtype="list" datatype="literal">institution</bcf:field> + <bcf:field fieldtype="list" datatype="literal">lista</bcf:field> + <bcf:field fieldtype="list" datatype="literal">listb</bcf:field> + <bcf:field fieldtype="list" datatype="literal">listc</bcf:field> + <bcf:field fieldtype="list" datatype="literal">listd</bcf:field> + <bcf:field fieldtype="list" datatype="literal">liste</bcf:field> + <bcf:field fieldtype="list" datatype="literal">listf</bcf:field> + <bcf:field fieldtype="list" datatype="literal">location</bcf:field> + <bcf:field fieldtype="list" datatype="literal">organization</bcf:field> + <bcf:field fieldtype="list" datatype="literal">origlocation</bcf:field> + <bcf:field fieldtype="list" datatype="literal">origpublisher</bcf:field> + <bcf:field fieldtype="list" datatype="literal">publisher</bcf:field> + <bcf:field fieldtype="list" datatype="name">afterword</bcf:field> + <bcf:field fieldtype="list" datatype="name">annotator</bcf:field> + <bcf:field fieldtype="list" datatype="name">author</bcf:field> + <bcf:field fieldtype="list" datatype="name">bookauthor</bcf:field> + <bcf:field fieldtype="list" datatype="name">commentator</bcf:field> + <bcf:field fieldtype="list" datatype="name">editor</bcf:field> + <bcf:field fieldtype="list" datatype="name">editora</bcf:field> + <bcf:field fieldtype="list" datatype="name">editorb</bcf:field> + <bcf:field fieldtype="list" datatype="name">editorc</bcf:field> + <bcf:field fieldtype="list" datatype="name">foreword</bcf:field> + <bcf:field fieldtype="list" datatype="name">holder</bcf:field> + <bcf:field fieldtype="list" datatype="name">introduction</bcf:field> + <bcf:field fieldtype="list" datatype="name">namea</bcf:field> + <bcf:field fieldtype="list" datatype="name">nameb</bcf:field> + <bcf:field fieldtype="list" datatype="name">namec</bcf:field> + <bcf:field fieldtype="list" datatype="name">translator</bcf:field> + <bcf:field fieldtype="list" datatype="name" label="true">shortauthor</bcf:field> + <bcf:field fieldtype="list" datatype="name" label="true">shorteditor</bcf:field> + <bcf:field fieldtype="list" datatype="name" skip_output="true">sortname</bcf:field> + <bcf:field fieldtype="field" datatype="key">authortype</bcf:field> + <bcf:field fieldtype="field" datatype="key">editoratype</bcf:field> + <bcf:field fieldtype="field" datatype="key">editorbtype</bcf:field> + <bcf:field fieldtype="field" datatype="key">editorctype</bcf:field> + <bcf:field fieldtype="field" datatype="key">editortype</bcf:field> + <bcf:field fieldtype="field" datatype="key">bookpagination</bcf:field> + <bcf:field fieldtype="field" datatype="key">nameatype</bcf:field> + <bcf:field fieldtype="field" datatype="key">namebtype</bcf:field> + <bcf:field fieldtype="field" datatype="key">namectype</bcf:field> + <bcf:field fieldtype="field" datatype="key">pagination</bcf:field> + <bcf:field fieldtype="field" datatype="key">pubstate</bcf:field> + <bcf:field fieldtype="field" datatype="key">type</bcf:field> + <bcf:field fieldtype="list" datatype="key">language</bcf:field> + <bcf:field fieldtype="list" datatype="key">origlanguage</bcf:field> + <bcf:field fieldtype="field" datatype="entrykey">crossref</bcf:field> + <bcf:field fieldtype="field" datatype="entrykey">xref</bcf:field> + <bcf:field fieldtype="field" datatype="date" skip_output="true">date</bcf:field> + <bcf:field fieldtype="field" datatype="datepart" nullok="true">endyear</bcf:field> + <bcf:field fieldtype="field" datatype="datepart" nullok="true">year</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">month</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">day</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">hour</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">minute</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">second</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">timezone</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">season</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">endmonth</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">endday</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">endhour</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">endminute</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">endsecond</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">endtimezone</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">endseason</bcf:field> + <bcf:field fieldtype="field" datatype="date" skip_output="true">eventdate</bcf:field> + <bcf:field fieldtype="field" datatype="datepart" nullok="true">eventendyear</bcf:field> + <bcf:field fieldtype="field" datatype="datepart" nullok="true">eventyear</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventmonth</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventday</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventhour</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventminute</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventsecond</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventtimezone</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventseason</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventendmonth</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventendday</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventendhour</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventendminute</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventendsecond</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventendtimezone</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">eventendseason</bcf:field> + <bcf:field fieldtype="field" datatype="date" skip_output="true">origdate</bcf:field> + <bcf:field fieldtype="field" datatype="datepart" nullok="true">origendyear</bcf:field> + <bcf:field fieldtype="field" datatype="datepart" nullok="true">origyear</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origmonth</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origday</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">orighour</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origminute</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origsecond</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origtimezone</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origseason</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origendmonth</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origendday</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origendhour</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origendminute</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origendsecond</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origendtimezone</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">origendseason</bcf:field> + <bcf:field fieldtype="field" datatype="date" skip_output="true">urldate</bcf:field> + <bcf:field fieldtype="field" datatype="datepart" nullok="true">urlendyear</bcf:field> + <bcf:field fieldtype="field" datatype="datepart" nullok="true">urlyear</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlmonth</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlday</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlhour</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlminute</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlsecond</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urltimezone</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlseason</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlendmonth</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlendday</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlendhour</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlendminute</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlendsecond</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlendtimezone</bcf:field> + <bcf:field fieldtype="field" datatype="datepart">urlendseason</bcf:field> + <bcf:field fieldtype="field" datatype="verbatim">doi</bcf:field> + <bcf:field fieldtype="field" datatype="verbatim">eprint</bcf:field> + <bcf:field fieldtype="field" datatype="verbatim">file</bcf:field> + <bcf:field fieldtype="field" datatype="verbatim">verba</bcf:field> + <bcf:field fieldtype="field" datatype="verbatim">verbb</bcf:field> + <bcf:field fieldtype="field" datatype="verbatim">verbc</bcf:field> + <bcf:field fieldtype="field" datatype="uri">url</bcf:field> + <bcf:field fieldtype="field" format="xsv" datatype="entrykey" skip_output="true">xdata</bcf:field> + <bcf:field fieldtype="field" format="xsv" datatype="entrykey" skip_output="true">ids</bcf:field> + <bcf:field fieldtype="field" format="xsv" datatype="entrykey" skip_output="true">entryset</bcf:field> + <bcf:field fieldtype="field" format="xsv" datatype="entrykey">related</bcf:field> + <bcf:field fieldtype="field" format="xsv" datatype="keyword">keywords</bcf:field> + <bcf:field fieldtype="field" format="xsv" datatype="option" skip_output="true">options</bcf:field> + <bcf:field fieldtype="field" format="xsv" datatype="option" skip_output="true">relatedoptions</bcf:field> + <bcf:field fieldtype="field" datatype="range">pages</bcf:field> + <bcf:field