notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

commit 91480ea035367ec1289fad6a166cefae242a1b16
parent 73568521e9e777443b7149310ae4e7207dfd559e
Author: miksa234 <milutin@popovic.xyz>
Date:   Wed,  2 Mar 2022 19:07:52 +0100

new setup

Diffstat:
Aappl_ana/build/prb1.pdf | 0
Aappl_ana/build/prb2.pdf | 0
Aappl_ana/build/prb3.pdf | 0
Aappl_ana/build/prb4.pdf | 0
Aappl_ana/build/prb5.pdf | 0
Aappl_ana/build/prb6.pdf | 0
Aappl_ana/build/prb7.pdf | 0
Aappl_ana/build/prb8.pdf | 0
Rappl_ana/sesh8/fdft.png -> appl_ana/figures/fdft.png | 0
Rappl_ana/sesh8/normal.png -> appl_ana/figures/normal.png | 0
Aappl_ana/prb1.tex | 331+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aappl_ana/prb2.tex | 249+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aappl_ana/prb3.tex | 198+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aappl_ana/prb4.tex | 141+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aappl_ana/prb5.tex | 92+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aappl_ana/prb6.tex | 139+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aappl_ana/prb7.tex | 138+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aappl_ana/prb8.tex | 158+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aappl_ana/preamble.tex | 59+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Dappl_ana/sesh1/main.pdf | 0
Dappl_ana/sesh1/main.tex | 387-------------------------------------------------------------------------------
Dappl_ana/sesh2/main.pdf | 0
Dappl_ana/sesh2/main.tex | 302------------------------------------------------------------------------------
Dappl_ana/sesh3/main.pdf | 0
Dappl_ana/sesh3/main.tex | 250-------------------------------------------------------------------------------
Dappl_ana/sesh4/main.pdf | 0
Dappl_ana/sesh4/main.tex | 195-------------------------------------------------------------------------------
Dappl_ana/sesh5/main.pdf | 0
Dappl_ana/sesh5/main.tex | 146-------------------------------------------------------------------------------
Dappl_ana/sesh6/main.pdf | 0
Dappl_ana/sesh6/main.tex | 193-------------------------------------------------------------------------------
Dappl_ana/sesh7/main.pdf | 0
Dappl_ana/sesh7/main.tex | 195-------------------------------------------------------------------------------
Dappl_ana/sesh8/main.pdf | 0
Dappl_ana/sesh8/main.tex | 215-------------------------------------------------------------------------------
Anum_ana/build/prb1.pdf | 0
Anum_ana/prb1.tex | 335+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Anum_ana/preamble.tex | 59+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Anum_ana/sheets/sheet_1.pdf | 0
39 files changed, 1899 insertions(+), 1883 deletions(-)

diff --git a/appl_ana/build/prb1.pdf b/appl_ana/build/prb1.pdf Binary files differ. diff --git a/appl_ana/build/prb2.pdf b/appl_ana/build/prb2.pdf Binary files differ. diff --git a/appl_ana/build/prb3.pdf b/appl_ana/build/prb3.pdf Binary files differ. diff --git a/appl_ana/build/prb4.pdf b/appl_ana/build/prb4.pdf Binary files differ. diff --git a/appl_ana/build/prb5.pdf b/appl_ana/build/prb5.pdf Binary files differ. diff --git a/appl_ana/build/prb6.pdf b/appl_ana/build/prb6.pdf Binary files differ. diff --git a/appl_ana/build/prb7.pdf b/appl_ana/build/prb7.pdf Binary files differ. diff --git a/appl_ana/build/prb8.pdf b/appl_ana/build/prb8.pdf Binary files differ. diff --git a/appl_ana/sesh8/fdft.png b/appl_ana/figures/fdft.png Binary files differ. diff --git a/appl_ana/sesh8/normal.png b/appl_ana/figures/normal.png Binary files differ. diff --git a/appl_ana/prb1.tex b/appl_ana/prb1.tex @@ -0,0 +1,331 @@ +\include{preamble.tex} + +\begin{document} +\maketitle +\tableofcontents + +\section{Sheet 1} + +\subsection{Fall from high} +We consider a free fall ($\dot{x}(t=0)=0$) of an object with mass $20\ +\text{kg}$ from a height $x(0) = h = 20\; \text{km}$, such that the +gravitational force depends on the height $x(t)$ in the following way +\begin{align}\label{eq: free fall} + \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2}, +\end{align} +where $R$ is the radius of the earth $R \approx 6000\; \text{km}$ and $g +\approx 9.81\ \frac{m}{s^2}$ is the gravitational acceleration on the surface +of the earth. For this problem there are two possible non-dimensionalisations, +but first let us rewrite the variables in terms of non-dimensional variables +and some dimensional constants, a priori let +\begin{align} + t &= t_c \tau \;\;\; \text{and}\\ + x &= x_c \xi. +\end{align} +With the above ansatz we get the following second derivative in +time +\begin{align} + \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2} \\ + \Rightarrow \frac{d^2x}{dt^2} &= \frac{x_c}{t_c^2} + \frac{d^2\xi}{d\tau^2}, +\end{align} +and thus the initial conditions can be rewritten as +\begin{align} + \xi(0) = \frac{h}{x_c},\\ + \dot{\xi} = 0. +\end{align} +Now we can rewrite the equation of the free fall in \ref{eq: free fall} in +terms of $\xi(\tau)$ as +\begin{align} + \frac{x_c}{gt_c^2} \ddot{\xi} = -\frac{1}{(\frac{x_c}{R}\xi +1)^2}. +\end{align} +Thereby we have three dimensional constants constants $\Pi_1, \Pi_2, \Pi_3$, +as follows +\begin{align} + \Pi_1 = \frac{x_c}{R}, \;\;\;\; \Pi_2 = \frac{h}{x_c}, \;\;\;\; + \Pi_3 = \frac{x_c}{gt_c^2}. +\end{align} + +The first scaling is done by reducing $\Pi_1$ and $\Pi_3$ to 1, by setting +\begin{align} + x_c = R, \;\;\;\; t_c = \sqrt{\frac{R}{g}}, +\end{align} +reformulating the initial problem in equation \ref{eq: free fall} to +\begin{align} + &\ddot{\xi} = -\frac{1}{(\xi + 1)^2},\;\;\;\; + \text{with} \nonumber\\ + &\xi(0) = \frac{h}{R}, \;\;\;\; \dot{\xi}(0) = 0. +\end{align} +Reducing the problem, meaning if $\frac{h}{R} \rightarrow 0$ makes the first +initial condition $\xi(0) \rightarrow 0$. We can conclude that this scaling +is bad since it changes the initial condition in the reduced problem. + +The second scaling option reduces $\Pi_2$ and $\Pi_3$ to 1, by setting +\begin{align} + x_c = h, \;\;\;\; t_c = \sqrt{\frac{h}{g}}, +\end{align} +reformulating the initial problem in equation \ref{eq: free fall} to +\begin{align} + &\ddot{\xi} = -\frac{1}{(\frac{h}{R}\xi + 1)^2},\;\;\;\; + \text{with} \nonumber\\ + &\xi(0) = 1, \;\;\;\; \dot{\xi}(0) = 0. +\end{align} +By letting $R \rightarrow \infty$ we get the following reduced problem +\begin{align}\label{eq: free fall reduced} + \ddot{\xi} = -1. +\end{align} +Integrating and solving for $\xi(\tau = T\sqrt{\frac{g}{h}}) = 0$ for when the +object hits the ground we get a familiar solution +\begin{align} + T = \sqrt{\frac{2h}{g}} +\end{align} +Note that in the reduced problem the time until the object hits the ground is +\textbf{(much) shorter} since the acceleration is at its maximum $\ddot{x}(t) = +g$ for all $t$. Yet in the original problem the acceleration (gravitation +force) \textbf{increases} as the object comes \textbf{closer} to earth . For +instance, if we let an object fall down from the height $h = R$ then its +gravitational force (acceleration) at that height would be $\ddot{x}(0) = +g/2$ and upon landing on earth the gravitational force $\ddot{x}(T) = g$, +while in the reduced solution its gravitational force would be $\ddot{x}(t) = +g$ for all $t$. + +Additionally we can calculate the velocity at impact we need to integrate the +reduced problem \ref{eq: free fall reduced} once and put in the initial +condition +\begin{align} + \dot{\xi}(\tau = \frac{T}{t_c}) &= -\tau = -\sqrt{2} \\ + \text{and} \;\;\; \dot{x} &= \frac{x_c}{t_c}\dot{\xi} = + \sqrt{gh}\; \dot{\xi}\\ + \Rightarrow \dot{x}(T) &= -\sqrt{2gh}, +\end{align} +The result is exactly the same as we would get from energy conservation +\begin{align} + \frac{m}{2}\dot{x}^2 = mgh \quad \Rightarrow \quad \dot{x} = \sqrt{2gh}. +\end{align} +The vertical throw allows for an additional scaling because the +initial conditions are different, $x(0) = 0$ and $\dot{x}(0) = v$. Thus +the solution too. + +To summarize, the assumptions that used for modeling and simplifying the +equation are +\begin{itemize} + \item no relativistic influence, + \item closed system, no outside influence (gravitation of the sun, air + resistance), + \item spherical symmetry of the earth (thereby center of mass can be + set in the middle of earth). +\end{itemize} +By looking at our assumptions a question arises:\textbf{Is it a good +approximation to replace the attractive force of the earth by the attraction +of the whole mass concentrated at the center?}. + +To answer this question more or less simply we look at the Poisson's equation +for gravity, +\begin{align} + \ddot{\vec{x}}(\vec{r}) = -\nabla \phi(\vec{r}) \\ + \Delta \phi = 4\pi G\varrho(\vec{r}). +\end{align} +for a gravitational potential $\phi$ and the mass density of earth +$\varrho$. We assume that \textbf{the earth can be approximated by a sphere} +and then we integrate both sides along the sphere (and use the Gaussian law +for integration) +\begin{align} + \int_{S} \nabla \ddot{\vec{x}}\ dS = + \int_{\partial S}\ddot{\vec{x}}\ d\vec{s} = -4\pi + G \int_S\varrho(\vec{r})\ ds = -4\pi GM. +\end{align} +Obviously $\ddot{\vec{x}}$ and $d\vec{s}$ point in the same direction. We +choose (rotate) the coordinate system such hat $\ddot{\vec{x}} = +\ddot{x}\ \mathbf{\hat{n}}$ and $d\vec{s} = \mathbf{\hat{n}}\ ds$, thereby +we get +\begin{align} + &\ddot{x}\int_{\partial S} ds = 4\pi r^2 \ddot{x},\\ + \Rightarrow &\ddot{x} = -\frac{GM}{r^2}. +\end{align} +The further derivation to get the exact equation of motion as in \ref{eq: +free fall}, we have to keep in mind that $r = x + R$, because by our +assumptions we are not in the sphere only outside or on the border $R$. +Lastly by reformulating the constants $gR^2 = GM$ gets us to our equation of +motion +\begin{align} + \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2}. +\end{align} + +\subsection{Scaling The Van der Pol equation} +The Van der Pol equation is a perturbation of the oscillation equation +\begin{align}\label{eq: vanderpol} + LC\frac{d^2I}{dt^2} + (-g_1C +3g_3CI^2)\frac{dI}{dt} = -I +\end{align} +with initial conditions +\begin{align}\label{eq: van initial} + I(0) = I_0,\;\;\;\; \dot{I}(0) = 0. +\end{align} +where $I(t)$ is the current at a time $t$, $C$ is the capacity, $L$ is the +inductivity and $g_1, g_3$ are some parameters. The units of all the +parameters are +\begin{align} + [LC] &= s^2\\ + [g_1C] &= s\\ + [g_3C] &= sA^{-2} +\end{align} +The oscillation equation is +\begin{align} + CL\ddot{I} + I = 0. +\end{align} +Solvable by the exponential ansatz of $I = Ae^{\lambda t}$, where $\lambda= +\pm i \sqrt{\frac{1}{LC}}$, thereby +\begin{align} + I(t) = A_1 e^{i\sqrt{\frac{1}{LC}}t} + A_2 e^{-i\sqrt{\frac{1}{LC}}t}. +\end{align} +With the