fieldtype="field" datatype="code">execute</bcf:field> + </bcf:fields> + <bcf:entryfields> + <bcf:field>abstract</bcf:field> + <bcf:field>annotation</bcf:field> + <bcf:field>authortype</bcf:field> + <bcf:field>bookpagination</bcf:field> + <bcf:field>crossref</bcf:field> + <bcf:field>day</bcf:field> + <bcf:field>doi</bcf:field> + <bcf:field>eprint</bcf:field> + <bcf:field>eprintclass</bcf:field> + <bcf:field>eprinttype</bcf:field> + <bcf:field>endday</bcf:field> + <bcf:field>endhour</bcf:field> + <bcf:field>endminute</bcf:field> + <bcf:field>endmonth</bcf:field> + <bcf:field>endseason</bcf:field> + <bcf:field>endsecond</bcf:field> + <bcf:field>endtimezone</bcf:field> + <bcf:field>endyear</bcf:field> + <bcf:field>entryset</bcf:field> + <bcf:field>entrysubtype</bcf:field> + <bcf:field>execute</bcf:field> + <bcf:field>file</bcf:field> + <bcf:field>gender</bcf:field> + <bcf:field>hour</bcf:field> + <bcf:field>ids</bcf:field> + <bcf:field>indextitle</bcf:field> + <bcf:field>indexsorttitle</bcf:field> + <bcf:field>isan</bcf:field> + <bcf:field>ismn</bcf:field> + <bcf:field>iswc</bcf:field> + <bcf:field>keywords</bcf:field> + <bcf:field>label</bcf:field> + <bcf:field>langid</bcf:field> + <bcf:field>langidopts</bcf:field> + <bcf:field>library</bcf:field> + <bcf:field>lista</bcf:field> + <bcf:field>listb</bcf:field> + <bcf:field>listc</bcf:field> + <bcf:field>listd</bcf:field> + <bcf:field>liste</bcf:field> + <bcf:field>listf</bcf:field> + <bcf:field>minute</bcf:field> + <bcf:field>month</bcf:field> + <bcf:field>namea</bcf:field> + <bcf:field>nameb</bcf:field> + <bcf:field>namec</bcf:field> + <bcf:field>nameatype</bcf:field> + <bcf:field>namebtype</bcf:field> + <bcf:field>namectype</bcf:field> + <bcf:field>nameaddon</bcf:field> + <bcf:field>options</bcf:field> + <bcf:field>origday</bcf:field> + <bcf:field>origendday</bcf:field> + <bcf:field>origendhour</bcf:field> + <bcf:field>origendminute</bcf:field> + <bcf:field>origendmonth</bcf:field> + <bcf:field>origendseason</bcf:field> + <bcf:field>origendsecond</bcf:field> + <bcf:field>origendtimezone</bcf:field> + <bcf:field>origendyear</bcf:field> + <bcf:field>orighour</bcf:field> + <bcf:field>origminute</bcf:field> + <bcf:field>origmonth</bcf:field> + <bcf:field>origseason</bcf:field> + <bcf:field>origsecond</bcf:field> + <bcf:field>origtimezone</bcf:field> + <bcf:field>origyear</bcf:field> + <bcf:field>origlocation</bcf:field> + <bcf:field>origpublisher</bcf:field> + <bcf:field>origtitle</bcf:field> + <bcf:field>pagination</bcf:field> + <bcf:field>presort</bcf:field> + <bcf:field>related</bcf:field> + <bcf:field>relatedoptions</bcf:field> + <bcf:field>relatedstring</bcf:field> + <bcf:field>relatedtype</bcf:field> + <bcf:field>season</bcf:field> + <bcf:field>second</bcf:field> + <bcf:field>shortauthor</bcf:field> + <bcf:field>shorteditor</bcf:field> + <bcf:field>shorthand</bcf:field> + <bcf:field>shorthandintro</bcf:field> + <bcf:field>shortjournal</bcf:field> + <bcf:field>shortseries</bcf:field> + <bcf:field>shorttitle</bcf:field> + <bcf:field>sortkey</bcf:field> + <bcf:field>sortname</bcf:field> + <bcf:field>sortshorthand</bcf:field> + <bcf:field>sorttitle</bcf:field> + <bcf:field>sortyear</bcf:field> + <bcf:field>timezone</bcf:field> + <bcf:field>url</bcf:field> + <bcf:field>urlday</bcf:field> + <bcf:field>urlendday</bcf:field> + <bcf:field>urlendhour</bcf:field> + <bcf:field>urlendminute</bcf:field> + <bcf:field>urlendmonth</bcf:field> + <bcf:field>urlendsecond</bcf:field> + <bcf:field>urlendtimezone</bcf:field> + <bcf:field>urlendyear</bcf:field> + <bcf:field>urlhour</bcf:field> + <bcf:field>urlminute</bcf:field> + <bcf:field>urlmonth</bcf:field> + <bcf:field>urlsecond</bcf:field> + <bcf:field>urltimezone</bcf:field> + <bcf:field>urlyear</bcf:field> + <bcf:field>usera</bcf:field> + <bcf:field>userb</bcf:field> + <bcf:field>userc</bcf:field> + <bcf:field>userd</bcf:field> + <bcf:field>usere</bcf:field> + <bcf:field>userf</bcf:field> + <bcf:field>verba</bcf:field> + <bcf:field>verbb</bcf:field> + <bcf:field>verbc</bcf:field> + <bcf:field>xdata</bcf:field> + <bcf:field>xref</bcf:field> + <bcf:field>year</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>set</bcf:entrytype> + <bcf:field>entryset</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>article</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>annotator</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>commentator</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editora</bcf:field> + <bcf:field>editorb</bcf:field> + <bcf:field>editorc</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>editoratype</bcf:field> + <bcf:field>editorbtype</bcf:field> + <bcf:field>editorctype</bcf:field> + <bcf:field>eid</bcf:field> + <bcf:field>issn</bcf:field> + <bcf:field>issue</bcf:field> + <bcf:field>issuetitle</bcf:field> + <bcf:field>issuesubtitle</bcf:field> + <bcf:field>issuetitleaddon</bcf:field> + <bcf:field>journalsubtitle</bcf:field> + <bcf:field>journaltitle</bcf:field> + <bcf:field>journaltitleaddon</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>origlanguage</bcf:field> + <bcf:field>pages</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>translator</bcf:field> + <bcf:field>version</bcf:field> + <bcf:field>volume</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>bibnote</bcf:entrytype> + <bcf:field>note</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>book</bcf:entrytype> + <bcf:field>author</bcf:field> + <bcf:field>addendum</bcf:field> + <bcf:field>afterword</bcf:field> + <bcf:field>annotator</bcf:field> + <bcf:field>chapter</bcf:field> + <bcf:field>commentator</bcf:field> + <bcf:field>edition</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editora</bcf:field> + <bcf:field>editorb</bcf:field> + <bcf:field>editorc</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>editoratype</bcf:field> + <bcf:field>editorbtype</bcf:field> + <bcf:field>editorctype</bcf:field> + <bcf:field>eid</bcf:field> + <bcf:field>foreword</bcf:field> + <bcf:field>introduction</bcf:field> + <bcf:field>isbn</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>maintitle</bcf:field> + <bcf:field>maintitleaddon</bcf:field> + <bcf:field>mainsubtitle</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>origlanguage</bcf:field> + <bcf:field>pages</bcf:field> + <bcf:field>pagetotal</bcf:field> + <bcf:field>part</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>translator</bcf:field> + <bcf:field>volume</bcf:field> + <bcf:field>volumes</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>mvbook</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>afterword</bcf:field> + <bcf:field>annotator</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>commentator</bcf:field> + <bcf:field>edition</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editora</bcf:field> + <bcf:field>editorb</bcf:field> + <bcf:field>editorc</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>editoratype</bcf:field> + <bcf:field>editorbtype</bcf:field> + <bcf:field>editorctype</bcf:field> + <bcf:field>foreword</bcf:field> + <bcf:field>introduction</bcf:field> + <bcf:field>isbn</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>origlanguage</bcf:field> + <bcf:field>pagetotal</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>translator</bcf:field> + <bcf:field>volume</bcf:field> + <bcf:field>volumes</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>inbook</bcf:entrytype> + <bcf:entrytype>bookinbook</bcf:entrytype> + <bcf:entrytype>suppbook</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>afterword</bcf:field> + <bcf:field>annotator</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>booktitle</bcf:field> + <bcf:field>bookauthor</bcf:field> + <bcf:field>booksubtitle</bcf:field> + <bcf:field>booktitleaddon</bcf:field> + <bcf:field>chapter</bcf:field> + <bcf:field>commentator</bcf:field> + <bcf:field>edition</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editora</bcf:field> + <bcf:field>editorb</bcf:field> + <bcf:field>editorc</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>editoratype</bcf:field> + <bcf:field>editorbtype</bcf:field> + <bcf:field>editorctype</bcf:field> + <bcf:field>eid</bcf:field> + <bcf:field>foreword</bcf:field> + <bcf:field>introduction</bcf:field> + <bcf:field>isbn</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>mainsubtitle</bcf:field> + <bcf:field>maintitle</bcf:field> + <bcf:field>maintitleaddon</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>origlanguage</bcf:field> + <bcf:field>part</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>pages</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>translator</bcf:field> + <bcf:field>volume</bcf:field> + <bcf:field>volumes</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>booklet</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>chapter</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>eid</bcf:field> + <bcf:field>howpublished</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>pages</bcf:field> + <bcf:field>pagetotal</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>type</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>collection</bcf:entrytype> + <bcf:entrytype>reference</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>afterword</bcf:field> + <bcf:field>annotator</bcf:field> + <bcf:field>chapter</bcf:field> + <bcf:field>commentator</bcf:field> + <bcf:field>edition</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editora</bcf:field> + <bcf:field>editorb</bcf:field> + <bcf:field>editorc</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>editoratype</bcf:field> + <bcf:field>editorbtype</bcf:field> + <bcf:field>editorctype</bcf:field> + <bcf:field>eid</bcf:field> + <bcf:field>foreword</bcf:field> + <bcf:field>introduction</bcf:field> + <bcf:field>isbn</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>mainsubtitle</bcf:field> + <bcf:field>maintitle</bcf:field> + <bcf:field>maintitleaddon</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>origlanguage</bcf:field> + <bcf:field>pages</bcf:field> + <bcf:field>pagetotal</bcf:field> + <bcf:field>part</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>translator</bcf:field> + <bcf:field>volume</bcf:field> + <bcf:field>volumes</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>mvcollection</bcf:entrytype> + <bcf:entrytype>mvreference</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>afterword</bcf:field> + <bcf:field>annotator</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>commentator</bcf:field> + <bcf:field>edition</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editora</bcf:field> + <bcf:field>editorb</bcf:field> + <bcf:field>editorc</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>editoratype</bcf:field> + <bcf:field>editorbtype</bcf:field> + <bcf:field>editorctype</bcf:field> + <bcf:field>foreword</bcf:field> + <bcf:field>introduction</bcf:field> + <bcf:field>isbn</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>origlanguage</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>translator</bcf:field> + <bcf:field>volume</bcf:field> + <bcf:field>volumes</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>incollection</bcf:entrytype> + <bcf:entrytype>suppcollection</bcf:entrytype> + <bcf:entrytype>inreference</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>afterword</bcf:field> + <bcf:field>annotator</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>booksubtitle</bcf:field> + <bcf:field>booktitle</bcf:field> + <bcf:field>booktitleaddon</bcf:field> + <bcf:field>chapter</bcf:field> + <bcf:field>commentator</bcf:field> + <bcf:field>edition</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editora</bcf:field> + <bcf:field>editorb</bcf:field> + <bcf:field>editorc</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>editoratype</bcf:field> + <bcf:field>editorbtype</bcf:field> + <bcf:field>editorctype</bcf:field> + <bcf:field>eid</bcf:field> + <bcf:field>foreword</bcf:field> + <bcf:field>introduction</bcf:field> + <bcf:field>isbn</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>mainsubtitle</bcf:field> + <bcf:field>maintitle</bcf:field> + <bcf:field>maintitleaddon</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>origlanguage</bcf:field> + <bcf:field>pages</bcf:field> + <bcf:field>part</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>translator</bcf:field> + <bcf:field>volume</bcf:field> + <bcf:field>volumes</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>dataset</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>edition</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>organization</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>type</bcf:field> + <bcf:field>version</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>manual</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>chapter</bcf:field> + <bcf:field>edition</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>eid</bcf:field> + <bcf:field>isbn</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>organization</bcf:field> + <bcf:field>pages</bcf:field> + <bcf:field>pagetotal</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>type</bcf:field> + <bcf:field>version</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>misc</bcf:entrytype> + <bcf:entrytype>software</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>howpublished</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>organization</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>type</bcf:field> + <bcf:field>version</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>online</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>organization</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>version</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>patent</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>holder</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>type</bcf:field> + <bcf:field>version</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>periodical</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editora</bcf:field> + <bcf:field>editorb</bcf:field> + <bcf:field>editorc</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>editoratype</bcf:field> + <bcf:field>editorbtype</bcf:field> + <bcf:field>editorctype</bcf:field> + <bcf:field>issn</bcf:field> + <bcf:field>issue</bcf:field> + <bcf:field>issuesubtitle</bcf:field> + <bcf:field>issuetitle</bcf:field> + <bcf:field>issuetitleaddon</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>season</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>volume</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>mvproceedings</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>eventday</bcf:field> + <bcf:field>eventendday</bcf:field> + <bcf:field>eventendhour</bcf:field> + <bcf:field>eventendminute</bcf:field> + <bcf:field>eventendmonth</bcf:field> + <bcf:field>eventendseason</bcf:field> + <bcf:field>eventendsecond</bcf:field> + <bcf:field>eventendtimezone</bcf:field> + <bcf:field>eventendyear</bcf:field> + <bcf:field>eventhour</bcf:field> + <bcf:field>eventminute</bcf:field> + <bcf:field>eventmonth</bcf:field> + <bcf:field>eventseason</bcf:field> + <bcf:field>eventsecond</bcf:field> + <bcf:field>eventtimezone</bcf:field> + <bcf:field>eventyear</bcf:field> + <bcf:field>eventtitle</bcf:field> + <bcf:field>eventtitleaddon</bcf:field> + <bcf:field>isbn</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>organization</bcf:field> + <bcf:field>pagetotal</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>venue</bcf:field> + <bcf:field>volumes</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>proceedings</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>chapter</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>eid</bcf:field> + <bcf:field>eventday</bcf:field> + <bcf:field>eventendday</bcf:field> + <bcf:field>eventendhour</bcf:field> + <bcf:field>eventendminute</bcf:field> + <bcf:field>eventendmonth</bcf:field> + <bcf:field>eventendseason</bcf:field> + <bcf:field>eventendsecond</bcf:field> + <bcf:field>eventendtimezone</bcf:field> + <bcf:field>eventendyear</bcf:field> + <bcf:field>eventhour</bcf:field> + <bcf:field>eventminute</bcf:field> + <bcf:field>eventmonth</bcf:field> + <bcf:field>eventseason</bcf:field> + <bcf:field>eventsecond</bcf:field> + <bcf:field>eventtimezone</bcf:field> + <bcf:field>eventyear</bcf:field> + <bcf:field>eventtitle</bcf:field> + <bcf:field>eventtitleaddon</bcf:field> + <bcf:field>isbn</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>mainsubtitle</bcf:field> + <bcf:field>maintitle</bcf:field> + <bcf:field>maintitleaddon</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>organization</bcf:field> + <bcf:field>pages</bcf:field> + <bcf:field>pagetotal</bcf:field> + <bcf:field>part</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>venue</bcf:field> + <bcf:field>volume</bcf:field> + <bcf:field>volumes</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>inproceedings</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>booksubtitle</bcf:field> + <bcf:field>booktitle</bcf:field> + <bcf:field>booktitleaddon</bcf:field> + <bcf:field>chapter</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editortype</bcf:field> + <bcf:field>eid</bcf:field> + <bcf:field>eventday</bcf:field> + <bcf:field>eventendday</bcf:field> + <bcf:field>eventendhour</bcf:field> + <bcf:field>eventendminute</bcf:field> + <bcf:field>eventendmonth</bcf:field> + <bcf:field>eventendseason</bcf:field> + <bcf:field>eventendsecond</bcf:field> + <bcf:field>eventendtimezone</bcf:field> + <bcf:field>eventendyear</bcf:field> + <bcf:field>eventhour</bcf:field> + <bcf:field>eventminute</bcf:field> + <bcf:field>eventmonth</bcf:field> + <bcf:field>eventseason</bcf:field> + <bcf:field>eventsecond</bcf:field> + <bcf:field>eventtimezone</bcf:field> + <bcf:field>eventyear</bcf:field> + <bcf:field>eventtitle</bcf:field> + <bcf:field>eventtitleaddon</bcf:field> + <bcf:field>isbn</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>mainsubtitle</bcf:field> + <bcf:field>maintitle</bcf:field> + <bcf:field>maintitleaddon</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>organization</bcf:field> + <bcf:field>pages</bcf:field> + <bcf:field>part</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>venue</bcf:field> + <bcf:field>volume</bcf:field> + <bcf:field>volumes</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>report</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>chapter</bcf:field> + <bcf:field>eid</bcf:field> + <bcf:field>institution</bcf:field> + <bcf:field>isrn</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>number</bcf:field> + <bcf:field>pages</bcf:field> + <bcf:field>pagetotal</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>type</bcf:field> + <bcf:field>version</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>thesis</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>chapter</bcf:field> + <bcf:field>eid</bcf:field> + <bcf:field>institution</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>pages</bcf:field> + <bcf:field>pagetotal</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>type</bcf:field> + </bcf:entryfields> + <bcf:entryfields> + <bcf:entrytype>unpublished</bcf:entrytype> + <bcf:field>addendum</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>eventday</bcf:field> + <bcf:field>eventendday</bcf:field> + <bcf:field>eventendhour</bcf:field> + <bcf:field>eventendminute</bcf:field> + <bcf:field>eventendmonth</bcf:field> + <bcf:field>eventendseason</bcf:field> + <bcf:field>eventendsecond</bcf:field> + <bcf:field>eventendtimezone</bcf:field> + <bcf:field>eventendyear</bcf:field> + <bcf:field>eventhour</bcf:field> + <bcf:field>eventminute</bcf:field> + <bcf:field>eventmonth</bcf:field> + <bcf:field>eventseason</bcf:field> + <bcf:field>eventsecond</bcf:field> + <bcf:field>eventtimezone</bcf:field> + <bcf:field>eventyear</bcf:field> + <bcf:field>eventtitle</bcf:field> + <bcf:field>eventtitleaddon</bcf:field> + <bcf:field>howpublished</bcf:field> + <bcf:field>language</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>pubstate</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>type</bcf:field> + <bcf:field>venue</bcf:field> + </bcf:entryfields> + <bcf:multiscriptfields> + <bcf:field>abstract</bcf:field> + <bcf:field>addendum</bcf:field> + <bcf:field>afterword</bcf:field> + <bcf:field>annotator</bcf:field> + <bcf:field>author</bcf:field> + <bcf:field>bookauthor</bcf:field> + <bcf:field>booksubtitle</bcf:field> + <bcf:field>booktitle</bcf:field> + <bcf:field>booktitleaddon</bcf:field> + <bcf:field>chapter</bcf:field> + <bcf:field>commentator</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>editora</bcf:field> + <bcf:field>editorb</bcf:field> + <bcf:field>editorc</bcf:field> + <bcf:field>foreword</bcf:field> + <bcf:field>holder</bcf:field> + <bcf:field>institution</bcf:field> + <bcf:field>introduction</bcf:field> + <bcf:field>issuesubtitle</bcf:field> + <bcf:field>issuetitle</bcf:field> + <bcf:field>issuetitleaddon</bcf:field> + <bcf:field>journalsubtitle</bcf:field> + <bcf:field>journaltitle</bcf:field> + <bcf:field>journaltitleaddon</bcf:field> + <bcf:field>location</bcf:field> + <bcf:field>mainsubtitle</bcf:field> + <bcf:field>maintitle</bcf:field> + <bcf:field>maintitleaddon</bcf:field> + <bcf:field>nameaddon</bcf:field> + <bcf:field>note</bcf:field> + <bcf:field>organization</bcf:field> + <bcf:field>origlanguage</bcf:field> + <bcf:field>origlocation</bcf:field> + <bcf:field>origpublisher</bcf:field> + <bcf:field>origtitle</bcf:field> + <bcf:field>part</bcf:field> + <bcf:field>publisher</bcf:field> + <bcf:field>relatedstring</bcf:field> + <bcf:field>series</bcf:field> + <bcf:field>shortauthor</bcf:field> + <bcf:field>shorteditor</bcf:field> + <bcf:field>shorthand</bcf:field> + <bcf:field>shortjournal</bcf:field> + <bcf:field>shortseries</bcf:field> + <bcf:field>shorttitle</bcf:field> + <bcf:field>sortname</bcf:field> + <bcf:field>sortshorthand</bcf:field> + <bcf:field>sorttitle</bcf:field> + <bcf:field>subtitle</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>titleaddon</bcf:field> + <bcf:field>translator</bcf:field> + <bcf:field>venue</bcf:field> + </bcf:multiscriptfields> + <bcf:constraints> + <bcf:entrytype>article</bcf:entrytype> + <bcf:entrytype>book</bcf:entrytype> + <bcf:entrytype>inbook</bcf:entrytype> + <bcf:entrytype>bookinbook</bcf:entrytype> + <bcf:entrytype>suppbook</bcf:entrytype> + <bcf:entrytype>booklet</bcf:entrytype> + <bcf:entrytype>collection</bcf:entrytype> + <bcf:entrytype>incollection</bcf:entrytype> + <bcf:entrytype>suppcollection</bcf:entrytype> + <bcf:entrytype>manual</bcf:entrytype> + <bcf:entrytype>misc</bcf:entrytype> + <bcf:entrytype>mvbook</bcf:entrytype> + <bcf:entrytype>mvcollection</bcf:entrytype> + <bcf:entrytype>online</bcf:entrytype> + <bcf:entrytype>patent</bcf:entrytype> + <bcf:entrytype>periodical</bcf:entrytype> + <bcf:entrytype>suppperiodical</bcf:entrytype> + <bcf:entrytype>proceedings</bcf:entrytype> + <bcf:entrytype>inproceedings</bcf:entrytype> + <bcf:entrytype>reference</bcf:entrytype> + <bcf:entrytype>inreference</bcf:entrytype> + <bcf:entrytype>report</bcf:entrytype> + <bcf:entrytype>set</bcf:entrytype> + <bcf:entrytype>thesis</bcf:entrytype> + <bcf:entrytype>unpublished</bcf:entrytype> + <bcf:constraint type="mandatory"> + <bcf:fieldxor> + <bcf:field>date</bcf:field> + <bcf:field>year</bcf:field> + </bcf:fieldxor> + </bcf:constraint> + </bcf:constraints> + <bcf:constraints> + <bcf:entrytype>set</bcf:entrytype> + <bcf:constraint type="mandatory"> + <bcf:field>entryset</bcf:field> + </bcf:constraint> + </bcf:constraints> + <bcf:constraints> + <bcf:entrytype>article</bcf:entrytype> + <bcf:constraint type="mandatory"> + <bcf:field>author</bcf:field> + <bcf:field>journaltitle</bcf:field> + <bcf:field>title</bcf:field> + </bcf:constraint> + </bcf:constraints> + <bcf:constraints> + <bcf:entrytype>book</bcf:entrytype> + <bcf:entrytype>mvbook</bcf:entrytype> + <bcf:constraint type="mandatory"> + <bcf:field>author</bcf:field> + <bcf:field>title</bcf:field> + </bcf:constraint> + </bcf:constraints> + <bcf:constraints> + <bcf:entrytype>inbook</bcf:entrytype> + <bcf:entrytype>bookinbook</bcf:entrytype> + <bcf:entrytype>suppbook</bcf:entrytype> + <bcf:constraint type="mandatory"> + <bcf:field>author</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>booktitle</bcf:field> + </bcf:constraint> + </bcf:constraints> + <bcf:constraints> + <bcf:entrytype>booklet</bcf:entrytype> + <bcf:constraint type="mandatory"> + <bcf:fieldor> + <bcf:field>author</bcf:field> + <bcf:field>editor</bcf:field> + </bcf:fieldor> + <bcf:field>title</bcf:field> + </bcf:constraint> + </bcf:constraints> + <bcf:constraints> + <bcf:entrytype>collection</bcf:entrytype> + <bcf:entrytype>reference</bcf:entrytype> + <bcf:entrytype>mvcollection</bcf:entrytype> + <bcf:entrytype>mvreference</bcf:entrytype> + <bcf:constraint type="mandatory"> + <bcf:field>editor</bcf:field> + <bcf:field>title</bcf:field> + </bcf:constraint> + </bcf:constraints> + <bcf:constraints> + <bcf:entrytype>incollection</bcf:entrytype> + <bcf:entrytype>suppcollection</bcf:entrytype> + <bcf:entrytype>inreference</bcf:entrytype> + <bcf:constraint type="mandatory"> + <bcf:field>author</bcf:field> + <bcf:field>editor</bcf:field> + <bcf:field>title</bcf:field> + <bcf:field>booktitle</bcf:field> + </bcf:constraint> + </bcf:constraints> + <bcf:constraints> + <bcf:entrytype>dataset</bcf:entrytype> + <bcf:constraint type="mandatory"> + <bcf:field>title</bcf:field> + </bcf:constraint> + </bcf:constraints> + <bcf:constraints> + <bcf:entrytype>manual</bcf:entrytype> + <bcf:constraint type="mandatory"> + <bcf:field>title</bcf:field> + </bcf:constraint> + </bcf:constraints> + <bcf:constraints> + <bcf:entrytype>misc</bcf:entrytype> + <bcf:entrytype>software</bcf:entrytype> + <bcf:constraint type="mandatory"> + <bcf:field>title</bcf:field> + </bcf:constraint> + </bcf:constraints> + <bcf:constra +\ No newline at end of file diff --git a/src/thesis/main.log b/src/thesis/main.log @@ -0,0 +1,1198 @@ +This is pdfTeX, Version 3.141592653-2.6-1.40.22 (TeX Live 2021/Arch Linux) (preloaded format=pdflatex 2021.5.23) 10 AUG 2021 12:21 +entering extended mode + restricted \write18 enabled. + %&-line parsing enabled. +**main.tex +(./main.tex +LaTeX2e <2020-10-01> patch level 4 +L3 programming layer <2021-02-18> +(/usr/share/texmf-dist/tex/latex/base/article.cls +Document Class: article 2020/04/10 v1.4m Standard LaTeX document class +(/usr/share/texmf-dist/tex/latex/base/size12.clo +File: size12.clo 2020/04/10 v1.4m Standard LaTeX file (size option) +) +\c@part=\count179 +\c@section=\count180 +\c@subsection=\count181 +\c@subsubsection=\count182 +\c@paragraph=\count183 +\c@subparagraph=\count184 +\c@figure=\count185 +\c@table=\count186 +\abovecaptionskip=\skip47 +\belowcaptionskip=\skip48 +\bibindent=\dimen138 +) (./back/packages.tex +(/usr/share/texmf-dist/tex/latex/base/inputenc.sty +Package: inputenc 2020/08/01 v1.3d Input encoding file +\inpenc@prehook=\toks15 +\inpenc@posthook=\toks16 +) +(/usr/share/texmf-dist/tex/latex/psnfss/mathptmx.sty +Package: mathptmx 2020/03/25 PSNFSS-v9.3 Times w/ Math, improved (SPQR, WaS) +LaTeX Font Info: Redeclaring symbol font `operators' on input line 28. +LaTeX Font Info: Overwriting symbol font `operators' in version `normal' +(Font) OT1/cmr/m/n --> OT1/ztmcm/m/n on input line 28. +LaTeX Font Info: Overwriting symbol font `operators' in version `bold' +(Font) OT1/cmr/bx/n --> OT1/ztmcm/m/n on input line 28. +LaTeX Font Info: Redeclaring symbol font `letters' on input line 29. +LaTeX Font Info: Overwriting symbol font `letters' in version `normal' +(Font) OML/cmm/m/it --> OML/ztmcm/m/it on input line 29. +LaTeX Font Info: Overwriting symbol font `letters' in version `bold' +(Font) OML/cmm/b/it --> OML/ztmcm/m/it on input line 29. +LaTeX Font Info: Redeclaring symbol font `symbols' on input line 30. +LaTeX Font Info: Overwriting symbol font `symbols' in version `normal' +(Font) OMS/cmsy/m/n --> OMS/ztmcm/m/n on input line 30. +LaTeX Font Info: Overwriting symbol font `symbols' in version `bold' +(Font) OMS/cmsy/b/n --> OMS/ztmcm/m/n on input line 30. +LaTeX Font Info: Redeclaring symbol font `largesymbols' on input line 31. +LaTeX Font Info: Overwriting symbol font `largesymbols' in version `normal' +(Font) OMX/cmex/m/n --> OMX/ztmcm/m/n on input line 31. +LaTeX Font Info: Overwriting symbol font `largesymbols' in version `bold' +(Font) OMX/cmex/m/n --> OMX/ztmcm/m/n on input line 31. +\symbold=\mathgroup4 +\symitalic=\mathgroup5 +LaTeX Font Info: Redeclaring math alphabet \mathbf on input line 34. +LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `normal' +(Font) OT1/cmr/bx/n --> OT1/ptm/bx/n on input line 34. +LaTeX Font Info: Overwriting math alphabet `\mathbf' in version `bold' +(Font) OT1/cmr/bx/n --> OT1/ptm/bx/n on input line 34. +LaTeX Font Info: Redeclaring math alphabet \mathit on input line 35. +LaTeX Font Info: Overwriting math alphabet `\mathit' in version `normal' +(Font) OT1/cmr/m/it --> OT1/ptm/m/it on input line 35. +LaTeX Font Info: Overwriting math alphabet `\mathit' in version `bold' +(Font) OT1/cmr/bx/it --> OT1/ptm/m/it on input line 35. +LaTeX Info: Redefining \hbar on input line 50. +) +(/usr/share/texmf-dist/tex/latex/graphics/graphicx.sty +Package: graphicx 2020/09/09 v1.2b Enhanced LaTeX Graphics (DPC,SPQR) + +(/usr/share/texmf-dist/tex/latex/graphics/keyval.sty +Package: keyval 2014/10/28 v1.15 key=value parser (DPC) +\KV@toks@=\toks17 +) +(/usr/share/texmf-dist/tex/latex/graphics/graphics.sty +Package: graphics 2020/08/30 v1.4c Standard LaTeX Graphics (DPC,SPQR) + +(/usr/share/texmf-dist/tex/latex/graphics/trig.sty +Package: trig 2016/01/03 v1.10 sin cos tan (DPC) +) +(/usr/share/texmf-dist/tex/latex/graphics-cfg/graphics.cfg +File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration +) +Package graphics Info: Driver file: pdftex.def on input line 105. + +(/usr/share/texmf-dist/tex/latex/graphics-def/pdftex.def +File: pdftex.def 2020/10/05 v1.2a Graphics/color driver for pdftex +)) +\Gin@req@height=\dimen139 +\Gin@req@width=\dimen140 +) +(/usr/share/texmf-dist/tex/latex/geometry/geometry.sty +Package: geometry 2020/01/02 v5.9 Page Geometry + +(/usr/share/texmf-dist/tex/generic/iftex/ifvtex.sty +Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead. + +(/usr/share/texmf-dist/tex/generic/iftex/iftex.sty +Package: iftex 2020/03/06 v1.0d TeX engine tests +)) +\Gm@cnth=\count187 +\Gm@cntv=\count188 +\c@Gm@tempcnt=\count189 +\Gm@bindingoffset=\dimen141 +\Gm@wd@mp=\dimen142 +\Gm@odd@mp=\dimen143 +\Gm@even@mp=\dimen144 +\Gm@layoutwidth=\dimen145 +\Gm@layoutheight=\dimen146 +\Gm@layouthoffset=\dimen147 +\Gm@layoutvoffset=\dimen148 +\Gm@dimlist=\toks18 +) +(/usr/share/texmf-dist/tex/latex/caption/subcaption.sty +Package: subcaption 2020/10/07 v1.3j Sub-captions (AR) + +(/usr/share/texmf-dist/tex/latex/caption/caption.sty +Package: caption 2020/10/26 v3.5g Customizing captions (AR) + +(/usr/share/texmf-dist/tex/latex/caption/caption3.sty +Package: caption3 2020/10/21 v2.2e caption3 kernel (AR) +\captionmargin=\dimen149 +\captionmargin@=\dimen150 +\captionwidth=\dimen151 +\caption@tempdima=\dimen152 +\caption@indent=\dimen153 +\caption@parindent=\dimen154 +\caption@hangindent=\dimen155 +Package caption Info: Standard document