initial conditions in equation \ref{eq: van initial} we get $A_1 = +A_2$ and thus the solution to the oscillation equation is +\begin{align} + I(t) = I_0\cos(\frac{t}{\sqrt{LC}}) +\end{align} +Now that we know the reduced problem and the solution to it, we may work with +the Van-Der-Pol equation \ref{eq: vanderpol}, by determining all possible +non-dimensionalisations. Let us begin by setting +\begin{align} + I(t) = I_c\psi,\\ + t = t_c \tau, +\end{align} +where $I_c$ and $t_c$ have the dimension of $I(t)$ and $t$ accordingly and +$\psi(\tau)$ and $\tau$ are dimensionless +The \textbf{first} and second derivative in time is +\begin{align} + \frac{d}{dt} &= \frac{1}{t_c}\frac{d}{d\tau}\\ + \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2}. +\end{align} +We can rewrite the Van-Der-Pol equation in terms of $\psi$ and $\tau$ +\begin{align} + &\frac{LC}{t_c^2}\ddot{\psi} - \left(\frac{3g_3I_c^2}{g_1}\psi^2 - + 1\right)\frac{g_1C}{t_c}\dot{\psi}= -\psi\\ + &\psi(0) = \frac{I_0}{I_c} \;\;\;\; \dot{\psi}(0) = 0 +\end{align} +There are a total of four constants that we can eliminate +\begin{align} + \Pi_1 &= \frac{I_0}{I_c}, \qquad + \Pi_2 = \frac{LC}{t_c^2},\nonumber\\ + \Pi_3 &= \frac{3g_3I_c^2}{g_1}, \qquad + \Pi_4 = \frac{g_1C}{t_c}. +\end{align} +The \textbf{first} scaling is +\begin{align} + I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=\sqrt{LC}. +\end{align} +Thereby we get the following problem +\begin{align} + \ddot{\psi} + (\psi^2 - 1)\eps \dot{\psi} = -\psi, \qquad \psi(0) = + \sqrt{\frac{3g_3}{g_1}}I_0, +\end{align} +where $\eps = g_1\sqrt{\frac{C}{L}}$. + +The \textbf{second} scaling is +\begin{align} + I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=g_1C. +\end{align} +Thereby we get the following +\begin{align} + \eps \psi'' +(\psi^2 +1)\psi' = -\psi, \qquad \psi(0) = + \sqrt{\frac{3g_3}{g_1}}I_0, +\end{align} +where $\eps = \frac{L}{g_1^2C}$. We could also consider scaling $I_c = I_0$ +with $t_c = \sqrt{LC}$ or $t_c = g_1C$ but they wouldn't develop significant +model hierarchies like the above two scaling. +\subsection{Scale the Schrödinger Equation} +The well known Schrödinger equation that describes quantum physics of the one +particle system is +\begin{align} + &i\hbar \partial_t\psi = -\frac{\hbar^2}{2m}\Delta \psi + V\psi \nonumber\\ + &\psi(t=0) =\psi_0 +\end{align} +where $\hbar$ is the reduced Plank constant, $\psi=\psi(x, t)$ the wave function, +$m$ the mass and $V = V(x)$ the potential in which the wave function is. The +dimensions are +\begin{align} + [\hbar] = js, \;\;\;\; [V] = j, \;\;\;\; [\psi]= m^{-d/2} +\end{align} +where $d$ is the spacial dimension. The standard scaling ansatz is +\begin{align} + &\psi = \psi_c \phi \\ + &t = t_c \tau \;\;\;\; x = x_c \xi, +\end{align} +by that we get the following derivatives in time and in space +\begin{align} + \partial_{x_i} &=\frac{1}{x_{(i)c}} \partial_{\psi_i} \\ + \partial^2_{x_i} &=\frac{1}{x_{(i)c}^2} \partial_{\psi_i}^2\\ + \partial_{t} &=\frac{1}{t_c} \partial_{\psi_i} \\ +\end{align} +for $i = 1, 2, 3$, or depending on the dimension we are dealing with. + +Let us consider $x\in \mathbb{R}^3$ and $V = 0$ to scale the equation. First +we now have +\begin{align} + i \partial_t\psi = -\frac{\hbar}{2m}\Delta \psi +\end{align} +with the initial condition $\phi(0) = \frac{\psi_0}{\psi_c}$. With our scaling the equation turns out to be +\begin{align} + \frac{i\hbar t_c}{2m}\frac{1}{||\vec{x}_c||^2}\Delta_{\vec{\xi}}\ \phi = + \partial_\tau\ \phi. +\end{align} +The constants we get are +\begin{align} + \Pi_1 = \frac{t_c\hbar}{2m}\frac{1}{||\vec{x}_c||^2}, \;\;\;\; \Pi_2 = + \frac{\psi_0}{\psi_c}. +\end{align} + +The simple choice of +\begin{align} + \frac{1}{||\vec{x}_c||^2} = 1, \;\;\;\; \psi_c = \psi_0, \;\;\;\; t_c = + \frac{2m}{\hbar}||\vec{x}_c||^2, +\end{align} +simplifies the Schrodinger equation without the potential to +\begin{align} + i\Delta_{\vec{\xi}}\ \phi = \partial_\tau \phi, +\end{align} +with the initial condition $\phi(\tau=0) = 1$. +. + +Now consider $V = 0$, $x\in[0, L]$ and $t \in [0, T]$, the Schrodinger +equation is the same only with one spacial dimension as above, we can set +\begin{align} + \psi_c = \psi_0, \;\;\;\; x_c =L, \;\;\;\; t_c = \frac{2mL^2}{\hbar}. +\end{align} +Thus we get +\begin{align} + i\partial_{\xi}^2 \phi = \partial_\tau \phi, +\end{align} +with the initial condition $\phi(\tau=0) = 1$, where $\xi \in [0, 1]$ and +$\tau \in [0, \frac{\hbar T}{2mL^2}]$. +. + +In the last example let us consider the quantum harmonic oscillator +represented by the potential $V(x) = m\omega^2 x^2$ for $x\in \mathbb{R}$, +where $\omega$ is the frequency. The equation is the following +\begin{align} + i \hbar \partial_t \psi = -\frac{\hbar^2}{2m}\partial^2_x \psi + +m\omega^2x^2 \psi. +\end{align} +By inserting the standard scaling ansatz we get +\begin{align} + i\partial_\tau \phi = -\frac{t_c\hbar}{2mx_c^2}\partial_\xi^2 \phi + +\frac{t_cm\omega^2x_c^2}{\hbar} \xi^2 \phi, +\end{align} +The dimensional constants are +\begin{align} + \Pi_1 = \frac{t_0\hbar}{mx_c^2},\;\;\;\;\Pi_2 = + \frac{m\omega^2x_c^2t_c}{\hbar},\;\;\;\; \Pi_3 = \frac{\psi_0}{\psi_c}. +\end{align} +The choice of scaling is +\begin{align} + \psi_c = \psi_0, \;\;\;\; t_c = \frac{1}{\omega}, \;\;\;\; x_c = + \sqrt{\frac{\hbar}{m\omega}}. +\end{align} +Thereby getting the following problem +\begin{align} + i\partial_\tau \phi = -\frac{1}{2} \partial_\xi^2 \phi +\xi^2 \phi +\end{align} +with $\phi(\tau = 0) = 1$. + +%\printbibliography +\end{document} diff --git a/appl_ana/prb2.tex b/appl_ana/prb2.tex @@ -0,0 +1,249 @@ +\include{preamble.tex} + +\begin{document} +\maketitle +\tableofcontents + +\section{Sheet 2} +\subsection{Problem 4} +We consider a quadratic equation with two ways to perturb it by $\eps$: +\begin{align} + x^2 + 2\eps x -1 = 0, \label{eq: (1)}\\ + \nonumber \\ + \eps x^2 + 2x - 1 = 0.\label{eq: (2)} +\end{align} +Equation \ref{eq: (2)} is singular, because the reduced problem ($\eps +\rightarrow 0$) has only one solution at $x = \frac{1}{2}$. While the reduced +problem in \ref{eq: (1)} has two solutions for $x = \pm 1$, which is the case +for this non reduced equation. Let us thereby calculate the asymptotic +expansion of the regular case up to $O(\eps^2)$, we take the ansatz for the +asymptotic expansion +\begin{align}\label{eq: p4 ansatz} + x_\eps = x_0 + \eps x_1 + \eps^2 x_2 + O(\eps^3). +\end{align} +By substituting $x_\eps$ into \ref{eq: (1)} and factoring out the orders of +$\eps$ we get +\begin{align} + \eps^0 (x_0^2 - 1) + \eps^1(2x_0 + 2x_0x_1) + \eps^2(x_1^2+2x_2x_0 + +2x_1) + O(\eps^3) = 0 +\end{align} +By solving the equations in order of $\eps$, for the coefficients +$x_0$, $x_1$ and $x_2$ we get +\begin{align} + x_0 = \pm 1, \;\;\;\; x_1 = -1, \;\;\;\; x_2 = \pm \frac{1}{2}. +\end{align} +By substituting into the equation \ref{eq: p4 ansatz} we get +\begin{align} + x_\eps = \pm 1 - \eps \pm \frac{1}{2} \eps + O(\eps^3). +\end{align} +For $\eps = 0.001$ we get +\begin{align} + &x_\eps = -1.0010005 + O(\eps^3), &x_\eps = 0.9990005 + O(\eps^3),\\ + &x_\eps = -1.001 + O(\eps^2), &x_\eps = 0.999 + O(\eps^2). +\end{align} +\subsection{Problem 5} +Consider the following equations +\begin{align} + \label{eq: p5 1}\eps y' + y = x \;\;\;\;\;\; y(0) = 1\\ + \label{eq: p5 2}\eps y' + y = x \;\;\;\;\;\; y(0) = 0\\ + \nonumber\\ + \label{eq: p5 3}\eps y' + y = x \;\;\;\;\;\; y(0) = \eps\\ + \label{eq: p5 4}\eps^2 y' + y = x \;\;\;\;\;\; y(0) = \eps\\ + \nonumber\\ + \label{eq: p5 5}y' + \eps y = x \;\;\;\;\;\; y(0) = 1\\ + \label{eq: p5 6}y' + y = \eps x \;\;\;\;\;\; y(0) = 1 +\end{align} +We will go through the equations and elaborate on if the perturbation is +regular or singular, if regular we will compute the asymptotic expansion up +to second order. +Let us begin with equation \ref{eq: p5 1}. By the first look, the reduced +problem does not agree with the boundary condition +\begin{align} + y_0 = x \;\;\;\;\; y_0(0) = 1, +\end{align} +is a contradiction in $y_0(0) = 0 \neq 1$, thereby equation \ref{eq: p5 1} is +\textbf{singularly perturbed}. + +The reduced problem of equation \ref{eq: p5 2} on the other hand agrees with +the boundary condition, since +\begin{align} + y_0 = x \;\;\;\;\; y_0(0) = 0. +\end{align} +But by doing the ansatz for the asymptotic expansion +\begin{align} + y_\eps(x) = y_0 + \eps y_1 + \eps^2 y_2 + O(\eps^3), +\end{align} +plugging in into \ref{eq: p5 2} and separating coefficients in terms of +$\eps$, we get +\begin{align} + \eps^0 (y_0 -x) + \eps^1(y_0' + y_1) + \eps^2(y_1' + y_2) + O(\eps^3) = 0 +\end{align} +The solutions to these equations are +\begin{align} + y_0 = x, \;\;\;\; y_1 = 1, \;\;\;\; y_2 = 0, +\end{align} +which is a contradiction to the boundary condition of $y_1(0) = 1 \neq 0$. +Thereby we can conclude that equation \ref{eq: p5 2} is \textbf{singularly +perturbed}. + +Next up is equation \ref{eq: p5 3}, where by the asymptotic expansion the +first order coefficient of $\eps$, $y_2$, has the boundary condition $y_2(0) += 0$. But by applying the ansatz of the asymptotic expansion and plugging +into the equation we get +\begin{align} + \eps^2(y_0 - x) + \eps^1 (y_0' + y_1) + \eps^2(y_1' + y_2) + O(\eps^3) = + 0. +\end{align} +Solving these equations we get +\begin{align} + y_0 = 0, \;\;\;\; y_1 = 1 \;\;\;\; y_2 = 0 , +\end{align} +which is a contradiction $y_1(0) = 1 \neq 0 $, thus the equation \ref{eq: p5 +3} is \textbf{singularly perturbed}. + +The next equation \ref{eq: p5 4} is also singularly perturbed, we +can see this by plugging the asymptotic expansion into the equation +\begin{align} + \eps^0 ( y_0 - x) + \eps^1(y_1) + \eps^2(y_0' + y_2) = O(\eps^3), +\end{align} +solving for the coefficients we get +\begin{align} + y_0 = x, \;\;\;\; y_1 = 0, \;\;\;\;\; y_2 = -1, +\end{align} +which is contradiction by the boundary condition $y_2(0) = -1 \neq 0$, +thereby \ref{eq: p5 4} is \textbf{singularly perturbed}. + +Equation \ref{eq: p5 5} on the first sight does not indicate for any +contradictions, we may plug the ansatz of the asymptotic expansion into the +equation and see what happens +\begin{align} + \eps^0(y_0 -x) + \eps^1(y_1' + y_0) + \eps^2(y_2' +y_1) + O(\eps^2) = 0, +\end{align} +with the initial conditions $y_0(0) = 1$, $y_1(0) = y_2(0) = 0$. +\begin{align} + y_0 = \frac{x^2}{2} + 1, \;\;\;\; + y_1 = -\frac{x^3}{6} + x, \;\;\;\; + y_2 = \frac{x^4}{24} + \frac{x^2}{2}. +\end{align} +Finally we get +\begin{align} + y_\eps(x) = (\frac{x^2}{2}+1) + \eps(-\frac{x^3}{6} -x) + +\eps^2(\frac{x^4}{24} + \frac{x^2}{2}) + O(\eps^3). +\end{align} +Thereby we can conclude that \ref{eq: p5 5} is \textbf{regularly perturbed}. + +The last equation \ref{eq: p5 6} is also regular, let us