class detected. +) +\c@caption@flags=\count190 +\c@continuedfloat=\count191 +) +\c@subfigure=\count192 +\c@subtable=\count193 +) +(/usr/share/texmf-dist/tex/latex/enumitem/enumitem.sty +Package: enumitem 2019/06/20 v3.9 Customized lists +\labelindent=\skip49 +\enit@outerparindent=\dimen156 +\enit@toks=\toks19 +\enit@inbox=\box47 +\enit@count@id=\count194 +\enitdp@description=\count195 +) +(/usr/share/texmf-dist/tex/latex/amsfonts/amssymb.sty +Package: amssymb 2013/01/14 v3.01 AMS font symbols + +(/usr/share/texmf-dist/tex/latex/amsfonts/amsfonts.sty +Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support +\@emptytoks=\toks20 +\symAMSa=\mathgroup6 +\symAMSb=\mathgroup7 +LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' +(Font) U/euf/m/n --> U/euf/b/n on input line 106. +)) +(/usr/share/texmf-dist/tex/latex/amscls/amsthm.sty +Package: amsthm 2020/05/29 v2.20.6 +\thm@style=\toks21 +\thm@bodyfont=\toks22 +\thm@headfont=\toks23 +\thm@notefont=\toks24 +\thm@headpunct=\toks25 +\thm@preskip=\skip50 +\thm@postskip=\skip51 +\thm@headsep=\skip52 +\dth@everypar=\toks26 +) +(/usr/share/texmf-dist/tex/latex/mathtools/mathtools.sty +Package: mathtools 2021/03/18 v1.25 mathematical typesetting tools + +(/usr/share/texmf-dist/tex/latex/tools/calc.sty +Package: calc 2017/05/25 v4.3 Infix arithmetic (KKT,FJ) +\calc@Acount=\count196 +\calc@Bcount=\count197 +\calc@Adimen=\dimen157 +\calc@Bdimen=\dimen158 +\calc@Askip=\skip53 +\calc@Bskip=\skip54 +LaTeX Info: Redefining \setlength on input line 80. +LaTeX Info: Redefining \addtolength on input line 81. +\calc@Ccount=\count198 +\calc@Cskip=\skip55 +) +(/usr/share/texmf-dist/tex/latex/mathtools/mhsetup.sty +Package: mhsetup 2021/03/18 v1.4 programming setup (MH) +) +(/usr/share/texmf-dist/tex/latex/amsmath/amsmath.sty +Package: amsmath 2020/09/23 v2.17i AMS math features +\@mathmargin=\skip56 + +For additional information on amsmath, use the `?' option. +(/usr/share/texmf-dist/tex/latex/amsmath/amstext.sty +Package: amstext 2000/06/29 v2.01 AMS text + +(/usr/share/texmf-dist/tex/latex/amsmath/amsgen.sty +File: amsgen.sty 1999/11/30 v2.0 generic functions +\@emptytoks=\toks27 +\ex@=\dimen159 +)) +(/usr/share/texmf-dist/tex/latex/amsmath/amsbsy.sty +Package: amsbsy 1999/11/29 v1.2d Bold Symbols +\pmbraise@=\dimen160 +) +(/usr/share/texmf-dist/tex/latex/amsmath/amsopn.sty +Package: amsopn 2016/03/08 v2.02 operator names +) +\inf@bad=\count199 +LaTeX Info: Redefining \frac on input line 234. +\uproot@=\count266 +\leftroot@=\count267 +LaTeX Info: Redefining \overline on input line 399. +\classnum@=\count268 +\DOTSCASE@=\count269 +LaTeX Info: Redefining \ldots on input line 496. +LaTeX Info: Redefining \dots on input line 499. +LaTeX Info: Redefining \cdots on input line 620. +\Mathstrutbox@=\box48 +\strutbox@=\box49 +\big@size=\dimen161 +LaTeX Font Info: Redeclaring font encoding OML on input line 743. +LaTeX Font Info: Redeclaring font encoding OMS on input line 744. +\macc@depth=\count270 +\c@MaxMatrixCols=\count271 +\dotsspace@=\muskip16 +\c@parentequation=\count272 +\dspbrk@lvl=\count273 +\tag@help=\toks28 +\row@=\count274 +\column@=\count275 +\maxfields@=\count276 +\andhelp@=\toks29 +\eqnshift@=\dimen162 +\alignsep@=\dimen163 +\tagshift@=\dimen164 +\tagwidth@=\dimen165 +\totwidth@=\dimen166 +\lineht@=\dimen167 +\@envbody=\toks30 +\multlinegap=\skip57 +\multlinetaggap=\skip58 +\mathdisplay@stack=\toks31 +LaTeX Info: Redefining \[ on input line 2923. +LaTeX Info: Redefining \] on input line 2924. +) +LaTeX Info: Thecontrolsequence`\('isalreadyrobust on input line 130. +LaTeX Info: Thecontrolsequence`\)'isalreadyrobust on input line 130. +LaTeX Info: Thecontrolsequence`\['isalreadyrobust on input line 130. +LaTeX Info: Thecontrolsequence`\]'isalreadyrobust on input line 130. +\g_MT_multlinerow_int=\count277 +\l_MT_multwidth_dim=\dimen168 +\origjot=\skip59 +\l_MT_shortvdotswithinadjustabove_dim=\dimen169 +\l_MT_shortvdotswithinadjustbelow_dim=\dimen170 +\l_MT_above_intertext_sep=\dimen171 +\l_MT_below_intertext_sep=\dimen172 +\l_MT_above_shortintertext_sep=\dimen173 +\l_MT_below_shortintertext_sep=\dimen174 +\xmathstrut@box=\box50 +\xmathstrut@dim=\dimen175 +) +(/usr/share/texmf-dist/tex/latex/braket/braket.sty) +(/usr/share/texmf-dist/tex/latex/bbm-macros/bbm.sty +Package: bbm 1999/03/15 V 1.2 provides fonts for set symbols - TH +LaTeX Font Info: Overwriting math alphabet `\mathbbm' in version `bold' +(Font) U/bbm/m/n --> U/bbm/bx/n on input line 33. +LaTeX Font Info: Overwriting math alphabet `\mathbbmss' in version `bold' +(Font) U/bbmss/m/n --> U/bbmss/bx/n on input line 35. +) +(/usr/share/texmf-dist/tex/latex/float/float.sty +Package: float 2001/11/08 v1.3d Float enhancements (AL) +\c@float@type=\count278 +\float@exts=\toks32 +\float@box=\box51 +\@float@everytoks=\toks33 +\@floatcapt=\box52 +) +(/usr/share/texmf-dist/tex/latex/yhmath/yhmath.sty +Package: yhmath 2020/03/17 v1.6 +\symyhlargesymbols=\mathgroup8 +LaTeX Font Info: Redeclaring math accent \widetilde on input line 29. +LaTeX Font Info: Redeclaring math accent \widehat on input line 30. +LaTeX Font Info: Redeclaring math symbol \braceld on input line 48. +LaTeX Font Info: Redeclaring math symbol \bracerd on input line 49. +LaTeX Font Info: Redeclaring math symbol \bracelu on input line 50. +LaTeX Font Info: Redeclaring math symbol \braceru on input line 51. +LaTeX Font Info: Redeclaring math delimiter \lmoustache on input line 53. +LaTeX Font Info: Redeclaring math delimiter \rmoustache on input line 55. +LaTeX Font Info: Redeclaring math delimiter \arrowvert on input line 57. +LaTeX Font Info: Redeclaring math delimiter \Arrowvert on input line 59. +LaTeX Font Info: Redeclaring math delimiter \Vert on input line 61. +LaTeX Font Info: Redeclaring math delimiter \vert on input line 63. +LaTeX Font Info: Redeclaring math delimiter \uparrow on input line 65. +LaTeX Font Info: Redeclaring math delimiter \downarrow on input line 67. +LaTeX Font Info: Redeclaring math delimiter \updownarrow on input line 69. +LaTeX Font Info: Redeclaring math delimiter \Uparrow on input line 71. +LaTeX Font Info: Redeclaring math delimiter \Downarrow on input line 73. +LaTeX Font Info: Redeclaring math delimiter \Updownarrow on input line 75. +LaTeX Font Info: Redeclaring math delimiter \backslash on input line 79. +LaTeX Font Info: Redeclaring math delimiter \rangle on input line 81. +LaTeX Font Info: Redeclaring math delimiter \langle on input line 83. +LaTeX Font Info: Redeclaring math delimiter \rbrace on input line 85. +LaTeX Font Info: Redeclaring math delimiter \lbrace on input line 87. +LaTeX Font Info: Redeclaring math delimiter \rceil on input line 89. +LaTeX Font Info: Redeclaring math delimiter \lceil on input line 91. +LaTeX Font Info: Redeclaring math delimiter \rfloor on input line 93. +LaTeX Font Info: Redeclaring math delimiter \lfloor on input line 95. +LaTeX Font Info: Redeclaring math delimiter \lgroup on input line 97. +LaTeX Font Info: Redeclaring math delimiter \rgroup on input line 99. +LaTeX Font Info: Redeclaring math delimiter \bracevert on input line 101. +) +(/usr/share/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty +(/usr/share/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty +(/usr/share/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty +(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex +\pgfutil@everybye=\toks34 +\pgfutil@tempdima=\dimen176 +\pgfutil@tempdimb=\dimen177 + +(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.tex)) +(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def +\pgfutil@abb=\box53 +) +(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex +(/usr/share/texmf-dist/tex/generic/pgf/pgf.revision.tex) +Package: pgfrcs 2020/12/27 v3.1.8b (3.1.8b) +)) +Package: pgf 2020/12/27 v3.1.8b (3.1.8b) + +(/usr/share/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty +(/usr/share/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty +(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex +Package: pgfsys 2020/12/27 v3.1.8b (3.1.8b) + +(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex +\pgfkeys@pathtoks=\toks35 +\pgfkeys@temptoks=\toks36 + +(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfkeysfiltered.code.tex +\pgfkeys@tmptoks=\toks37 +)) +\pgf@x=\dimen178 +\pgf@y=\dimen179 +\pgf@xa=\dimen180 +\pgf@ya=\dimen181 +\pgf@xb=\dimen182 +\pgf@yb=\dimen183 +\pgf@xc=\dimen184 +\pgf@yc=\dimen185 +\pgf@xd=\dimen186 +\pgf@yd=\dimen187 +\w@pgf@writea=\write3 +\r@pgf@reada=\read2 +\c@pgf@counta=\count279 +\c@pgf@countb=\count280 +\c@pgf@countc=\count281 +\c@pgf@countd=\count282 +\t@pgf@toka=\toks38 +\t@pgf@tokb=\toks39 +\t@pgf@tokc=\toks40 +\pgf@sys@id@count=\count283 + +(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg +File: pgf.cfg 2020/12/27 v3.1.8b (3.1.8b) +) +Driver file for pgf: pgfsys-pdftex.def + +(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def +File: pgfsys-pdftex.def 2020/12/27 v3.1.8b (3.1.8b) + +(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def +File: pgfsys-common-pdf.def 2020/12/27 v3.1.8b (3.1.8b) +))) +(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex +File: pgfsyssoftpath.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgfsyssoftpath@smallbuffer@items=\count284 +\pgfsyssoftpath@bigbuffer@items=\count285 +) +(/usr/share/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex +File: pgfsysprotocol.code.tex 2020/12/27 v3.1.8b (3.1.8b) +)) +(/usr/share/texmf-dist/tex/latex/xcolor/xcolor.sty +Package: xcolor 2016/05/11 v2.12 LaTeX color extensions (UK) + +(/usr/share/texmf-dist/tex/latex/graphics-cfg/color.cfg +File: color.cfg 2016/01/02 v1.6 sample color configuration +) +Package xcolor Info: Driver file: pdftex.def on input line 225. +Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1348. +Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1352. +Package xcolor Info: Model `RGB' extended on input line 1364. +Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1366. +Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1367. +Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1368. +Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1369. +Package xcolor Info: Model `Gray' substituted by `gray' on input line 1370. +Package xcolor Info: Model `wave' substituted by `hsb' on input line 1371. +) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex +Package: pgfcore 2020/12/27 v3.1.8b (3.1.8b) + +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex) +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex +\pgfmath@dimen=\dimen188 +\pgfmath@count=\count286 +\pgfmath@box=\box54 +\pgfmath@toks=\toks41 +\pgfmath@stack@operand=\toks42 +\pgfmath@stack@operation=\toks43 +) +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex) +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code +.tex) +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex) +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.te +x) (/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex) +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex) +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex) +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics +.code.tex))) (/usr/share/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex +\c@pgfmathroundto@lastzeros=\count287 +)) (/usr/share/texmf-dist/tex/generic/pgf/math/pgfint.code.tex) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex +File: pgfcorepoints.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgf@picminx=\dimen189 +\pgf@picmaxx=\dimen190 +\pgf@picminy=\dimen191 +\pgf@picmaxy=\dimen192 +\pgf@pathminx=\dimen193 +\pgf@pathmaxx=\dimen194 +\pgf@pathminy=\dimen195 +\pgf@pathmaxy=\dimen196 +\pgf@xx=\dimen197 +\pgf@xy=\dimen198 +\pgf@yx=\dimen199 +\pgf@yy=\dimen256 +\pgf@zx=\dimen257 +\pgf@zy=\dimen258 +) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex +File: pgfcorepathconstruct.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgf@path@lastx=\dimen259 +\pgf@path@lasty=\dimen260 +) (/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex +File: pgfcorepathusage.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgf@shorten@end@additional=\dimen261 +\pgf@shorten@start@additional=\dimen262 +) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex +File: pgfcorescopes.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgfpic=\box55 +\pgf@hbox=\box56 +\pgf@layerbox@main=\box57 +\pgf@picture@serial@count=\count288 +) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex +File: pgfcoregraphicstate.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgflinewidth=\dimen263 +) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.t +ex +File: pgfcoretransformations.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgf@pt@x=\dimen264 +\pgf@pt@y=\dimen265 +\pgf@pt@temp=\dimen266 +) (/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex +File: pgfcorequick.code.tex 2020/12/27 v3.1.8b (3.1.8b) +) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex +File: pgfcoreobjects.code.tex 2020/12/27 v3.1.8b (3.1.8b) +) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.te +x +File: pgfcorepathprocessing.code.tex 2020/12/27 v3.1.8b (3.1.8b) +) (/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex +File: pgfcorearrows.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgfarrowsep=\dimen267 +) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex +File: pgfcoreshade.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgf@max=\dimen268 +\pgf@sys@shading@range@num=\count289 +\pgf@shadingcount=\count290 +) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex +File: pgfcoreimage.code.tex 2020/12/27 v3.1.8b (3.1.8b) + +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex +File: pgfcoreexternal.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgfexternal@startupbox=\box58 +)) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex +File: pgfcorelayers.code.tex 2020/12/27 v3.1.8b (3.1.8b) +) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex +File: pgfcoretransparency.code.tex 2020/12/27 v3.1.8b (3.1.8b) +) (/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex +File: pgfcorepatterns.code.tex 2020/12/27 v3.1.8b (3.1.8b) +) +(/usr/share/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex +File: pgfcorerdf.code.tex 2020/12/27 v3.1.8b (3.1.8b) +))) +(/usr/share/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex +File: pgfmoduleshapes.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgfnodeparttextbox=\box59 +) +(/usr/share/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex +File: pgfmoduleplot.code.tex 2020/12/27 v3.1.8b (3.1.8b) +) +(/usr/share/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty +Package: pgfcomp-version-0-65 2020/12/27 v3.1.8b (3.1.8b) +\pgf@nodesepstart=\dimen269 +\pgf@nodesepend=\dimen270 +) +(/usr/share/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty +Package: pgfcomp-version-1-18 2020/12/27 v3.1.8b (3.1.8b) +)) +(/usr/share/texmf-dist/tex/latex/pgf/utilities/pgffor.sty +(/usr/share/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty +(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex)) +(/usr/share/texmf-dist/tex/latex/pgf/math/pgfmath.sty +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex)) +(/usr/share/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex +Package: pgffor 2020/12/27 v3.1.8b (3.1.8b) + +(/usr/share/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex) +\pgffor@iter=\dimen271 +\pgffor@skip=\dimen272 +\pgffor@stack=\toks44 +\pgffor@toks=\toks45 +)) +(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex +Package: tikz 2020/12/27 v3.1.8b (3.1.8b) + +(/usr/share/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.te +x +File: pgflibraryplothandlers.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgf@plot@mark@count=\count291 +\pgfplotmarksize=\dimen273 +) +\tikz@lastx=\dimen274 +\tikz@lasty=\dimen275 +\tikz@lastxsaved=\dimen276 +\tikz@lastysaved=\dimen277 +\tikz@lastmovetox=\dimen278 +\tikz@lastmovetoy=\dimen279 +\tikzleveldistance=\dimen280 +\tikzsiblingdistance=\dimen281 +\tikz@figbox=\box60 +\tikz@figbox@bg=\box61 +\tikz@tempbox=\box62 +\tikz@tempbox@bg=\box63 +\tikztreelevel=\count292 +\tikznumberofchildren=\count293 +\tikznumberofcurrentchild=\count294 +\tikz@fig@count=\count295 + (/usr/share/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex +File: pgfmodulematrix.code.tex 2020/12/27 v3.1.8b (3.1.8b) +\pgfmatrixcurrentrow=\count296 +\pgfmatrixcurrentcolumn=\count297 +\pgf@matrix@numberofcolumns=\count298 +) +\tikz@expandcount=\count299 + +(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrary +topaths.code.tex +File: tikzlibrarytopaths.code.tex 2020/12/27 v3.1.8b (3.1.8b) +))) +(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrary +calc.code.tex +File: tikzlibrarycalc.code.tex 2020/12/27 v3.1.8b (3.1.8b) +) +(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrary +decorations.markings.code.tex +(/usr/share/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrary +decorations.code.tex +(/usr/share/texmf-dist/tex/generic/pgf/modules/pgfmoduledecorations.code.tex +\pgfdecoratedcompleteddistance=\dimen282 +\pgfdecoratedremainingdistance=\dimen283 +\pgfdecoratedinputsegmentcompleteddistance=\dimen284 +\pgfdecoratedinputsegmentremainingdistance=\dimen285 +\pgf@decorate@distancetomove=\dimen286 +\pgf@decorate@repeatstate=\count300 +\pgfdecorationsegmentamplitude=\dimen287 +\pgfdecorationsegmentlength=\dimen288 +) +\tikz@lib@dec@box=\box64 +) +(/usr/share/texmf-dist/tex/generic/pgf/libraries/decorations/pgflibrarydecorati +ons.markings.code.tex)) (/usr/share/texmf-dist/tex/latex/hyperref/hyperref.sty +Package: hyperref 2021-02-27 v7.00k Hypertext links for LaTeX + +(/usr/share/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty +Package: ltxcmds 2020-05-10 v1.25 LaTeX kernel commands for general use (HO) +) +(/usr/share/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty +Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO +) + +(/usr/share/texmf-dist/tex/generic/infwarerr/infwarerr.sty +Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO) +) +Package pdftexcmds Info: \pdf@primitive is available. +Package pdftexcmds Info: \pdf@ifprimitive is available. +Package pdftexcmds Info: \pdfdraftmode found. +) +(/usr/share/texmf-dist/tex/generic/kvsetkeys/kvsetkeys.sty +Package: kvsetkeys 2019/12/15 v1.18 Key value parser (HO) +) +(/usr/share/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty +Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO) +) +(/usr/share/texmf-dist/tex/generic/pdfescape/pdfescape.sty +Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO) +) +(/usr/share/texmf-dist/tex/latex/hycolor/hycolor.sty +Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO) +) +(/usr/share/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty +Package: letltxmacro 2019/12/03 v1.6 Let assignment for LaTeX macros (HO) +) +(/usr/share/texmf-dist/tex/latex/auxhook/auxhook.sty +Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO) +) +(/usr/share/texmf-dist/tex/latex/kvoptions/kvoptions.sty +Package: kvoptions 2020-10-07 v3.14 Key value format for package options (HO) +) +\@linkdim=\dimen289 +\Hy@linkcounter=\count301 +\Hy@pagecounter=\count302 + +(/usr/share/texmf-dist/tex/latex/hyperref/pd1enc.def +File: pd1enc.def 2021-02-27 v7.00k Hyperref: PDFDocEncoding definition (HO) +Now handling font encoding PD1 ... +... no UTF-8 mapping file for font encoding PD1 +) +(/usr/share/texmf-dist/tex/latex/hyperref/hyperref-langpatches.def +File: hyperref-langpatches.def 2021-02-27 v7.00k Hyperref: patches for babel la +nguages +) +(/usr/share/texmf-dist/tex/generic/intcalc/intcalc.sty +Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO) +) +(/usr/share/texmf-dist/tex/generic/etexcmds/etexcmds.sty +Package: etexcmds 2019/12/15 v1.7 Avoid name clashes with e-TeX commands (HO) +) +\Hy@SavedSpaceFactor=\count303 + +(/usr/share/texmf-dist/tex/latex/hyperref/puenc.def +File: puenc.def 2021-02-27 v7.00k Hyperref: PDF Unicode definition (HO) +Now handling font encoding PU ... +... no UTF-8 mapping file for font encoding PU +) +Package hyperref Info: Option `colorlinks' set `true' on input line 4073. +Package hyperref Info: Option `naturalnames' set `true' on input line 4073. +Package