do the asymptotic +expansion of the equation and order the equation in orders of $\eps$. +\begin{align} + \eps^0(y_0' + y_0) + \eps^1(y_1' + y_1 -x) + \eps^2(y_2' + y_2)+ + O(\eps^3) = 0 . +\end{align} +by solving these differential equations with the boundary conditions $y_0(0) += 1$, $y_1(0) = y_2(0) = 0$ we get +\begin{align} + y_0 = e^{-x} \;\;\;\; y_1 = (x-1) + e^{-x} \;\;\;\; y_2 = 0. +\end{align} +The equation we get +\begin{align} + y_\eps(x) = e^{-x} + \eps(x-1 +e^{-x}) + O(\eps^3). +\end{align} +Thereby we can conclude that the last equation \ref{eq: p5 6} is +\textbf{regularly perturbed}. +\subsection{Problem 6} +In this section we will calculate the asymptotic expansion of a regularly +perturbed equation in two ways, by doing the regular expansion ansatz and by +substituting and expanding in terms of $\eps$. The ordinary differential +equation we are dealing with is +\begin{align} + y' = -y + \eps y^2 \;\;\;\;\; y(0) = 1, +\end{align} +where $t > 0$ and $0 < \eps \ll 1$. The standard expansion ansatz is +\begin{align} +y_\eps(x) = y_0 + \eps y_1 + \eps^2 y_2 + O(\eps^3). +\end{align} +The ODE then expands to +\begin{align} + \eps^0(y_0' + y_0) + \eps(y_1' + y_1 - y_0^2) + \eps^2(y_2' + y_2 - + 2y_0y_1) + O(\eps^3) = 0. +\end{align} +Equations in order of $\eps$ and $\eps^2$ are non-homogeneous ODE's. The +solution to these three coefficients with the boundary conditions $y_0(0) = +1$, $y_1(0) = +y_2(0) = 0$ we get +\begin{align} + y_0 = e^{-x}, \;\;\;\; y_1 = -e^{-2x} + e^{-x}, \;\;\;\; y_2 = e^{-3x} - + 2e^{-2x} + e^{-x}. +\end{align} +The expansion of $y$ is then +\begin{align} + y_\eps (x) = e^{-x} + \eps(-e^{-2x} + e^{-x}) + \eps^2(e^{-3x} - 2e^{-2x} ++ e^{-x}) + O(\eps^3). \end{align} + +The second ansatz, considers the substitution $z = \frac{1}{y}$, by +calculating the first derivative and substituting the original problem we +get +\begin{align} + z' &= \frac{-y'}{y^2} = \frac{y-\eps y^2}{y^2} = \frac{1}{y} - \eps = z - + \eps. \\ + z(0) &= \frac{1}{y(0)} = 1. +\end{align} +The solution is +\begin{align} + z(x) = \eps + (1-\eps) e^x. +\end{align} +By substituting this into $y = \frac{1}{z}$ and expanding we get +\begin{align} + y(x) &= \frac{1}{\eps+(1-\eps)e^x} = e^{-x} \frac{1}{1 - (1- e^{-x})\eps} + \\ + &= e^{-x} \sum_{n\geq 0} \eps^n(1-e^{-x})^n. +\end{align} +which is the geometric series. +\subsection{Problem 7} +The last problem consists of a perturbation of a partial differential +equation (heat equation). +\begin{align} + &\partial_t u(x, t) + \partial_x^2 u(x,t) - \eps u(x, t)^2 = 0 + &x\in (0, 1),\; t>0,\\ + &u(x, 0) = \tilde{u}_0(x) &x\in(0, 1), \\ + &u(0, t) = u(1, t) = 0 & t>0. +\end{align} +The problem is regular because the reduced solution is the regular heat +equation in the one special dimension on $x\in (0, 1)$, we know this is +solvable. By doing the expansion ansatz we can derive the first equations +for the first three terms, the ansatz is always the same +\begin{align} + u_\eps = u_0 + \eps u_1 + \eps^2 u_2 + O(\eps^3). +\end{align} +Plugging this into the perturbed problem problem and factoring out the terms +in the order of $\eps$ we get +\begin{align} + &\eps^0 (\partial_t u_0 + \partial_x^2 u_0) + \\ + &\eps^1 (\partial_t u_1 + \partial_x^2 u_1 - u_0^2) +\\ + &\eps^2 (\partial_t u_2 + \partial_x^2 u_2 - 2u_1u_0) + O(\eps^3) = 0. +\end{align} + +We can solve the reduced problem with the initial condition $\tilde{u}_0 = +\sin(\pi x)$ by separation of variables. Setting $u(x, t) = \psi(x) \phi(t)$ +and substituting into the equation we get two ordinary differential equation +\begin{align} + \underbrace{\frac{\psi_{xx}}{\psi}}_{=k} + +\underbrace{\frac{\phi_t}{\phi}}_{=-k} = 0, +\end{align} +for some $k$. Solving these two by the exponential ansatz. +\begin{align} + \psi(x) &= A_1 e^{\sqrt{k} x} +A_2 e^{-\sqrt{k} x},\\ + \phi(t) &= A_3 e^{-kt}. +\end{align} +With the initial condition we get the conditions that +\begin{align} + A_1A_3 &= -A_2 A_3,\\ + k &= \pi^2 +\end{align} +we choose $A_1 = A_3 = 1$ , $A_2 = -1$. We get the following solution to the +PDE +\begin{align} + u(x, t) = \psi(x)\phi(t) = \sin(\pi x) e^{-\pi^2 t}. +\end{align} + +%\printbibliography +\end{document} diff --git a/appl_ana/prb3.tex b/appl_ana/prb3.tex @@ -0,0 +1,198 @@ +\include{preamble.tex} + +\begin{document} +\maketitle +\tableofcontents + +\section{Sheet 3} +\subsection{Problem 8} +Let us look at functions $f: \mathcal{D} \mapsto \mathbb{R}$ that show +boundary layer behavior at the following manifolds. + +The \textbf{first} for $\mathcal{D} = \mathbb{R}^2$ and $S = \{0\}$ we have a +function e.g. +\begin{align} + f_{\eps}(x, y) = e^{-\frac{x}{\eps}} + y, +\end{align} +with the reduced equation +\begin{align} + \lim_{\eps \rightarrow 0} f_{\eps}(x, y) = + \begin{cases} + y \;\;\;\;\;\;\;\;\;\; x > 0\\ + 1+y \;\;\;\; x = 0\\ + \end{cases} +\end{align} + +The \textbf{second} example is $\mathcal{D} = \mathbb{R}^n$ and $S = \{|x| = 1\}$. +\begin{align} + f_\eps(x_1,\dots,x_n) = \tanh\left(\frac{|x| - 1}{\eps} \right), +\end{align} +with the reduced equation +\begin{align} + \lim_{\eps \rightarrow 0} f_{\eps}(x_1,\dots, x_n) = + \begin{cases} + -1 \;\;\;\; |x| < 0\\ + 1 \;\;\;\;\;\;\; |x| > 0\\ + \end{cases} +\end{align} + +The \textbf{third} example is $\mathcal{D} = \mathbb{R}^3$ and $S = \{x_1 = +1\}$ +\begin{align} + f_\eps(x_1, x_2, x_3) = \tanh\left(\frac{x_1 - 1}{\eps}\right)+x_2x_3 +\end{align} +with the reduced equation +\begin{align} + \lim_{\eps \rightarrow 0} f_{\eps}(x_1,x_2,x_3) = + \begin{cases} + -1 + x_2x_3 \;\;\;\; x_1 < 0\\ + 1 + x_2x_3 \;\;\;\;\;\;\; x_1 > 0\\ + \end{cases} +\end{align} +\subsection{Problem 9} +Consider a linear BVP +\begin{align} + Lu := -\eps u'' + b(x)u' + c(x)u = f(x),\\ + u(0) = u(1) = 0, +\end{align} +for $0 < \eps \ll \eps_0$ and $b, c, f \in C([0,1])$ with the conditions +\begin{align} + c(x) \geq 0, \qquad b(x) \geq \beta > 0 \qquad x\in[0, 1] +\end{align} +We are to show that for all $x\in[0, 1)$ the reduced solution $u_0$ of the +above BVP satisfies +\begin{align} + \lim_{\eps \rightarrow 0} u_\eps(x) = u_0(x)))), +\end{align} +where the reduced solution $u_0$ is the solution to the following +differential equation +\begin{align} + b(x)u' + c(x)u = f(x), \quad u(0) = 0. +\end{align} +The hint was given: Set +\begin{align} + w_1(x) = e^{\beta x} \quad w_2(x) = e^{-\beta\frac{1-x}{\eps}}, +\end{align} +such that $Lw_1 \geq \gamma > 0$ for some suitable $\gamma$ and $Lw_2 \geq +0$. Then for +\begin{align} + v = \pm (u_\eps - u_0), \qquad w = A\eps w_1 + B\eps w_2, +\end{align} +for some suitable $A, B$. The following comparison principal is applicable: +IF +\begin{align} + &Lv(x) \leq Lw(x) \quad \forall x \in (0, 1) \label{eq:cond1}\\ + &v(0) \leq w(0) \label{eq:cond2}\\ + &v(1) \leq w(1) \label{eq:cond3}\\ +\end{align} +then +\begin{align} + \Longrightarrow v(x) \leq w(x) \quad \forall x\in(0, 1) +\end{align} +which holds for $u, v \in C^2((0, 1)) \cap C([0, 1])$. Thus a boundary layer +is possible only at $x=1$. On the other hand, for $b(x) \leq \beta < 0$ it +follows that the boundary layer is possible only at $x=0$. + +We shall go through the chronological order of the conditions\ref{eq:cond1}, +\ref{eq:cond2}, \ref{eq:cond3} and check them. So for \ref{eq:cond1} +we have that +\begin{align} + Lw(x) &= A\eps Lw_1(x) + B Lw_2(x) \\ + &\geq A\eps Lw_1(x) = A\eps e^{\beta x} \left(-\eps \beta^2 - + b(x)\beta+c(x)\right)\\ + &\geq A\eps \beta e^{\beta x} \left(1-\eps\right)\\ + &\geq \eps A\beta^2 e^{\beta}(1-\eps) = \gamma > 0 +\end{align} +And obviously +\begin{align} + Lv(x) \leq 0 , +\end{align} +by that we have that +\begin{align} + Lv(x) \leq \gamma \leq Lw(x). +\end{align} +For the condition \ref{eq:cond2} we have +\begin{align} + w(0) &= A\eps w_1(0) Bw_2(0) = Be^{-\frac{\beta}{\eps}},\\ + v(0) &= \pm\left(u_\eps(0) - u_0(0)\right) = 0. +\end{align} +By the simple choice $B \geq 0$ we satisfy the condition +\begin{align} + v(0) \leq w(0). +\end{align} +Now for the last condition \ref{eq:cond3} we have +\begin{align} + w(1) &= A\eps e^\beta + B \geq A\eps e^\beta,\\ + v(1) &= \mp u_0(1) = 0. +\end{align} +And choose $A = \frac{\pm u(1)}{\eps} e^{-\beta}$, which satisfies the last +condition +\begin{align} + v(1) \leq w(1). +\end{align} +Thereby we have +\begin{align} + &v(x) &\leq w(x)\\ + &\Rightarrow \lim_{\eps \rightarrow 0} v(x) &\leq \lim_{\eps \rightarrow + 0} w(x) = 0\\ + &\Rightarrow \lim_{\eps \rightarrow 0} v(x) = 0 +\end{align} +uniformly on $(0, 1)$. +\subsection{Problem 10} +Consider the following BVP +\begin{align} + -\eps u'' + (1 + x)u' + u = 2, \qquad u(0) = u(1) - 0, +\end{align} +for $0 < \eps \ll 1$. \textbf{Where can this problem have a boundary layer?} +To answer this question we need to look at the reduced problem +\begin{align} + -(1+x)u' + u = 2. +\end{align} +The solution to the equation is +\begin{align} + \bar{u}(x) = 2 + A(x+1). +\end{align} +According to the boundary conditions it is unclear what the value of the +constant is, according to $\bar{u}(0)=0$ we get $A = -2$ or according to +$\bar{u}(1)=0$ we get $A = -1$. Ultimately this means that there exists a +boundary layer near $x=1$ or $x=0$. We choose $x=0$ and according to this the +local variable $\xi = x\eps^{-\alpha}$ ($x = \xi \eps^{-\alpha}$). The +derivatives of $u$ are calculated using the chain rule +\begin{align} + \frac{du}{dx}&= \frac{du}{d\xi}\frac{d\xi}{dx} = \eps^{-\alpha} \dot{u}\\ + \frac{d^2u}{dx^2}&= \eps^{-\alpha} \frac{d^2u}{d\xi^2}\frac{d\xi}{dx} = + \eps^{-2\alpha} \ddot{u}. +\end{align} +The BVP transforms as follows +\begin{align} + -\eps^{1-\alpha}\ddot{u} - \dot{u} + \eps(u - \xi\dot{u} - 2) = + \begin{cases} + -\ddot{u} - \dot{u} = 0 \;\;\;\;\; \alpha=1\\ + -\dot{u} = 0 \;\;\;\;\;\;\;\; 0<\alpha<1 + \end{cases} +\end{align} +Choosing $\alpha = 1$ for a reasonable solution +\begin{align} + \hat{u}(\xi) = Be^{-\xi}, +\end{align} +which converges in the local limit (!). Thereby we have a asymptotic +representation up to the degree of $\eps$ + +\begin{align} + u_\eps(x) &= \bar{u}(x) + \hat{u}(\psi) + O(\eps)\\ + &= 2 + A(1+x) + B e^{-\frac{x}{\eps}} + O(\eps) +\end{align} +And by the boundary conditions +\begin{align} + u_\eps(0) = 2+A+B=0, \qquad u_\eps(1) = 2+2A+B=0, +\end{align} +we get that the constants are +\begin{align} + A = -4, \qquad B = 2. +\end{align} +The asymptotic representation is thereby +\begin{align} + u_\eps(x) = 2 - 4(1+x) + 2 e^{-\frac{x}{\eps}} + O(\eps) +\end{align} +%\printbibliography +\end{document} diff --git a/appl_ana/prb4.tex b/appl_ana/prb4.tex @@ -0,0 +1,141 @@ +\include{preamble.tex} + +\begin{document} +\maketitle +\tableofcontents + +\section{Sheet 4} + +\subsection{Fourier Series} +The Fourier series