hyperref Info: Option `plainpages' set `false' on input line 4073. +Package hyperref Info: Option `pdfpagelabels' set `true' on input line 4073. +Package hyperref Info: Hyper figures OFF on input line 4192. +Package hyperref Info: Link nesting OFF on input line 4197. +Package hyperref Info: Hyper index ON on input line 4200. +Package hyperref Info: Plain pages OFF on input line 4207. +Package hyperref Info: Backreferencing OFF on input line 4212. +Package hyperref Info: Implicit mode ON; LaTeX internals redefined. +Package hyperref Info: Bookmarks ON on input line 4445. +\c@Hy@tempcnt=\count304 + +(/usr/share/texmf-dist/tex/latex/url/url.sty +\Urlmuskip=\muskip17 +Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. +) +LaTeX Info: Redefining \url on input line 4804. +\XeTeXLinkMargin=\dimen290 + +(/usr/share/texmf-dist/tex/generic/bitset/bitset.sty +Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO) + +(/usr/share/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty +Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO +) +)) +\Fld@menulength=\count305 +\Field@Width=\dimen291 +\Fld@charsize=\dimen292 +Package hyperref Info: Hyper figures OFF on input line 6075. +Package hyperref Info: Link nesting OFF on input line 6080. +Package hyperref Info: Hyper index ON on input line 6083. +Package hyperref Info: backreferencing OFF on input line 6090. +Package hyperref Info: Link coloring ON on input line 6093. +Package hyperref Info: Link coloring with OCG OFF on input line 6100. +Package hyperref Info: PDF/A mode OFF on input line 6105. +LaTeX Info: Redefining \ref on input line 6145. +LaTeX Info: Redefining \pageref on input line 6149. + +(/usr/share/texmf-dist/tex/latex/base/atbegshi-ltx.sty +Package: atbegshi-ltx 2020/08/17 v1.0a Emulation of the original atbegshi packa +ge +with kernel methods +) +\Hy@abspage=\count306 +\c@Item=\count307 +\c@Hfootnote=\count308 +) +Package hyperref Info: Driver (autodetected): hpdftex. + +(/usr/share/texmf-dist/tex/latex/hyperref/hpdftex.def +File: hpdftex.def 2021-02-27 v7.00k Hyperref driver for pdfTeX + +(/usr/share/texmf-dist/tex/latex/base/atveryend-ltx.sty +Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atvery packag +e +with kernel methods +) +\Fld@listcount=\count309 +\c@bookmark@seq@number=\count310 + +(/usr/share/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty +Package: rerunfilecheck 2019/12/05 v1.9 Rerun checks for auxiliary files (HO) + +(/usr/share/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty +Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO) +) +Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 +86. +) +\Hy@SectionHShift=\skip60 +) +(/usr/share/texmf-dist/tex/latex/lipsum/lipsum.sty +(/usr/share/texmf-dist/tex/latex/l3kernel/expl3.sty +Package: expl3 2021-02-18 L3 programming layer (loader) + +(/usr/share/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def +File: l3backend-pdftex.def 2021-03-18 L3 backend support: PDF output (pdfTeX) +\l__color_backend_stack_int=\count311 +\l__pdf_internal_box=\box65 +)) +(/usr/share/texmf-dist/tex/latex/l3packages/xparse/xparse.sty +(/usr/share/texmf-dist/tex/latex/l3packages/xparse/xparse-2020-10-01.sty +(/usr/share/texmf-dist/tex/latex/l3packages/xparse/xparse-generic.tex))) +Package: lipsum 2021-03-03 v2.3 150 paragraphs of Lorem Ipsum dummy text + +(/usr/share/texmf-dist/tex/latex/lipsum/lipsum.ltd.tex +File: lipsum.ltd.tex 2021-03-03 v2.3 The Lorem ipsum dummy text +)) +\c@definition=\count312 +\c@theorem=\count313 +\c@lemma=\count314 +\c@proposition=\count315 + +(/usr/share/texmf-dist/tex/latex/biblatex/biblatex.sty +Package: biblatex 2020/12/31 v3.16 programmable bibliographies (PK/MW) + +(/usr/share/texmf-dist/tex/latex/etoolbox/etoolbox.sty +Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW) +\etb@tempcnta=\count316 +) +(/usr/share/texmf-dist/tex/latex/logreq/logreq.sty +Package: logreq 2010/08/04 v1.0 xml request logger +\lrq@indent=\count317 + +(/usr/share/texmf-dist/tex/latex/logreq/logreq.def +File: logreq.def 2010/08/04 v1.0 logreq spec v1.0 +)) +(/usr/share/texmf-dist/tex/latex/base/ifthen.sty +Package: ifthen 2014/09/29 v1.1c Standard LaTeX ifthen package (DPC) +) +\c@tabx@nest=\count318 +\c@listtotal=\count319 +\c@listcount=\count320 +\c@liststart=\count321 +\c@liststop=\count322 +\c@citecount=\count323 +\c@citetotal=\count324 +\c@multicitecount=\count325 +\c@multicitetotal=\count326 +\c@instcount=\count327 +\c@maxnames=\count328 +\c@minnames=\count329 +\c@maxitems=\count330 +\c@minitems=\count331 +\c@citecounter=\count332 +\c@maxcitecounter=\count333 +\c@savedcitecounter=\count334 +\c@uniquelist=\count335 +\c@uniquename=\count336 +\c@refsection=\count337 +\c@refsegment=\count338 +\c@maxextratitle=\count339 +\c@maxextratitleyear=\count340 +\c@maxextraname=\count341 +\c@maxextradate=\count342 +\c@maxextraalpha=\count343 +\c@abbrvpenalty=\count344 +\c@highnamepenalty=\count345 +\c@lownamepenalty=\count346 +\c@maxparens=\count347 +\c@parenlevel=\count348 +\blx@tempcnta=\count349 +\blx@tempcntb=\count350 +\blx@tempcntc=\count351 +\blx@maxsection=\count352 +\blx@maxsegment@0=\count353 +\blx@notetype=\count354 +\blx@parenlevel@text=\count355 +\blx@parenlevel@foot=\count356 +\blx@sectionciteorder@0=\count357 +\blx@entrysetcounter=\count358 +\blx@biblioinstance=\count359 +\labelnumberwidth=\skip61 +\labelalphawidth=\skip62 +\biblabelsep=\skip63 +\bibitemsep=\skip64 +\bibnamesep=\skip65 +\bibinitsep=\skip66 +\bibparsep=\skip67 +\bibhang=\skip68 +\blx@bcfin=\read3 +\blx@bcfout=\write4 +\blx@langwohyphens=\language87 +\c@mincomprange=\count360 +\c@maxcomprange=\count361 +\c@mincompwidth=\count362 +Package biblatex Info: Trying to load biblatex default data model... +Package biblatex Info: ... file 'blx-dm.def' found. + +(/usr/share/texmf-dist/tex/latex/biblatex/blx-dm.def +File: blx-dm.def 2020/12/31 v3.16 biblatex localization (PK/MW) +) +Package biblatex Info: Trying to load biblatex custom data model... +Package biblatex Info: ... file 'biblatex-dm.cfg' not found. +\c@afterword=\count363 +\c@savedafterword=\count364 +\c@annotator=\count365 +\c@savedannotator=\count366 +\c@author=\count367 +\c@savedauthor=\count368 +\c@bookauthor=\count369 +\c@savedbookauthor=\count370 +\c@commentator=\count371 +\c@savedcommentator=\count372 +\c@editor=\count373 +\c@savededitor=\count374 +\c@editora=\count375 +\c@savededitora=\count376 +\c@editorb=\count377 +\c@savededitorb=\count378 +\c@editorc=\count379 +\c@savededitorc=\count380 +\c@foreword=\count381 +\c@savedforeword=\count382 +\c@holder=\count383 +\c@savedholder=\count384 +\c@introduction=\count385 +\c@savedintroduction=\count386 +\c@namea=\count387 +\c@savednamea=\count388 +\c@nameb=\count389 +\c@savednameb=\count390 +\c@namec=\count391 +\c@savednamec=\count392 +\c@translator=\count393 +\c@savedtranslator=\count394 +\c@shortauthor=\count395 +\c@savedshortauthor=\count396 +\c@shorteditor=\count397 +\c@savedshorteditor=\count398 +\c@labelname=\count399 +\c@savedlabelname=\count400 +\c@institution=\count401 +\c@savedinstitution=\count402 +\c@lista=\count403 +\c@savedlista=\count404 +\c@listb=\count405 +\c@savedlistb=\count406 +\c@listc=\count407 +\c@savedlistc=\count408 +\c@listd=\count409 +\c@savedlistd=\count410 +\c@liste=\count411 +\c@savedliste=\count412 +\c@listf=\count413 +\c@savedlistf=\count414 +\c@location=\count415 +\c@savedlocation=\count416 +\c@organization=\count417 +\c@savedorganization=\count418 +\c@origlocation=\count419 +\c@savedoriglocation=\count420 +\c@origpublisher=\count421 +\c@savedorigpublisher=\count422 +\c@publisher=\count423 +\c@savedpublisher=\count424 +\c@language=\count425 +\c@savedlanguage=\count426 +\c@origlanguage=\count427 +\c@savedoriglanguage=\count428 +\c@pageref=\count429 +\c@savedpageref=\count430 +\shorthandwidth=\skip69 +\shortjournalwidth=\skip70 +\shortserieswidth=\skip71 +\shorttitlewidth=\skip72 +\shortauthorwidth=\skip73 +\shorteditorwidth=\skip74 +\locallabelnumberwidth=\skip75 +\locallabelalphawidth=\skip76 +\localshorthandwidth=\skip77 +\localshortjournalwidth=\skip78 +\localshortserieswidth=\skip79 +\localshorttitlewidth=\skip80 +\localshortauthorwidth=\skip81 +\localshorteditorwidth=\skip82 +Package biblatex Info: Trying to load compatibility code... +Package biblatex Info: ... file 'blx-compat.def' found. + +(/usr/share/texmf-dist/tex/latex/biblatex/blx-compat.def +File: blx-compat.def 2020/12/31 v3.16 biblatex compatibility (PK/MW) +) +Package biblatex Info: Trying to load generic definitions... +Package biblatex Info: ... file 'biblatex.def' found. + +(/usr/share/texmf-dist/tex/latex/biblatex/biblatex.def +File: biblatex.def 2020/12/31 v3.16 biblatex compatibility (PK/MW) +\c@textcitecount=\count431 +\c@textcitetotal=\count432 +\c@textcitemaxnames=\count433 +\c@biburlbigbreakpenalty=\count434 +\c@biburlbreakpenalty=\count435 +\c@biburlnumpenalty=\count436 +\c@biburlucpenalty=\count437 +\c@biburllcpenalty=\count438 +\biburlbigskip=\muskip18 +\biburlnumskip=\muskip19 +\biburlucskip=\muskip20 +\biburllcskip=\muskip21 +\c@smartand=\count439 +) +Package biblatex Info: Trying to load bibliography style 'numeric'... +Package biblatex Info: ... file 'numeric.bbx' found. + +(/usr/share/texmf-dist/tex/latex/biblatex/bbx/numeric.bbx +File: numeric.bbx 2020/12/31 v3.16 biblatex bibliography style (PK/MW) +Package biblatex Info: Trying to load bibliography style 'standard'... +Package biblatex Info: ... file 'standard.bbx' found. + +(/usr/share/texmf-dist/tex/latex/biblatex/bbx/standard.bbx +File: standard.bbx 2020/12/31 v3.16 biblatex bibliography style (PK/MW) +\c@bbx:relatedcount=\count440 +\c@bbx:relatedtotal=\count441 +)) +Package biblatex Info: Trying to load citation style 'numeric'... +Package biblatex Info: ... file 'numeric.cbx' found. + +(/usr/share/texmf-dist/tex/latex/biblatex/cbx/numeric.cbx +File: numeric.cbx 2020/12/31 v3.16 biblatex citation style (PK/MW) +Package biblatex Info: Redefining '\cite'. +Package biblatex Info: Redefining '\parencite'. +Package biblatex Info: Redefining '\footcite'. +Package biblatex Info: Redefining '\footcitetext'. +Package biblatex Info: Redefining '\smartcite'. +Package biblatex Info: Redefining '\supercite'. +Package biblatex Info: Redefining '\textcite'. +Package biblatex Info: Redefining '\textcites'. +Package biblatex Info: Redefining '\cites'. +Package biblatex Info: Redefining '\parencites'. +Package biblatex Info: Redefining '\smartcites'. +) +Package biblatex Info: Trying to load configuration file... +Package biblatex Info: ... file 'biblatex.cfg' found. + +(/usr/share/texmf-dist/tex/latex/biblatex/biblatex.cfg +File: biblatex.cfg +)) +(/usr/share/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty +Package: tcolorbox 2020/10/09 version 4.42 text color boxes + +(/usr/share/texmf-dist/tex/latex/tools/verbatim.sty +Package: verbatim 2020-07-07 v1.5u LaTeX2e package for verbatim enhancements +\every@verbatim=\toks46 +\verbatim@line=\toks47 +\verbatim@in@stream=\read4 +) +(/usr/share/texmf-dist/tex/latex/environ/environ.sty +Package: environ 2014/05/04 v0.3 A new way to define environments + +(/usr/share/texmf-dist/tex/latex/trimspaces/trimspaces.sty +Package: trimspaces 2009/09/17 v1.1 Trim spaces around a token list +)) +\tcb@titlebox=\box66 +\tcb@upperbox=\box67 +\tcb@lowerbox=\box68 +\tcb@phantombox=\box69 +\c@tcbbreakpart=\count442 +\c@tcblayer=\count443 +\c@tcolorbox@number=\count444 +\tcb@temp=\box70 +\tcb@temp=\box71 +\tcb@temp=\box72 +\tcb@temp=\box73 +\tcb@out=\write5 +\tcb@record@out=\write6 +) +(/usr/share/texmf-dist/tex/latex/tcolorbox/tcbskins.code.tex +Library (tcolorbox): 'tcbskins.code.tex' version '4.42' +\tcb@waterbox=\box74 +(/usr/share/texmf-dist/tex/latex/tcolorbox/tcbskinsjigsaw.code.tex +Library (tcolorbox): 'tcbskinsjigsaw.code.tex' version '4.42' +)) (/usr/share/texmf-dist/tex/latex/tcolorbox/tcbbreakable.code.tex +Library (tcolorbox): 'tcbbreakable.code.tex' version '4.42' +(/usr/share/texmf-dist/tex/generic/oberdiek/pdfcol.sty +Package: pdfcol 2019/12/29 v1.6 Handle new color stacks for pdfTeX (HO) +) +Package pdfcol Info: New color stack `tcb@breakable' = 1 on input line 23. +\tcb@testbox=\box75 +\tcb@totalupperbox=\box76 +\tcb@totallowerbox=\box77 +)) +\@quotelevel=\count445 +\@quotereset=\count446 +LaTeX Font Info: Trying to load font information for OT1+ptm on input line 7 +. + +(/usr/share/texmf-dist/tex/latex/psnfss/ot1ptm.fd +File: ot1ptm.fd 2001/06/04 font definitions for OT1/ptm. +) +No file main.aux. +\openout1 = `main.aux'. + +LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 7. +LaTeX Font Info: ... okay on input line 7. +LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 7. +LaTeX Font Info: ... okay on input line 7. +LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 7. +LaTeX Font Info: ... okay on input line 7. +LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 7. +LaTeX Font Info: ... okay on input line 7. +LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 7. +LaTeX Font Info: ... okay on input line 7. +LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 7. +LaTeX Font Info: ... okay on input line 7. +LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 7. +LaTeX Font Info: ... okay on input line 7. +LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 7. +LaTeX Font Info: ... okay on input line 7. +LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 7. +LaTeX Font Info: ... okay on input line 7. +(/usr/share/texmf-dist/tex/context/base/mkii/supp-pdf.mkii +[Loading MPS to PDF converter (version 2006.09.02).] +\scratchcounter=\count447 +\scratchdimen=\dimen293 +\scratchbox=\box78 +\nofMPsegments=\count448 +\nofMParguments=\count449 +\everyMPshowfont=\toks48 +\MPscratchCnt=\count450 +\MPscratchDim=\dimen294 +\MPnumerator=\count451 +\makeMPintoPDFobject=\count452 +\everyMPtoPDFconversion=\toks49 +) (/usr/share/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty +Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf +Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4 +85. + +(/usr/share/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg +File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv +e +)) +*geometry* driver: auto-detecting +*geometry* detected driver: pdftex +*geometry* verbose mode - [ preamble ] result: +* driver: pdftex +* paper: a4paper +* layout: <same size as paper> +* layoutoffset:(h,v)=(0.0pt,0.0pt) +* modes: +* h-part:(L,W,R)=(89.62709pt, 418.25368pt, 89.6271pt) +* v-part:(T,H,B)=(42.67912pt, 700.96107pt, 101.40665pt) +* \paperwidth=597.50787pt +* \paperheight=845.04684pt +* \textwidth=418.25368pt +* \textheight=700.96107pt +* \oddsidemargin=17.3571pt +* \evensidemargin=17.3571pt +* \topmargin=-66.59087pt +* \headheight=12.0pt +* \headsep=25.0pt +* \topskip=12.0pt +* \footskip=30.0pt +* \marginparwidth=44.0pt +* \marginparsep=10.0pt +* \columnsep=10.0pt +* \skip\footins=10.8pt plus 4.0pt minus 2.0pt +* \hoffset=0.0pt +* \voffset=0.0pt +* \mag=1000 +* \@twocolumnfalse +* \@twosidefalse +* \@mparswitchfalse +* \@reversemarginfalse +* (1in=72.27pt=25.4mm, 1cm=28.453pt) + +Package caption Info: Begin \AtBeginDocument code. +Package caption Info: float package is loaded. +Package caption Info: hyperref package is loaded. +Package caption Info: End \AtBeginDocument code. +Package hyperref Info: Link coloring ON on input line 7. +(/usr/share/texmf-dist/tex/latex/hyperref/nameref.sty +Package: nameref 2021-04-02 v2.47 Cross-referencing by name of section + +(/usr/share/texmf-dist/tex/latex/refcount/refcount.sty +Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO) +) +(/usr/share/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty +Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO) +) +\c@section@level=\count453 +) +LaTeX Info: Redefining \ref on input line 7. +LaTeX Info: Redefining \pageref on input line 7. +LaTeX Info: Redefining \nameref on input line 7. +\@outlinefile=\write7 +\openout7 = `main.out'. + +Package biblatex Info: Trying to load language 'english'... +Package biblatex Info: ... file 'english.lbx' found. + +(/usr/share/texmf-dist/tex/latex/biblatex/lbx/english.lbx +File: english.lbx 2020/12/31 v3.16 biblatex localization (PK/MW) +) +Package biblatex Info: Input encoding 'utf8' detected. +Package biblatex Info: Automatic encoding selection. +(biblatex) Assuming data encoding 'utf8'. +Package biblatex Info: Document encoding is UTF8 .... +Package biblatex Info: ... and expl3 +(biblatex) 2021-02-18 L3 programming layer (loader) +(biblatex) is new enough (at least 2020/04/06), +(biblatex) setting 'casechanger=expl3'. + +(/usr/share/texmf-dist/tex/latex/biblatex/blx-case-expl3.sty +Package: blx-case-expl3 2020/12/31 v3.16 expl3 case changing code for biblatex +) +\openout4 = `main.bcf'. + +Package biblatex Info: Trying to load bibliographic data... +Package biblatex Info: ... file 'main.bbl' not found. + +No file main.bbl. +Package biblatex Info: Reference section=0 on input line 7. +Package biblatex Info: Reference segment=0 on input line 7. +(./back/title.tex +<pics/uni_logo.png, id=7, 207.6558pt x 57.0933pt> +File: pics/uni_logo.png Graphic file (type png) +<use pics/uni_logo.png> +Package pdftex.def Info: pics/uni_logo.png used on input line 6. +(pdftex.def) Requested size: 227.62204pt x 62.58676pt. + +Overfull \hbox (62.03273pt too wide) in paragraph at lines 5--7 +[] [] + [] + +LaTeX Font Info: Trying to load font information for OT1+phv on input line 1 +0. +(/usr/share/texmf-dist/tex/latex/psnfss/ot1phv.fd +File: ot1phv.fd 2020/03/25 scalable font definitions for OT1/phv. +) +LaTeX Font Info: Calculating math sizes for size <18> on input line 40. +LaTeX Font Info: Trying to load font information for OT1+ztmcm on input line + 40. + +(/usr/share/texmf-dist/tex/latex/psnfss/ot1ztmcm.fd +File: ot1ztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OT1/ztmcm. +) +LaTeX Font Info: Trying to load font information for OML+ztmcm on input line + 40. + +(/usr/share/texmf-dist/tex/latex/psnfss/omlztmcm.fd +File: omlztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OML/ztmcm. +) +LaTeX Font Info: Trying to load font information for OMS+ztmcm on input line + 40. + +(/usr/share/texmf-dist/tex/latex/psnfss/omsztmcm.fd +File: omsztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OMS/ztmcm. +) +LaTeX Font Info: Trying to load font information for OMX+ztmcm on input line + 40. + +(/usr/share/texmf-dist/tex/latex/psnfss/omxztmcm.fd +File: omxztmcm.fd 2000/01/03 Fontinst v1.801 font definitions for OMX/ztmcm. +) +LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <18> not available +(Font) Font shape `OT1/ptm/b/n' tried instead on input line 40. +LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <13.3201> not available +(Font) Font shape `OT1/ptm/b/n' tried instead on input line 40. +LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <10.80011> not available +(Font) Font shape `OT1/ptm/b/n' tried instead on input +\ No newline at end of file diff --git a/src/thesis/main.out b/src/thesis/main.out diff --git a/src/thesis/main.pdf b/src/thesis/main.pdf Binary files differ. diff --git a/src/thesis/main.tex b/src/thesis/main.tex @@ -16,25 +16,29 @@ \input{back/abstract} +\newpage + %------------------- INTRO ------------------------- \input{chapters/intro} +\newpage + %----------------- MAIN SECTION -------------------- \input{chapters/main_sec} -\input{chapters/basics} +\input{chapters/1_basics} -\input{chapters/finitencg} +\input{chapters/2_finitencg} -\input{chapters/realncg} +\input{chapters/3_realncg} -\input{chapters/heatkernel} +\input{chapters/4_heatkernel} -\input{chapters/twopointspace} +\input{chapters/5_twopointspace} -\input{chapters/electroncg} +\input{chapters/6_electroncg} %------------------ OUTRO ------------------------- diff --git a/src/thesis/main.toc b/src/thesis/main.toc diff --git a/src/thesis/todo.md b/src/thesis/todo.md @@ -10,10 +10,10 @@ is followed, the equations have a comma or a dot at the sentence end etc. DONE 2. rethink the chapters DONE - 3. write introduction - 4. write conclusion + 6. write abstract DONE + 3. write introduction DONE + 4. write conclusion DONE 5. cut out exercises and examples in the main part if necessary, read through the not cut out and write them up nicely - 6. write abstract DONE 7. read through 8. submit