of a $p$ periodic function $f$, integrable on +$[-\frac{p}{2}, \frac{p}{2}]$ is +\begin{align} + f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty \left(a_n \cos(\frac{2\pi n x}{p}) + b_n sin(\frac{2\pi n x}{p})\right). +\end{align} +The coefficients $a_n$ and $b_n$ are called the Fourier coefficients of $f$ +and are given by +\begin{align} + a_n &= \frac{2}{p} \int_{-\frac{p}{2}}^{\frac{p}{2}} f(x) \sin(\frac{2\pi + n x}{p}) dx, \;\;\;\;\; n\geq 0 \\ + b_n &= \frac{2}{p} \int_{-\frac{p}{2}}^{\frac{p}{2}} f(x) \cos(\frac{2\pi + n x}{p}) dx, \;\;\;\;\; n\geq 1 +\end{align} +Let us compute the Fourier series of $f(t) = t$ for $t \in [-\frac{1}{2}, +\frac{1}{2}]$. The Fourier coefficients are +\begin{align} + a_n &= 2\int_{-\frac{1}{2}}^{\frac{1}{2}} t \cos(2\pi n t)\ dt = 0 + \;\;\;\;\; \text{(odd: g(-t) = -g(t))},\\ + \nonumber\\ + b_n &= 2\int_{-\frac{1}{2}}^{\frac{1}{2}} t \sin(2\pi n t)\ dt = \\ + &= 2 \left(-\frac{1}{2\pi n} \cos(2\pi n + t)\bigg|_{-\frac{1}{2}}^{\frac{1}{2}} + +\int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2 \pi n}\cos(2\pi n t)\ dt + \right) =\\ + &= -\frac{1}{\pi n}\left( -\cos(\pi n) + \frac{1}{\pi n }\sin(\pi + n)\right) = + \frac{\sin(\pi n) - \pi n \cos(\pi n)}{(\pi n)^2}. +\end{align} +Thereby the Fourier series of $f(t) = t$ is +\begin{align} + f(t) = \sum_{n=1}^\infty \left(\frac{\sin(\pi n) - \pi n \cos(\pi n)}{(\pi + n)^2}\right) \sin(2\pi n t) = t +\end{align} +\subsection{Truncation Error} +The truncation error of the trigonometric polynomial $(Sf_N)$ of degree $N$ is +\begin{align} + \sum_{|k| > N} |\hat{f}(k)|^2 = \lVert f - S_N\rVert_2^2 = + \int_{-\frac{1}{2}}^{\frac{1}{2}} |E_N(t)|^2 dt. +\end{align} +Computations for $N = 3$ and $N = 9$ were done in python with a integration error of +around $10^{-15}$, resulting in the overall truncation errors of +\begin{align} + \sum_{|k| > 3} |\hat{f}(k)|^2 = 0.0053,\\ + \sum_{|k| > 9} |\hat{f}(k)|^2 = 0.0143. +\end{align} +To achieve $\lVert E_N\rVert^2_2 < 0.1 \lVert f \rVert^2_2$, the number of +coefficients needed are about $61$. This was done using a while loop and +evaluating $\lVert E_N\rVert^2_2$ for $N$ until the above condition is met. + +\subsection{Orthonormal Bases} +Here we will go through the most important properties of orthonormal bases. +So let $\{b_n\}_{n\in \mathbb{N}}$ be an ONB of a vector space $\mathcal{H}$, +then for every $x\in \mathcal{H}$ we may write +\begin{align} + x = \sum_{b_n} \langle b_n, x\rangle b_n, +\end{align} +and +\begin{align} + \lVert x \rVert^2 = \sum_{b_n} |\langle b_n, x\rangle|^2. +\end{align} +For any $x, y \in \mathcal{H}$ we can write the scalar product as +\begin{align} + \langle x, y\rangle = \sum_{b_n} \langle b_n, x\rangle \langle b_n, + y\rangle, +\end{align} +Furthermore there exists a linear projection $\Phi\ : \mathcal{H} +\rightarrow l^2(\{b_n\}_n)$ such that +\begin{align} + \langle \Phi(x), \Phi(y)\rangle = \langle x, y \rangle\;\;\; \forall x, y + \in \mathcal{H}. +\end{align} + +An example of an orthonormal basis, which spans $L^2([-\frac{p}{2}, +\frac{p}{2}])$ is $\mathcal{T}_p = \{e_n := \frac{e^{2\pi i +\frac{n}{p}x}}{\sqrt{p}}\}_{n\in\mathbb{Z}}$. The $e_n$'s are orthonormal in +$L^2$ which can be easily seen by using the scalar product of $L^2$, so for +$n, m \in \mathbb{Z}$ +\begin{align} + \langle e_n, e_m\rangle_{L^2([-\frac{p}{2}, \frac{p}{2})} &= + \frac{1}{p}\int_{[-\frac{p}{2}, \frac{p}{2}]}e_n \cdot e_m^* \ dx=\\ + &=\frac{1}{p}\int_{[-\frac{p}{2}, \frac{p}{2}]} e^{2\pi i \frac{(n-m)}{p} x} \ dx=\\ + &=\frac{\sin(\pi (n-m))}{\pi(n-m)} = + \begin{cases} + 0 \;\;\;\; n\neq m\\ + 1 \;\;\;\; n=m + \end{cases} +\end{align} +\subsection{Dirichlet Kernel} +The function +\begin{align} + D_t(x) := \sum_{\lVert k \rVert_\infty \leq t} e_k(x), \;\;\;\;\; x\in + \mathbb{R}^d +\end{align} +is called the Dirichlet Kernel. For $0 < t \in \mathbb{N}$ we have +\begin{align} + (S_tf)(x) = \int_{I^d} f(y) D_t(x-y) dy, +\end{align} +where $S_t$ represents the orthogonal projection onto the trigonometric +polynomials $\Pi_t$ of degree $t$, by +\begin{align} + &S_t:\ L^1(\mathbb{T}^d) \rightarrow \Pi_t \\ + &f \mapsto \sum_{\lVert k \rVert \leq t} \langle f, + e_k\rangle_{L^2(\mathbb{T}^d)} e_k \;\;\;\;\; k \in \mathbb{Z}^d +\end{align} +And furthermore the Dirichlet Kernel satisfies +\begin{align} + D_t(x) = \prod_{i=1}^d \frac{e_{t+1}(x_i) - e_{-t}(x_i)}{e_1(x_i) - 1} +\end{align} +To show the convolution property, we start off by applying the orthogonal +projection into the trigonometric polynomials $S_t$ onto a function $f \in +L(\mathbb{T}^d)$ +\begin{align} + (S_tf) &= \sum_{\lvert k\rVert_\infty \leq t} \int_{I^d} f(y) e^{-2\pi i + \langle k, y\rangle}\ dy\ e^{2\pi i\langle k, x\rangle} =\\ + &= \int_{I^d}f(y) \sum_{\lvert k\rVert_\infty \leq t} e^{2\pi i \langle + k, (x- y)\rangle}\ dy =\\ + &= (f * D_t) (x) = \int_{I^d} f(y) D_t(x - y)\ dy. +\end{align} +To show the reformulation of the Dirichlet kernel, we need to simply +calculate it directly +\begin{align} + \sum_{\lVert k \rVert_\infty \leq t} e^{2\pi i \langle k , x\rangle} &= + \prod_{j=1}^d \sum_{k_j = -t}^t e^{2\pi i k_j x_j} =\\ + &= \prod_{j=1}^d e^{-2\pi i t x_j} \sum_{k_j = 0}^{2t} e^{2\pi i k_j + x_j}=;\;\;\;\; \text{(trigonometric series)}\\ + &= \prod_{j=1}^d e^{-2\pi i t x_j} \frac{e^{2\pi i (2t + 1)x_j} - + 1}{e^{2\pi i x_j} - 1} =\\ + &= \prod_{j = 1} \frac{e_{t+1}(x_j) - e_{-t}(x_j)}{e_1(x_j) - 1}. +\end{align} +%\printbibliography +\end{document} diff --git a/appl_ana/prb5.tex b/appl_ana/prb5.tex @@ -0,0 +1,92 @@ +\include{preamble.tex} + +\begin{document} +\maketitle +\tableofcontents + +\section{Sheet 5} +\subsection{Fourier Transform} +In this section we prove the linearity of the Fourier Transform $\mathcal{F}$ on +$L^1(\mathbb{R}^d)$. For $f, g \in L^1(\mathbb{R}^d)$ and $\lambda, \mu \in +\mathbb{R}$ the linearity condition for $\mathcal{F}$ is the following +\begin{align} + \mathcal{F}(\lambda f + \mu g) = \lambda \mathcal{F}(f) + \mu + \mathcal{F}(g). +\end{align} +We start by using the Fourier transform definition for $x, \xi \in \mathbb{R}^d$ +\begin{align} + \mathcal{F}(\lambda f + \mu g)(\xi) &= \int_{\mathbb{R}^d} (\lambda f(x)+ + \mu g(x)) e^{-2\pi i \langle x, \xi\rangle}\ dx =\\ + &= \int_{\mathbb{R}^d} \lambda f(x) e^{-2\pi i\langle x,\xi\rangle} + \mu + g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\ + &= \int_{\mathbb{R}^d} \lambda f(x) e^{-2\pi i\langle x,\xi\rangle}\ dx+ + \int_{\mathbb{R}^d} \mu + g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\ + &= \lambda \int_{\mathbb{R}^d} f(x) e^{-2\pi i\langle x,\xi\rangle}\ dx+ + \mu \int_{\mathbb{R}^d} + g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\ + &= \lambda \mathcal{F}(f)(\xi) + \mu \mathcal{F}(g)(\xi) +\end{align} +\subsection{Identities of the Fourier transform} +The following are three identities of the Fourier transform + +\begin{table}[h!] +\centering +\begin{tabular}{| l | c | c |} +\hline + & $g(x)$ & $\hat{g}(\xi)$ \\ \hline \hline +(1) & $f(x-x_0)$ & $e^{-2\pi ix_0 \xi} \hat{f}(\xi)$ \\ \hline +(2) & $e^{2\pi i \xi_0 x} f(x)$ & $f(\xi - \xi_0)$ \\ \hline +(3) & $f(ax)$ & $\frac{1}{a} \hat{f}(\frac{\xi}{a})$\\ \hline +\end{tabular} + \caption{Identities of the Fourier transform for $a > 0, + \xi_0, x \in \mathbb{R}$} +\end{table} +We start with (1) +\begin{align} + \widehat{f(x-x_0)} + &= \int_\mathbb{R} f(x-x_0) e^{-2\pi i x \xi}\ dx= + \;\;\;\;\;\; (y = x-x_0)\\ + &= \int_\mathbb{R} f(y) e^{-2\pi i (y+x_0) \xi}\ + dy=\\ + &= e^{-2\pi i x_0 \xi} \int_\mathbb{R}f(y)e^{-2\pi i y + \xi}\ dy=\\ + &= e^{-2\pi i x_0 \xi} \hat{f}(\xi). +\end{align} +For (2) we have +\begin{align} + \widehat{e^{2\pi i x \xi_0} f(x)} + &= \int_\mathbb{R} e^{2\pi i x \xi_0} f(x) e^{-2\pi i x \xi}\ dx =\\ + &= \int_\mathbb{R} f(x) e^{-2\pi i x (\xi -\xi_0)}\ dx=\\ + &= \hat{f}(\xi - \xi_0). +\end{align} +For (3) we have +\begin{align} + \widehat{f(ax)} + &= \int_\mathbb{R} f(ax) e^{-2\pi i \xi x}\ dx = \qquad \text{sub: + $(y=ax)$}\\ + &= \int_\mathbb{R} \frac{1}{a}f(y) e^{-2\pi i \frac{\xi}{a} y}\ dy=\\ + &= \frac{1}{a} \hat{f}\left(\frac{\xi}{a}\right). +\end{align} +\subsection{The Box-Function} +Consider the following Box-Function +\begin{align} + \Pi(x) := + \begin{cases} + 1\;\;\;\;\;\; -\frac{3}{2} < x < \frac{1}{2}\\ + 0\;\;\;\;\; \text{else} + \end{cases} +\end{align} +The Fourier transform of this function is +\begin{align} + \widehat{\Pi(x)} + &= \int_\mathbb{R} \Pi(x) e^{-2\pi i x\xi}\ dx=\\ + &= \int_{-\frac{3}{2}}^{\frac{1}{2}} e^{-2\pi i x \xi}\ dx + =\frac{-1}{2\pi i \xi} e^{-2\pi i x\xi} + \bigg|_{-\frac{3}{2}}^{\frac{1}{2}}=\\ + &= \frac{1}{2\pi i \xi} \left(e^{3\pi i \xi} - e^{-\pi i \xi}\right)=\\ + &= \frac{e^{\pi i \xi}\sin(2\pi\xi)}{\pi \xi}. +\end{align} + +%\printbibliography +\end{document} diff --git a/appl_ana/prb6.tex b/appl_ana/prb6.tex @@ -0,0 +1,139 @@ +\include{preamble.tex} + +\begin{document} +\maketitle +\tableofcontents + +\section{Sheet 6} +\subsection{Fourier Transform of the convolution} +Consider the function $f(x)$, which has a Fourier Transform $\hat{f}(\xi)$, +now let us compute the Fourier transform of +\begin{align} + h(x) = f(3x-1) \sin(x) . +\end{align} +We know that the Fourier transform of the convolution is (we use somewhat of +the inverse convolution theorem). +\begin{align} + \widehat{(f(3x-1)*g(x))} = \widehat{f(3x-1)} \cdot \hat{g}(\xi). +\end{align} +The Fourier transform of $f(3x-1)$ is simply done by substituting a new +variable +\begin{align} + \widehat{f(3x-1)} = \frac{1}{3}e^{2\pi i\frac{\xi}{3}}\ + f\left(\frac{\xi}{3}\right). +\end{align} +The Fourier transform of $\sin(x)$ can be calculated when looking at the +Fourier transform of the Dirac-delta function +\begin{align} + \widehat{\delta(ax-b)} + &=\int_\mathbb{R} \delta(ax-b) e^{-2\pi i x \xi}\ dx + \;\;\;\;\;\;\; (y = ax-b)\\ + &=\int_\mathbb{R} \delta(y) e^{-2\pi i (y+b)\frac{\xi}{a}}\frac{dy}{a}\\ + &=\frac{1}{a} e^{-2\pi i \xi \frac{b}{a}}. +\end{align} +We may plug in $\sin(x)$ in the definition of the Fourier transformation and +observe where we can use the Dirac-delta to to the inverse Fourier transform +\begin{align} + \widehat{\sin(x)} + &=\int_\mathbb{R} \sin(x)e^{-2\pi i x\xi}\ dx=\\ + &=\frac{1}{2i}\int_\mathbb{R} (e^{ix} - e^{-ix})e^{-2\pi i \xi x}\ dx\\ + &=\frac{1}{2i}\left( + \int_\mathbb{R} e^{ix} e^{-2\pi i \xi x}\ dx+ + \int_\mathbb{R} e^{-ix} e^{-2\pi i \xi x}\ dx + \right). +\end{align} +Here we may use the above formula for the Fourier transform of the Dirac +delta. We choose $a=1$, $b= \pm \frac{1}{2\pi}$ and do some $y=-x$ +substitutions and thereby get the following result +\begin{align} + \widehat{\sin(x)} = \frac{1}{2i} \left( + \delta(\xi - \frac{1}{2\pi}) + -\delta(\xi + \frac{1}{2\pi}) + \right) +\end{align} +The whole result is thereby +\begin{align} + \widehat{f(3x-1)} * \widehat{sin(x)} + =& \frac{1}{6i} \bigg( + e^{2\pi + i(\frac{\xi}{3}-\frac{1}{6\pi})}\hat{f}\big(\frac{\xi}{3}-\frac{1}{6\pi}\big)- + e^{2\pi + i(\frac{\xi}{3}+\frac{1}{6\pi})}\hat{f}\big(\frac{\xi}{3}+\frac{1}{6\pi}\big) + \bigg) +\end{align} +\subsection{More Fourier Transforms} +Consider the function +\begin{align} + f(x) = e^{-|x|} +\end{align} +The Fourier transform of this function is +\begin{align} + \hat{f}(\xi) + &=\int_\mathbb{R} e^{-|x| e^{-2\pi i x \xi}}\ dx\\ + &= \int_{-\infty}^0 e^x e^{-2\pi i x \xi}\ dx + + \int_0^\infty e^{-x} e^{-2\pi i x \xi}\ dx=\\ + &= \frac{1}{1-2\pi i \xi} e^{(1-2\pi i \xi) x}\bigg|_{-\infty}^0+ + \frac{-1}{1+2\pi i \xi} e^{-(1+2\pi i \xi) x}\bigg|_{-\infty}^0 = \\ + &= \frac{1}{1-2\pi i \xi} + \frac{1}{1 + 2\pi i \xi} =\\ + &= \frac{2}{1+(2\pi \xi)^2}. +\end{align} +Let us use this result to solve the following integral +\begin{align} + \int_\mathbb{R} \frac{\cos(a\xi)}{(2\pi \xi)^2 + 1}\ d\xi = + \frac{1}{2}\int_\mathbb{R} \hat{f}(\xi) \text{Re}(e^{ia\xi})\ dx,\\ +\end{align} +where we used the fact that $\text{Re}(e^{ia\xi}) = \cos(a\xi)$ and +$\hat{f}(\xi) = \frac{2}{1+(2\pi \xi)^2}$, thereby +\begin{align} + \frac{1}{2}\int_\mathbb{R} \hat{f}(\xi) \text{Re}(e^{ia\xi})\ dx + &= \frac{1}{2}\text{Re}\left( + \int_\mathbb{R}\hat{f}(\xi)e^{ia\xi}\ d\xi + \right)=\\ + &= \frac{1}{2}\text{Re}\left( + \int_\mathbb{R} \hat{f}(\xi) e^{2\pi i \frac{a}{2\pi}\xi}\ d\xi + \right)=\\ + &= \frac{1}{2}\text{Re}\left(f(\frac{a}{2\pi})\right)=\\ + &= \frac{1}{2} e^{-\frac{|a|}{2\pi}}. +\end{align} +\subsection{Finite discrete Fourier transform} +Consider $s\in \mathbb{C}^N$ with entries +\begin{align} + s[n] = \sin\left(2\pi\xi_0\frac{n}{N}\right), +\end{align} +for same $0 < \xi_0 < N$. The finite discrete Fourier transform of $s$ is +\begin{align} + \hat{s}[k] &= \frac{1}{N} \sum_{n=0}^{N-1} \sin\left(2\pi\xi_0\frac{n}{N}\right) + e^{-2\pi i \frac{k}{N} n} =\\ + &=\frac{1}{2iN}\left( + \sum_{n=0}^{N-1}e^{2\pi i \frac{n}{N}(\xi_0 -k)} - e^{-2\pi i + \frac{n}{N}(\xi_0 +k)} + \right). +\end{align} +If we consider $\xi_0 \in \mathbb{Z}$, we have +\begin{align} + \hat{s}[k] = + \begin{cases} + \frac{1}{2i}\;\;\;\;\;\; \xi_0 = k\\ + -\frac{1}{2i}\;\;\;\;\;\; \xi_0 = -k\\ + 0 \;\;\;\;\;\; \text{else} + \end{cases} +\end{align} +\subsection{Discrete Matrix Notation} +The convolution of two vectors $f, g \in \mathbb{C}^N$, can be expressed by a +circulate matrix applied to f +\begin{align} + (f * g) [n] = \sum_{k=0}^{N-1} f[k] g[n-k]. +\end{align} +Consider $g=s$, then the matrix takes the following values +\begin{align} + s[n-k] = s_{nk} = \sin\left(2\pi \xi_0 \frac{n-k}{N}\right). +\end{align} +The convolution with an impulse input $f=\delta_{0k}$, a vector that is $1$ +for $k=0$ and else 0 reads +\begin{align} + \sum_k s_{nk}f_k &= \sum_k s_{nk} \delta_{0k} =\\ + &= \sin\left(2\pi \xi_0 \frac{n}{N}\right). +\end{align} + +%\printbibliography +\end{document} diff --git a/appl_ana/prb7.tex b/appl_ana/prb7.tex @@ -0,0 +1,138 @@ +\include{preamble.tex} + +\begin{document} +\maketitle +\tableofcontents + +\section{Sheet 7} +\subsection{Dirac Comb} +The Dirac train or Dirac comb on defined in the following way +\begin{align} + \Sha_m[n] = + \begin{cases} + 1\;\;\;\;\;\; n = 0, \pm m, \pm 2m,\dots\\ + 0\;\;\;\;\;\; \text{else} + \end{cases} +\end{align} +The dirac comb can be represented in a series of discrete dirac delta's +\begin{align} + \Sha_m[n] = \sum_{l=-N}^N \delta[n - lm], +\end{align} +where $\delta[s] = 1$ if $s = 0$ else $0$, for $s \in \mathbb{Z}$. +The discrete Fourier transform of the Dirac comb in $\mathbb{C}^N$ is +\begin{align} + \widehat{\Sha_m[n]} + &=\frac{1}{N}\sum_{n=0}^{N-1} \Sha_m[n] e^{-2\pi i \frac{k}{N}n}=\\ + &=\frac{1}{N}\sum_{n=0}^{N-1} + \left( + \sum_{l=-N}^N \delta(n-lm) + \right) + e^{-2\pi i \frac{k}{N}n}, +\end{align} +where the summation happens exactly $\frac{N}{m}$ times, then +\begin{align} + &\frac{1}{m}\sum_{l=-N}^N e^{-2\pi i \frac{k}{N}lm}=\\ + &= \frac{1}{m} \sum_{l=-N}^N \delta[k - l\cdot \frac{N}{m}]\qquad + \text{(Poisson's summation formula)} \\ + &= \frac{1}{m}\Sha_{\frac{N}{m}}[k] +\end{align} +\subsection{Schwartz Space} +The Schwartz space $\mathcal{S}(\mathbb{R}^d)$, for $d \in \mathbb{N}$ is +defined as +\begin{align} + &\mathcal{S} := +\bigg\{ + f\in\mathcal{C}^\infty(\mathbb{R}^d): + \forall\alpha,\beta\in\mathbb{N}^d\;\; \lVert f \rVert_{\alpha,\beta} + < \infty +\bigg\},\\ +&\lVert f \rVert_{\alpha, \beta} := +\sup_{x\in\mathbb{R}^d}\left|x^\alpha (D^\beta f) (x) \right|. +\end{align} +Our aim is to show that if $f\in\mathcal{S}(\mathbb{R})$ then $\hat{f} \in +\mathcal{S}(\mathbb{R})$. The condition is obviously +\begin{align} + &\lVert \hat{f} \rVert_{\alpha, \beta} = + \sup_{\xi\in\mathbb{R}}\left|\xi^\alpha (D^\beta \hat{f}) (\xi) + \right|<\infty, +\end{align} +for all $\alpha, \beta \in \mathbb{N}$. +We can start with what we know about the Fourier transform +\begin{align} + \xi^\alpha \hat{f}(\xi) &= \mathcal{F}\left(\frac{1}{(2\pi + i)^\alpha}(D^{\alpha}f)(x)\right)\\ + D^{\beta}\hat{f}(\xi) &= \mathcal{F}\left( + (-2\pi i x)^\beta f(x) + \right). +\end{align} +Combining the two relations above we get +\begin{align} + \xi^\alpha (D^\beta \hat{f})(\xi) = + \mathcal{F}\left(\frac{(-2\pi i x)^\beta}{(2\pi + i)^\alpha}x^\beta(D^{\alpha}f)(x)\right)=: \mathcal{F}(g(x))\\ +\end{align} +If we call this function $g$, then $g\in\mathcal{S}(\mathbb{R})$ and +$g\in L^1(\mathbb{R})$. Applying the Riemann-Lebesgue Lemma we get +\begin{align} + \hat{g}(\xi) = \int_\mathbb{R} g(x) e^{-2\pi i x \xi}\ dx \longrightarrow 0 + \;\;\; \text{as $|\xi| \rightarrow \infty$ } +\end{align} +Thereby $\hat{g} \in \mathcal{S}(\mathbb{R})$ and thus $\hat{f} \in +\mathcal{S}(\mathbb{R})$. +\subsection{Tempered Distributions} +Tempered distributions are the elements of +\begin{align} + \mathcal{S}'(\mathbb{R}^d) := + \bigg\{ + L: \mathcal{S}(\mathbb{R}^d) \rightarrow \mathbb{C} | \text{$L$ is + linear and continuous} + \bigg\}. +\end{align} +Consider $\xi$ as a tempered distribution, buy acting on $\varphi \in +\mathcal{S}(\mathbb{R})$ we have +\begin{align} + \xi(\phi) = \int_\xi \xi \varphi(\xi)\ d\xi. +\end{align} +The Fourier transform of $\xi$ is +\begin{align} + \hat{\xi}(\varphi) + &=\xi(\hat{\varphi}) + = \int_\mathbb{R} \xi \hat{\varphi}(\xi)\ d\xi\\ + &= \int_{\mathbb{R}^2}\xi \varphi(x) e^{2\pi i\xi x}\ dxd\xi\\ + &= \int_{\mathbb{R}^2}\varphi(x) \xi e^{2\pi i \xi x}\ dxd\xi\\ + &=\int_{\mathbb{R}^2}\varphi(x)\frac{i}{2\pi} \frac{\partial}{\partial x} + e^{2\pi i \xi x}\ dxd\xi =\\ + &=\frac{i}{2\pi}\int_{\mathbb{R}^2}\varphi(x)\delta'(x)\ dx=\\ + &=\frac{i}{2\pi} \delta'(\varphi). +\end{align} +\subsection{Fourier transform of the Dirac Comb} +The general case of the Dirac Comb as a distribution is +\begin{align} + \Sha_T = \sum_{n \in \mathbb{Z}} \delta_{nT}. +\end{align} +The Fourier transform of the $\Sha_T$ distribution for $\varphi \in +\mathcal{S}(\mathbb{R})$ is +\begin{align} + \widehat{\Sha_T}(\varphi) + &= \sum_{n\in\mathbb{Z}} \hat{\delta}_{nT}(\varphi)\\ + &= \sum_{n\in\mathbb{Z}} \delta_{n\omega_0}(\varphi)\\ + &=\Sha_{\omega_0}(\varphi). +\end{align} +The Fourier transform, transforms the period of the combs. +\subsection{Shannon Sampling} +The Fourier transform of $1_{[-\frac{a}{2}, \frac{a}{2}]}(x)$ is +\begin{align} + \mathcal{F}\left(1_{[-\frac{a}{2}, \frac{a}{2}]}\right)(\xi) + &= \int_\mathbb{R} 1_{[-\frac{a}{2}, \frac{a}{2}]} e^{-2\pi i x \xi}\ + dx\\ + &= \int_{-\frac{a}{2}}^{\frac{a}{2}} e^{-2\pi i x\xi}\ dx\\ + &= \frac{-1}{2\pi i \xi} e^{-2\pi i x + \xi}\bigg|_{-\frac{a}{2}}^{\frac{a}{2}}\\ + &= \frac{1}{\pi \xi} \frac{1}{2i}\left( + e^{pi i a \xi} - e^{-\pi i a \xi} + \right)\\ + &= \frac{\sin(\pi \xi a)}{\pi \xi} +\end{align} + +%\printbibliography +\end{document} diff --git a/appl_ana/prb8.tex b/appl_ana/prb8.tex @@ -0,0 +1,158 @@ +\include{preamble.tex} + +\begin{document} +\maketitle +\tableofcontents + +\section{Sheet 8} +\subsection{Finite Discrete Fourier Transform (FDFT)} +Consider the vector $\begin{pmatrix}a & b & c & d\end{pmatrix}^T \in +\mathbb{C}^4$ with a FDFT $\begin{pmatrix}A & B & C & D\end{pmatrix}^T$. We +can show that the vector +\begin{align} + \begin{pmatrix}a & 0 & b & 0 & c & 0 & d & 0\end{pmatrix}^T, +\end{align} +has the FDFT of +\begin{align} + \frac{1}{2}\begin{pmatrix}A & 0 & B & 0 & C & 0 & D & 0\end{pmatrix}^T. +\end{align} +For the $N=4$, $n\in\{0,\dots,3\}$ the coefficients $a, b, c, d$ are denoted in +$f[n]$. The FDFT is +\begin{align} + \hat{f}[k] &= \frac{1}{4} * \sum_{n=0}^3 f[n] e^{-2\pi i \frac{n}{4}k} \\ + &=\frac{1}{4}\left( + a + be^{-\pi i \frac{k}{2}} + + ce^{-\pi i k}+ de^{-\frac{3\pi i k}{2}} + \right) = \\ + (&=\begin{pmatrix}A & B & C & D\end{pmatrix}^T) +\end{align} +for $k \in \{0,\dots, 3\}$ accordingly. For the $N=8$, $\mathbb{C}^8$ case + we have $f_2[n]$ for $n \in \{0,\dots 7\}$, + \begin{align} + \hat{f}_2[k] &= \frac{1}{8} * \sum_{n=0}^7 f_2[n] e^{-2\pi i \frac{n}{8}k} \\ + &=\frac{1}{2}\frac{1}{4}\left( + a + be^{-\pi i \frac{k}{2}} + + ce^{-\pi i k}+ de^{-\frac{3\pi i k}{2}} + \right) = \\ + (&=\frac{1}{2}\begin{pmatrix}A & B & C & D & A & B & C & D\end{pmatrix}^T) + \end{align} +for $k \in \{0,\dots, 7\}$ accordingly. We may generalize now for +$\mathbb{C}^{4N}$, and the sequence for $a, b, c, d, 0$ represented by the +function $g[n]$ for $n \in \{0,\dots, 4N-1\}$, +\begin{align} + g[n] =\begin{cases} + f[n] \qquad n\in \{0, N, 2N, 3N\}\\ + 0 \qquad \text{else} + \end{cases}. +\end{align} +Now we can compute the FDFT for $k \in \{0,\dots, 4N-1\}$ +\begin{align} + \hat{g}[k] &= \frac{1}{4N}\sum_{n=0}^{4N-1} g[n]e^{-2\pi i + \frac{n}{4N}k}\\ + &=\frac{4}{N}\sum_{n=0}{3}f[n]e^{-2\pi i \frac{n}{4}k}\\ + &=\frac{1}{N}\left(\frac{1}{4}\sum_{n=0}^3 f[n] e^{-2\pi i + \frac{n}{4}k} \right) \\ + &= \frac{1}{N} \underbrace{\begin{pmatrix}A & B & C & D & \dots & + \dots & A & B & C & D\end{pmatrix}^T)}_{\text{$4N$ entries, $N$ + sequences}}. +\end{align} +\subsection{More FDFT} +Consider the discrete complex exponential with frequency of $1Hz$ in +$\mathbb{C}^8$, for $n \in \{0, \dots , 7\}$, +\begin{align} + \exp[n] = e^{2\pi i n/8}. +\end{align} +The FDFT for $k \in \{0, \dots, 7\}$ is +\begin{align} + \hat{\exp}[k] &= \frac{1}{8}\sum_{n=0}^7 e^{2\pi i \frac{n}{8}}e^{-2\pi i + n \frac{k}{8}} \\ + &= \frac{1}{8} \sum_{n=0}^7e^{-2\pi i (k-1)\frac{n}{8}}\\ + &= + \begin{cases} + 1\quad k=1\\ + 0 \qquad k\neq 1 + \end{cases}. +\end{align} +\begin{figure}[H] + \centering + \includegraphics[width=0.49\textwidth]{./figures/fdft.png} + \includegraphics[width=0.49\textwidth]{./figures/normal.png} + \caption{Test in Julia} +\end{figure} +\subsection{Sampling Sinusoids} +Consider the following continuous signal +\begin{align} + f(t) = sin(20\pi t) + sin(40\pi t) +\end{align} +with frequencies $\omega = 2\pi \nu$, $\nu_1 = 10\ \text{Hz}$ and $\nu_2 = 20\ +\text{Hz}$. Sketching its Fourier transform would be something like this +\begin{figure}[H] + \centering +\begin{tikzpicture}[ + axisline/.style={very thick, -stealth}, + xscale = 1.5, + yscale = 1.5 + ] + \draw[axisline] (-3,0)--(3,0) node[right]{$\nu$}; + \draw[axisline] (0,-1.5)--(0,1.5) node[above]{$\hat{f}$}; + \draw[->] (-1,0) -- (-1, -1) node[below] {$-\delta(\nu - 10)$}; + \draw[->] (-2,0) -- (-2, 1) node[above] {$\delta(\nu - 20)$}; + \draw[->] (1,0) -- (1, 1) node[above] {$\delta(\nu - 10)$}; + \draw[->] (2,0) -- (2, 1) node[above] {$\delta(\nu - 20)$}; +\end{tikzpicture} +\end{figure} +The Nyquist frequency for sampling would be +\begin{align} + \nu_{\text{Nyquist}} = 2\nu_\text{max} = 2\nu_2 = 40\ \text{Hz}, +\end{align} +If we choose $50\ \text{Hz}$ for sampling we would get aliasing with the +following frequencies +\begin{align} + n \cdot 50\ \text{Hz} - 20\ \text{Hz} = 30\ \text{Hz},80\ \text{Hz}, 130\ + \text{Hz}, \dots +\end{align} +\subsection{Short-Time Fourier Transform (STFT)} +The Definition of the STFT is +\begin{align} + \text{STFT}\{f\} &= S_\varphi f(\tau, \omega) = \int_\mathbb{R} f(t) + \overline{\text{M}_\omega \text{T}_\tau \varphi}dt \\ + &=\int_\mathbb{R} f(t) + \bar{\varphi}(t - \tau)e^{-2\pi i \omega t}\ dt \\ +\end{align} +Then we have the following identity +\begin{align} + S_\varphi(\text{T}_u\text{M}_\eta f)(x,\omega) + &= \int_\mathbb{R} + \left(\text{T}_u \text{M}_\eta f(t)\right) \bar{\varphi}(t-x) e^{-2\pi i + \omega t}\ dt\\ + &= \int_\mathbb{R} e^{2\pi i \eta(t-u)}f(t-u) e^{-2\pi i \omega + t}\bar{\varphi}(t-x)\ dt \qquad \text{(sub: $s = t-u$)}\\ + &= \int_\mathbb{R} f(s)\bar{\varphi}(s-(x-u))e^{2\pi i \eta s}e^{-2\pi i + \omega s} e^{-2\pi i \omega u}\ ds \\ + &=e^{-2\pi i \omega u}\int_\mathbb{R} f(s) \bar{\varphi}(s-(x-u))e^{-2\pi i + (\omega - \eta)s}\ ds\\ + &=e^{-2\pi i \omega u}\int_\mathbb{R} + f(s)\overline{ \text{M}_{(\omega-\eta)} \text{T}_{(x-u)}\varphi(s)}\ ds\\ + &=e^{-2\pi i \omega u} S_\varphi f\left(x-u,\ \omega -\eta\right). +\end{align} +The second identity we can show +\begin{align} + S_\varphi f(x, \omega) + &= \langle f, \overline{\text{M}_\omega \text{T}_x \varphi}\rangle \\ + &= \langle\mathcal{F} f, \mathcal{F} \overline{\text{M}_\omega \text{T}_x \varphi}\rangle \\ + &= \int_\xi \hat{f}(\xi)\int_t \overline{\text{M}_\omega \text{T}_x + \varphi}(t) e^{-2\pi i \xi t}\ dt\ d\xi \\ + &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(t-x) e^{2\pi i \omega + t} e^{-2\pi i \xi t}\ dt\ d\xi \\ + &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(t-x)e^{-2\pi i (\xi + -\omega)t}\ dt\ d\xi \qquad \text{sub $u=t-x$}\\ + &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(u)e^{-2\pi i (\xi + -\omega)u}e^{-2\pi i (\xi -\omega)x} \ dt\ d\xi\\ + &= \int_\xi \hat{f}(\xi)e^{-2\pi i (\xi -\omega)x}\int_t + \hat{\varphi}(u)e^{-2\pi i (\xi -\omega)u} \ dt\ d\xi\\ &= e^{2\pi i + \omega x}\int_\xi \hat{f}(\xi) \hat{\bar{\varphi}}(\xi - \omega) e^{-2\pi + i \xi x}d\xi\\ + &= e^{2\pi i \omega x} S_{\hat{\varphi}} \hat{f}(\omega, -x). +\end{align} +% printbibliography +\end{document} diff --git a/appl_ana/preamble.tex b/appl_ana/preamble.tex @@ -0,0 +1,59 @@ +\documentclass[a4paper]{article} + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} +\usepackage{mlmodern} + +%\usepackage{ngerman} % Sprachanpassung Deutsch + +\usepackage{graphicx} +\usepackage{geometry} +\geometry{a4paper, top=15mm} + +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{amssymb} +\usepackage{amsthm} +\usepackage{mathtools} +\usepackage{braket} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage{float} +\usepackage{yhmath} +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} +\usetikzlibrary{calc,decorations.markings} + +%\usepackage[backend=biber, sorting=none]{biblatex} +%\addbibresource{uni.bib} + +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + + +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} +\usepackage{lipsum} + + +\usepackage{tcolorbox} +\tcbuselibrary{skins,breakable} + +\pagestyle{myheadings} + +\newcommand{\eps}{\varepsilon} +\usepackage[OT2,T1]{fontenc} +\DeclareSymbolFont{cyrletters}{OT2}{wncyr}{m}{n} +\DeclareMathSymbol{\Sha}{\mathalpha}{cyrletters}{"58} + +\markright{Popović\hfill Applied Analysis\hfill} + + +\title{University of Vienna\\ Faculty of Mathematics\\ +\vspace{1cm}Applied Analysis Problems +} +\author{Milutin Popovic} diff --git a/appl_ana/sesh1/main.pdf b/appl_ana/sesh1/main.pdf Binary files differ. diff --git a/appl_ana/sesh1/main.tex b/appl_ana/sesh1/main.tex @@ -1,387 +0,0 @@ -\documentclass[a4paper]{article} - - -\usepackage[T1]{fontenc} -\usepackage[utf8]{inputenc} -\usepackage{mlmodern} - -%\usepackage{ngerman} % Sprachanpassung Deutsch - -\usepackage{graphicx} -\usepackage{geometry} -\geometry{a4paper, top=15mm} - -\usepackage{subcaption} -\usepackage[shortlabels]{enumitem} -\usepackage{amssymb} -\usepackage{amsthm} -\usepackage{mathtools} -\usepackage{braket} -\usepackage{bbm} -\usepackage{graphicx} -\usepackage{float} -\usepackage{yhmath} -\usepackage{tikz} -\usetikzlibrary{patterns,decorations.pathmorphing,positioning} -\usetikzlibrary{calc,decorations.markings} - -%\usepackage[backend=biber, sorting=none]{biblatex} -%\addbibresource{uni.bib} - -\usepackage[framemethod=TikZ]{mdframed} - -\tikzstyle{titlered} = - [draw=black, thick, fill=white,% - text=black, rectangle, - right, minimum height=.7cm] - - -\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} -\usepackage[parfill]{parskip} -\usepackage{lipsum} - - -\usepackage{tcolorbox} -\tcbuselibrary{skins,breakable} - -\pagestyle{myheadings} - -\newcommand{\eps}{\varepsilon} - -\markright{Popović\hfill Applied Analysis\hfill} - - -\title{University of Vienna\\ Faculty of Mathematics\\ -\vspace{1cm}Applied Analysis Problems -} -\author{Milutin Popovic} - -\begin{document} -\maketitle -\tableofcontents - -\section{Sheet 1} - -\subsection{Fall from high} -We consider a free fall ($\dot{x}(t=0)=0$) of an object with mass $20\ -\text{kg}$ from a height $x(0) = h = 20\; \text{km}$, such that the -gravitational force depends on the height $x(t)$ in the following way -\begin{align}\label{eq: free fall} - \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2}, -\end{align} -where $R$ is the radius of the earth $R \approx 6000\; \text{km}$ and $g -\approx 9.81\ \frac{m}{s^2}$ is the gravitational acceleration on the surface -of the earth. For this problem there are two possible non-dimensionalisations, -but first let us rewrite the variables in terms of non-dimensional variables -and some dimensional constants, a priori let -\begin{align} - t &= t_c \tau \;\;\; \text{and}\\ - x &= x_c \xi. -\end{align} -With the above ansatz we get the following second derivative in -time -\begin{align} - \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2} \\ - \Rightarrow \frac{d^2x}{dt^2} &= \frac{x_c}{t_c^2} - \frac{d^2\xi}{d\tau^2}, -\end{align} -and thus the initial conditions can be rewritten as -\begin{align} - \xi(0) = \frac{h}{x_c},\\ - \dot{\xi} = 0. -\end{align} -Now we can rewrite the equation of the free fall in \ref{eq: free fall} in -terms of $\xi(\tau)$ as -\begin{align} - \frac{x_c}{gt_c^2} \ddot{\xi} = -\frac{1}{(\frac{x_c}{R}\xi +1)^2}. -\end{align} -Thereby we have three dimensional constants constants $\Pi_1, \Pi_2, \Pi_3$, -as follows -\begin{align} - \Pi_1 = \frac{x_c}{R}, \;\;\;\; \Pi_2 = \frac{h}{x_c}, \;\;\;\; - \Pi_3 = \frac{x_c}{gt_c^2}. -\end{align} - -The first scaling is done by reducing $\Pi_1$ and $\Pi_3$ to 1, by setting -\begin{align} - x_c = R, \;\;\;\; t_c = \sqrt{\frac{R}{g}}, -\end{align} -reformulating the initial problem in equation \ref{eq: free fall} to -\begin{align} - &\ddot{\xi} = -\frac{1}{(\xi + 1)^2},\;\;\;\; - \text{with} \nonumber\\ - &\xi(0) = \frac{h}{R}, \;\;\;\; \dot{\xi}(0) = 0. -\end{align} -Reducing the problem, meaning if $\frac{h}{R} \rightarrow 0$ makes the first -initial condition $\xi(0) \rightarrow 0$. We can conclude that this scaling -is bad since it changes the initial condition in the reduced problem. - -The second scaling option reduces $\Pi_2$ and $\Pi_3$ to 1, by setting -\begin{align} - x_c = h, \;\;\;\; t_c = \sqrt{\frac{h}{g}}, -\end{align} -reformulating the initial problem in equation \ref{eq: free fall} to -\begin{align} - &\ddot{\xi} = -\frac{1}{(\frac{h}{R}\xi + 1)^2},\;\;\;\; - \text{with} \nonumber\\ - &\xi(0) = 1, \;\;\;\; \dot{\xi}(0) = 0. -\end{align} -By letting $R \rightarrow \infty$ we get the following reduced problem -\begin{align}\label{eq: free fall reduced} - \ddot{\xi} = -1. -\end{align} -Integrating and solving for $\xi(\tau = T\sqrt{\frac{g}{h}}) = 0$ for when the -object hits the ground we get a familiar solution -\begin{align} - T = \sqrt{\frac{2h}{g}} -\end{align} -Note that in the reduced problem the time until the object hits the ground is -\textbf{(much) shorter} since the acceleration is at its maximum $\ddot{x}(t) = -g$ for all $t$. Yet in the original problem the acceleration (gravitation -force) \textbf{increases} as the object comes \textbf{closer} to earth . For -instance, if we let an object fall down from the height $h = R$ then its -gravitational force (acceleration) at that height would be $\ddot{x}(0) = -g/2$ and upon landing on earth the gravitational force $\ddot{x}(T) = g$, -while in the reduced solution its gravitational force would be $\ddot{x}(t) = -g$ for all $t$. - -Additionally we can calculate the velocity at impact we need to integrate the -reduced problem \ref{eq: free fall reduced} once and put in the initial -condition -\begin{align} - \dot{\xi}(\tau = \frac{T}{t_c}) &= -\tau = -\sqrt{2} \\ - \text{and} \;\;\; \dot{x} &= \frac{x_c}{t_c}\dot{\xi} = - \sqrt{gh}\; \dot{\xi}\\ - \Rightarrow \dot{x}(T) &= -\sqrt{2gh}, -\end{align} -The result is exactly the same as we would get from energy conservation -\begin{align} - \frac{m}{2}\dot{x}^2 = mgh \quad \Rightarrow \quad \dot{x} = \sqrt{2gh}. -\end{align} -The vertical throw allows for an additional scaling because the -initial conditions are different, $x(0) = 0$ and $\dot{x}(0) = v$. Thus -the solution too. - -To summarize, the assumptions that used for modeling and simplifying the -equation are -\begin{itemize} - \item no relativistic influence, - \item closed system, no outside influence (gravitation of the sun, air - resistance), - \item spherical symmetry of the earth (thereby center of mass can be - set in the middle of earth). -\end{itemize} -By looking at our assumptions a question arises:\textbf{Is it a good -approximation to replace the attractive force of the earth by the attraction -of the whole mass concentrated at the center?}. - -To answer this question more or less simply we look at the Poisson's equation -for gravity, -\begin{align} - \ddot{\vec{x}}(\vec{r}) = -\nabla \phi(\vec{r}) \\ - \Delta \phi = 4\pi G\varrho(\vec{r}). -\end{align} -for a gravitational potential $\phi$ and the mass density of earth -$\varrho$. We assume that \textbf{the earth can be approximated by a sphere} -and then we integrate both sides along the sphere (and use the Gaussian law -for integration) -\begin{align} - \int_{S} \nabla \ddot{\vec{x}}\ dS = - \int_{\partial S}\ddot{\vec{x}}\ d\vec{s} = -4\pi - G \int_S\varrho(\vec{r})\ ds = -4\pi GM. -\end{align} -Obviously $\ddot{\vec{x}}$ and $d\vec{s}$ point in the same direction. We -choose (rotate) the coordinate system such hat $\ddot{\vec{x}} = -\ddot{x}\ \mathbf{\hat{n}}$ and $d\vec{s} = \mathbf{\hat{n}}\ ds$, thereby -we get -\begin{align} - &\ddot{x}\int_{\partial S} ds = 4\pi r^2 \ddot{x},\\ - \Rightarrow &\ddot{x} = -\frac{GM}{r^2}. -\end{align} -The further derivation to get the exact equation of motion as in \ref{eq: -free fall}, we have to keep in mind that $r = x + R$, because by our -assumptions we are not in the sphere only outside or on the border $R$. -Lastly by reformulating the constants $gR^2 = GM$ gets us to our equation of -motion -\begin{align} - \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2}. -\end{align} - -\subsection{Scaling The Van der Pol equation} -The Van der Pol equation is a perturbation of the oscillation equation -\begin{align}\label{eq: vanderpol} - LC\frac{d^2I}{dt^2} + (-g_1C +3g_3CI^2)\frac{dI}{dt} = -I -\end{align} -with initial conditions -\begin{align}\label{eq: van initial} - I(0) = I_0,\;\;\;\; \dot{I}(0) = 0. -\end{align} -where $I(t)$ is the current at a time $t$, $C$ is the capacity, $L$ is the -inductivity and $g_1, g_3$ are some parameters. The units of all the -parameters are -\begin{align} - [LC] &= s^2\\ - [g_1C] &= s\\ - [g_3C] &= sA^{-2} -\end{align} -The oscillation equation is -\begin{align} - CL\ddot{I} + I = 0. -\end{align} -Solvable by the exponential ansatz of $I = Ae^{\lambda t}$, where $\lambda= -\pm i \sqrt{\frac{1}{LC}}$, thereby -\begin{align} - I(t) = A_1 e^{i\sqrt{\frac{1}{LC}}t} + A_2 e^{-i\sqrt{\frac{1}{LC}}t}. -\end{align} -With the initial conditions in equation \ref{eq: van initial} we get $A_1 = -A_2$ and thus the solution to the oscillation equation is -\begin{align} - I(t) = I_0\cos(\frac{t}{\sqrt{LC}}) -\end{align} -Now that we know the reduced problem and the solution to it, we may work with -the Van-Der-Pol equation \ref{eq: vanderpol}, by determining all possible -non-dimensionalisations. Let us begin by setting -\begin{align} - I(t) = I_c\psi,\\ - t = t_c \tau, -\end{align} -where $I_c$ and $t_c$ have the dimension of $I(t)$ and $t$ accordingly and -$\psi(\tau)$ and $\tau$ are dimensionless -The \textbf{first} and second derivative in time is -\begin{align} - \frac{d}{dt} &= \frac{1}{t_c}\frac{d}{d\tau}\\ - \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2}. -\end{align} -We can rewrite the Van-Der-Pol equation in terms of $\psi$ and $\tau$ -\begin{align} - &\frac{LC}{t_c^2}\ddot{\psi} - \left(\frac{3g_3I_c^2}{g_1}\psi^2 - - 1\right)\frac{g_1C}{t_c}\dot{\psi}= -\psi\\ - &\psi(0) = \frac{I_0}{I_c} \;\;\;\; \dot{\psi}(0) = 0 -\end{align} -There are a total of four constants that we can eliminate -\begin{align} - \Pi_1 &= \frac{I_0}{I_c}, \qquad - \Pi_2 = \frac{LC}{t_c^2},\nonumber\\ - \Pi_3 &= \frac{3g_3I_c^2}{g_1}, \qquad - \Pi_4 = \frac{g_1C}{t_c}. -\end{align} -The \textbf{first} scaling is -\begin{align} - I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=\sqrt{LC}. -\end{align} -Thereby we get the following problem -\begin{align} - \ddot{\psi} + (\psi^2 - 1)\eps \dot{\psi} = -\psi, \qquad \psi(0) = - \sqrt{\frac{3g_3}{g_1}}I_0, -\end{align} -where $\eps = g_1\sqrt{\frac{C}{L}}$. - -The \textbf{second} scaling is -\begin{align} - I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=g_1C. -\end{align} -Thereby we get the following -\begin{align} - \eps \psi'' +(\psi^2 +1)\psi' = -\psi, \qquad \psi(0) = - \sqrt{\frac{3g_3}{g_1}}I_0, -\end{align} -where $\eps = \frac{L}{g_1^2C}$. We could also consider scaling $I_c = I_0$ -with $t_c = \sqrt{LC}$ or $t_c = g_1C$ but they wouldn't develop significant -model hierarchies like the above two scaling. -\subsection{Scale the Schrödinger Equation} -The well known Schrödinger equation that describes quantum physics of the one -particle system is -\begin{align} - &i\hbar \partial_t\psi = -\frac{\hbar^2}{2m}\Delta \psi + V\psi \nonumber\\ - &\psi(t=0) =\psi_0 -\end{align} -where $\hbar$ is the reduced Plank constant, $\psi=\psi(x, t)$ the wave function, -$m$ the mass and $V = V(x)$ the potential in which the wave function is. The -dimensions are -\begin{align} - [\hbar] = js, \;\;\;\; [V] = j, \;\;\;\; [\psi]= m^{-d/2} -\end{align} -where $d$ is the spacial dimension. The standard scaling ansatz is -\begin{align} - &\psi = \psi_c \phi \\ - &t = t_c \tau \;\;\;\; x = x_c \xi, -\end{align} -by that we get the following derivatives in time and in space -\begin{align} - \partial_{x_i} &=\frac{1}{x_{(i)c}} \partial_{\psi_i} \\ - \partial^2_{x_i} &=\frac{1}{x_{(i)c}^2} \partial_{\psi_i}^2\\ - \partial_{t} &=\frac{1}{t_c} \partial_{\psi_i} \\ -\end{align} -for $i = 1, 2, 3$, or depending on the dimension we are dealing with. - -Let us consider $x\in \mathbb{R}^3$ and $V = 0$ to scale the equation. First -we now have -\begin{align} - i \partial_t\psi = -\frac{\hbar}{2m}\Delta \psi -\end{align} -with the initial condition $\phi(0) = \frac{\psi_0}{\psi_c}$. With our scaling the equation turns out to be -\begin{align} - \frac{i\hbar t_c}{2m}\frac{1}{||\vec{x}_c||^2}\Delta_{\vec{\xi}}\ \phi = - \partial_\tau\ \phi. -\end{align} -The constants we get are -\begin{align} - \Pi_1 = \frac{t_c\hbar}{2m}\frac{1}{||\vec{x}_c||^2}, \;\;\;\; \Pi_2 = - \frac{\psi_0}{\psi_c}. -\end{align} - -The simple choice of -\begin{align} - \frac{1}{||\vec{x}_c||^2} = 1, \;\;\;\; \psi_c = \psi_0, \;\;\;\; t_c = - \frac{2m}{\hbar}||\vec{x}_c||^2, -\end{align} -simplifies the Schrodinger equation without the potential to -\begin{align} - i\Delta_{\vec{\xi}}\ \phi = \partial_\tau \phi, -\end{align} -with the initial condition $\phi(\tau=0) = 1$. -. - -Now consider $V = 0$, $x\in[0, L]$ and $t \in [0, T]$, the Schrodinger -equation is the same only with one spacial dimension as above, we can set -\begin{align} - \psi_c = \psi_0, \;\;\;\; x_c =L, \;\;\;\; t_c = \frac{2mL^2}{\hbar}. -\end{align} -Thus we get -\begin{align} - i\partial_{\xi}^2 \phi = \partial_\tau \phi, -\end{align} -with the initial condition $\phi(\tau=0) = 1$, where $\xi \in [0, 1]$ and -$\tau \in [0, \frac{\hbar T}{2mL^2}]$. -. - -In the last example let us consider the quantum harmonic oscillator -represented by the potential $V(x) = m\omega^2 x^2$ for $x\in \mathbb{R}$, -where $\omega$ is the frequency. The equation is the following -\begin{align} - i \hbar \partial_t \psi = -\frac{\hbar^2}{2m}\partial^2_x \psi - +m\omega^2x^2 \psi. -\end{align} -By inserting the standard scaling ansatz we get -\begin{align} - i\partial_\tau \phi = -\frac{t_c\hbar}{2mx_c^2}\partial_\xi^2 \phi - +\frac{t_cm\omega^2x_c^2}{\hbar} \xi^2 \phi, -\end{align} -The dimensional constants are -\begin{align} - \Pi_1 = \frac{t_0\hbar}{mx_c^2},\;\;\;\;\Pi_2 = - \frac{m\omega^2x_c^2t_c}{\hbar},\;\;\;\; \Pi_3 = \frac{\psi_0}{\psi_c}. -\end{align} -The choice of scaling is -\begin{align} - \psi_c = \psi_0, \;\;\;\; t_c = \frac{1}{\omega}, \;\;\;\; x_c = - \sqrt{\frac{\hbar}{m\omega}}. -\end{align} -Thereby getting the following problem -\begin{align} - i\partial_\tau \phi = -\frac{1}{2} \partial_\xi^2 \phi +\xi^2 \phi -\end{align} -with $\phi(\tau = 0) = 1$. - -%\printbibliography -\end{document} diff --git a/appl_ana/sesh2/main.pdf b/appl_ana/sesh2/main.pdf Binary files differ. diff --git a/appl_ana/sesh2/main.tex b/appl_ana/sesh2/main.tex @@ -1,302 +0,0 @@ -\documentclass[a4paper]{article} - - -\usepackage[T1]{fontenc} -\usepackage[utf8]{inputenc} -\usepackage{mlmodern} - -%\usepackage{ngerman} % Sprachanpassung Deutsch - -\usepackage{graphicx} -\usepackage{geometry} -\geometry{a4paper, top=15mm} - -\usepackage{subcaption} -\usepackage[shortlabels]{enumitem} -\usepackage{amssymb} -\usepackage{amsthm} -\usepackage{mathtools} -\usepackage{braket} -\usepackage{bbm} -\usepackage{graphicx} -\usepackage{float} -\usepackage{yhmath} -\usepackage{tikz} -\usetikzlibrary{patterns,decorations.pathmorphing,positioning} -\usetikzlibrary{calc,decorations.markings} - -%\usepackage[backend=biber, sorting=none]{biblatex} -%\addbibresource{uni.bib} - -\usepackage[framemethod=TikZ]{mdframed} - -\tikzstyle{titlered} = - [draw=black, thick, fill=white,% - text=black, rectangle, - right, minimum height=.7cm] - - -\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} -\usepackage[parfill]{parskip} -\usepackage{lipsum} - - -\usepackage{tcolorbox} -\tcbuselibrary{skins,breakable} -\newcommand{\eps}{\varepsilon} -\pagestyle{myheadings} - -\markright{Popović\hfill Applied Analysis\hfill} - - - -\title{Applied Analysis Problems} -\author{Milutin Popović} - -\begin{document} -\maketitle -\tableofcontents - -\section{Sheet 2} -\subsection{Problem 4} -We consider a quadratic equation with two ways to perturb it by $\eps$: -\begin{align} - x^2 + 2\eps x -1 = 0, \label{eq: (1)}\\ - \nonumber \\ - \eps x^2 + 2x - 1 = 0.\label{eq: (2)} -\end{align} -Equation \ref{eq: (2)} is singular, because the reduced problem ($\eps -\rightarrow 0$) has only one solution at $x = \frac{1}{2}$. While the reduced -problem in \ref{eq: (1)} has two solutions for $x = \pm 1$, which is the case -for this non reduced equation. Let us thereby calculate the asymptotic -expansion of the regular case up to $O(\eps^2)$, we take the ansatz for the -asymptotic expansion -\begin{align}\label{eq: p4 ansatz} - x_\eps = x_0 + \eps x_1 + \eps^2 x_2 + O(\eps^3). -\end{align} -By substituting $x_\eps$ into \ref{eq: (1)} and factoring out the orders of -$\eps$ we get -\begin{align} - \eps^0 (x_0^2 - 1) + \eps^1(2x_0 + 2x_0x_1) + \eps^2(x_1^2+2x_2x_0 - +2x_1) + O(\eps^3) = 0 -\end{align} -By solving the equations in order of $\eps$, for the coefficients -$x_0$, $x_1$ and $x_2$ we get -\begin{align} - x_0 = \pm 1, \;\;\;\; x_1 = -1, \;\;\;\; x_2 = \pm \frac{1}{2}. -\end{align} -By substituting into the equation \ref{eq: p4 ansatz} we get -\begin{align} - x_\eps = \pm 1 - \eps \pm \frac{1}{2} \eps + O(\eps^3). -\end{align} -For $\eps = 0.001$ we get -\begin{align} - &x_\eps = -1.0010005 + O(\eps^3), &x_\eps = 0.9990005 + O(\eps^3),\\ - &x_\eps = -1.001 + O(\eps^2), &x_\eps = 0.999 + O(\eps^2). -\end{align} -\subsection{Problem 5} -Consider the following equations -\begin{align} - \label{eq: p5 1}\eps y' + y = x \;\;\;\;\;\; y(0) = 1\\ - \label{eq: p5 2}\eps y' + y = x \;\;\;\;\;\; y(0) = 0\\ - \nonumber\\ - \label{eq: p5 3}\eps y' + y = x \;\;\;\;\;\; y(0) = \eps\\ - \label{eq: p5 4}\eps^2 y' + y = x \;\;\;\;\;\; y(0) = \eps\\ - \nonumber\\ - \label{eq: p5 5}y' + \eps y = x \;\;\;\;\;\; y(0) = 1\\ - \label{eq: p5 6}y' + y = \eps x \;\;\;\;\;\; y(0) = 1 -\end{align} -We will go through the equations and elaborate on if the perturbation is -regular or singular, if regular we will compute the asymptotic expansion up -to second order. -Let us begin with equation \ref{eq: p5 1}. By the first look, the reduced -problem does not agree with the boundary condition -\begin{align} - y_0 = x \;\;\;\;\; y_0(0) = 1, -\end{align} -is a contradiction in $y_0(0) = 0 \neq 1$, thereby equation \ref{eq: p5 1} is -\textbf{singularly perturbed}. - -The reduced problem of equation \ref{eq: p5 2} on the other hand agrees with -the boundary condition, since -\begin{align} - y_0 = x \;\;\;\;\; y_0(0) = 0. -\end{align} -But by doing the ansatz for the asymptotic expansion -\begin{align} - y_\eps(x) = y_0 + \eps y_1 + \eps^2 y_2 + O(\eps^3), -\end{align} -plugging in into \ref{eq: p5 2} and separating coefficients in terms of -$\eps$, we get -\begin{align} - \eps^0 (y_0 -x) + \eps^1(y_0' + y_1) + \eps^2(y_1' + y_2) + O(\eps^3) = 0 -\end{align} -The solutions to these equations are -\begin{align} - y_0 = x, \;\;\;\; y_1 = 1, \;\;\;\; y_2 = 0, -\end{align} -which is a contradiction to the boundary condition of $y_1(0) = 1 \neq 0$. -Thereby we can conclude that equation \ref{eq: p5 2} is \textbf{singularly -perturbed}. - -Next up is equation \ref{eq: p5 3}, where by the asymptotic expansion the -first order coefficient of $\eps$, $y_2$, has the boundary condition $y_2(0) -= 0$. But by applying the ansatz of the asymptotic expansion and plugging -into the equation we get -\begin{align} - \eps^2(y_0 - x) + \eps^1 (y_0' + y_1) + \eps^2(y_1' + y_2) + O(\eps^3) = - 0. -\end{align} -Solving these equations we get -\begin{align} - y_0 = 0, \;\;\;\; y_1 = 1 \;\;\;\; y_2 = 0 , -\end{align} -which is a contradiction $y_1(0) = 1 \neq 0 $, thus the equation \ref{eq: p5 -3} is \textbf{singularly perturbed}. - -The next equation \ref{eq: p5 4} is also singularly perturbed, we -can see this by plugging the asymptotic expansion into the equation -\begin{align} - \eps^0 ( y_0 - x) + \eps^1(y_1) + \eps^2(y_0' + y_2) = O(\eps^3), -\end{align} -solving for the coefficients we get -\begin{align} - y_0 = x, \;\;\;\; y_1 = 0, \;\;\;\;\; y_2 = -1, -\end{align} -which is contradiction by the boundary condition $y_2(0) = -1 \neq 0$, -thereby \ref{eq: p5 4} is \textbf{singularly perturbed}. - -Equation \ref{eq: p5 5} on the first sight does not indicate for any -contradictions, we may plug the ansatz of the asymptotic expansion into the -equation and see what happens -\begin{align} - \eps^0(y_0 -x) + \eps^1(y_1' + y_0) + \eps^2(y_2' +y_1) + O(\eps^2) = 0, -\end{align} -with the initial conditions $y_0(0) = 1$, $y_1(0) = y_2(0) = 0$. -\begin{align} - y_0 = \frac{x^2}{2} + 1, \;\;\;\; - y_1 = -\frac{x^3}{6} + x, \;\;\;\; - y_2 = \frac{x^4}{24} + \frac{x^2}{2}. -\end{align} -Finally we get -\begin{align} - y_\eps(x) = (\frac{x^2}{2}+1) + \eps(-\frac{x^3}{6} -x) - +\eps^2(\frac{x^4}{24} + \frac{x^2}{2}) + O(\eps^3). -\end{align} -Thereby we can conclude that \ref{eq: p5 5} is \textbf{regularly perturbed}. - -The last equation \ref{eq: p5 6} is also regular, let us do the asymptotic -expansion of the equation and order the equation in orders of $\eps$. -\begin{align} - \eps^0(y_0' + y_0) + \eps^1(y_1' + y_1 -x) + \eps^2(y_2' + y_2)+ - O(\eps^3) = 0 . -\end{align} -by solving these differential equations with the boundary conditions $y_0(0) -= 1$, $y_1(0) = y_2(0) = 0$ we get -\begin{align} - y_0 = e^{-x} \;\;\;\; y_1 = (x-1) + e^{-x} \;\;\;\; y_2 = 0. -\end{align} -The equation we get -\begin{align} - y_\eps(x) = e^{-x} + \eps(x-1 +e^{-x}) + O(\eps^3). -\end{align} -Thereby we can conclude that the last equation \ref{eq: p5 6} is -\textbf{regularly perturbed}. -\subsection{Problem 6} -In this section we will calculate the asymptotic expansion of a regularly -perturbed equation in two ways, by doing the regular expansion ansatz and by -substituting and expanding in terms of $\eps$. The ordinary differential -equation we are dealing with is -\begin{align} - y' = -y + \eps y^2 \;\;\;\;\; y(0) = 1, -\end{align} -where $t > 0$ and $0 < \eps \ll 1$. The standard expansion ansatz is -\begin{align} -y_\eps(x) = y_0 + \eps y_1 + \eps^2 y_2 + O(\eps^3). -\end{align} -The ODE then expands to -\begin{align} - \eps^0(y_0' + y_0) + \eps(y_1' + y_1 - y_0^2) + \eps^2(y_2' + y_2 - - 2y_0y_1) + O(\eps^3) = 0. -\end{align} -Equations in order of $\eps$ and $\eps^2$ are non-homogeneous ODE's. The -solution to these three coefficients with the boundary conditions $y_0(0) = -1$, $y_1(0) = -y_2(0) = 0$ we get -\begin{align} - y_0 = e^{-x}, \;\;\;\; y_1 = -e^{-2x} + e^{-x}, \;\;\;\; y_2 = e^{-3x} - - 2e^{-2x} + e^{-x}. -\end{align} -The expansion of $y$ is then -\begin{align} - y_\eps (x) = e^{-x} + \eps(-e^{-2x} + e^{-x}) + \eps^2(e^{-3x} - 2e^{-2x} -+ e^{-x}) + O(\eps^3). \end{align} - -The second ansatz, considers the substitution $z = \frac{1}{y}$, by -calculating the first derivative and substituting the original problem we -get -\begin{align} - z' &= \frac{-y'}{y^2} = \frac{y-\eps y^2}{y^2} = \frac{1}{y} - \eps = z - - \eps. \\ - z(0) &= \frac{1}{y(0)} = 1. -\end{align} -The solution is -\begin{align} - z(x) = \eps + (1-\eps) e^x. -\end{align} -By substituting this into $y = \frac{1}{z}$ and expanding we get -\begin{align} - y(x) &= \frac{1}{\eps+(1-\eps)e^x} = e^{-x} \frac{1}{1 - (1- e^{-x})\eps} - \\ - &= e^{-x} \sum_{n\geq 0} \eps^n(1-e^{-x})^n. -\end{align} -which is the geometric series. -\subsection{Problem 7} -The last problem consists of a perturbation of a partial differential -equation (heat equation). -\begin{align} - &\partial_t u(x, t) + \partial_x^2 u(x,t) - \eps u(x, t)^2 = 0 - &x\in (0, 1),\; t>0,\\ - &u(x, 0) = \tilde{u}_0(x) &x\in(0, 1), \\ - &u(0, t) = u(1, t) = 0 & t>0. -\end{align} -The problem is regular because the reduced solution is the regular heat -equation in the one special dimension on $x\in (0, 1)$, we know this is -solvable. By doing the expansion ansatz we can derive the first equations -for the first three terms, the ansatz is always the same -\begin{align} - u_\eps = u_0 + \eps u_1 + \eps^2 u_2 + O(\eps^3). -\end{align} -Plugging this into the perturbed problem problem and factoring out the terms -in the order of $\eps$ we get -\begin{align} - &\eps^0 (\partial_t u_0 + \partial_x^2 u_0) + \\ - &\eps^1 (\partial_t u_1 + \partial_x^2 u_1 - u_0^2) +\\ - &\eps^2 (\partial_t u_2 + \partial_x^2 u_2 - 2u_1u_0) + O(\eps^3) = 0. -\end{align} - -We can solve the reduced problem with the initial condition $\tilde{u}_0 = -\sin(\pi x)$ by separation of variables. Setting $u(x, t) = \psi(x) \phi(t)$ -and substituting into the equation we get two ordinary differential equation -\begin{align} - \underbrace{\frac{\psi_{xx}}{\psi}}_{=k} - +\underbrace{\frac{\phi_t}{\phi}}_{=-k} = 0, -\end{align} -for some $k$. Solving these two by the exponential ansatz. -\begin{align} - \psi(x) &= A_1 e^{\sqrt{k} x} +A_2 e^{-\sqrt{k} x},\\ - \phi(t) &= A_3 e^{-kt}. -\end{align} -With the initial condition we get the conditions that -\begin{align} - A_1A_3 &= -A_2 A_3,\\ - k &= \pi^2 -\end{align} -we choose $A_1 = A_3 = 1$ , $A_2 = -1$. We get the following solution to the -PDE -\begin{align} - u(x, t) = \psi(x)\phi(t) = \sin(\pi x) e^{-\pi^2 t}. -\end{align} - -%\printbibliography -\end{document} diff --git a/appl_ana/sesh3/main.pdf b/appl_ana/sesh3/main.pdf Binary files differ. diff --git a/appl_ana/sesh3/main.tex b/appl_ana/sesh3/main.tex @@ -1,250 +0,0 @@ -\documentclass[a4paper]{article} - - -\usepackage[T1]{fontenc} -\usepackage[utf8]{inputenc} -\usepackage{mlmodern} - -%\usepackage{ngerman} % Sprachanpassung Deutsch - -\usepackage{graphicx} -\usepackage{geometry} -\geometry{a4paper, top=15mm} - -\usepackage{subcaption} -\usepackage[shortlabels]{enumitem} -\usepackage{amssymb} -\usepackage{amsthm} -\usepackage{mathtools} -\usepackage{braket} -\usepackage{bbm} -\usepackage{graphicx} -\usepackage{float} -\usepackage{yhmath} -\usepackage{tikz} -\usetikzlibrary{patterns,decorations.pathmorphing,positioning} -\usetikzlibrary{calc,decorations.markings} - -%\usepackage[backend=biber, sorting=none]{biblatex} -%\addbibresource{uni.bib} - -\usepackage[framemethod=TikZ]{mdframed} - -\tikzstyle{titlered} = - [draw=black, thick, fill=white,% - text=black, rectangle, - right, minimum height=.7cm] - - -\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} -\usepackage[parfill]{parskip} -\usepackage{lipsum} - - -\usepackage{tcolorbox} -\tcbuselibrary{skins,breakable} -\newcommand{\eps}{\varepsilon} -\pagestyle{myheadings} - -\markright{Popović\hfill Applied Analysis\hfill} - - - -\title{Applied Analysis Problems} -\author{Milutin Popović} - -\begin{document} -\maketitle -\tableofcontents - -\section{Sheet 3} -\subsection{Problem 8} -Let us look at functions $f: \mathcal{D} \mapsto \mathbb{R}$ that show -boundary layer behavior at the following manifolds. - -The \textbf{first} for $\mathcal{D} = \mathbb{R}^2$ and $S = \{0\}$ we have a -function e.g. -\begin{align} - f_{\eps}(x, y) = e^{-\frac{x}{\eps}} + y, -\end{align} -with the reduced equation -\begin{align} - \lim_{\eps \rightarrow 0} f_{\eps}(x, y) = - \begin{cases} - y \;\;\;\;\;\;\;\;\;\; x > 0\\ - 1+y \;\;\;\; x = 0\\ - \end{cases} -\end{align} - -The \textbf{second} example is $\mathcal{D} = \mathbb{R}^n$ and $S = \{|x| = 1\}$. -\begin{align} - f_\eps(x_1,\dots,x_n) = \tanh\left(\frac{|x| - 1}{\eps} \right), -\end{align} -with the reduced equation -\begin{align} - \lim_{\eps \rightarrow 0} f_{\eps}(x_1,\dots, x_n) = - \begin{cases} - -1 \;\;\;\; |x| < 0\\ - 1 \;\;\;\;\;\;\; |x| > 0\\ - \end{cases} -\end{align} - -The \textbf{third} example is $\mathcal{D} = \mathbb{R}^3$ and $S = \{x_1 = -1\}$ -\begin{align} - f_\eps(x_1, x_2, x_3) = \tanh\left(\frac{x_1 - 1}{\eps}\right)+x_2x_3 -\end{align} -with the reduced equation -\begin{align} - \lim_{\eps \rightarrow 0} f_{\eps}(x_1,x_2,x_3) = - \begin{cases} - -1 + x_2x_3 \;\;\;\; x_1 < 0\\ - 1 + x_2x_3 \;\;\;\;\;\;\; x_1 > 0\\ - \end{cases} -\end{align} -\subsection{Problem 9} -Consider a linear BVP -\begin{align} - Lu := -\eps u'' + b(x)u' + c(x)u = f(x),\\ - u(0) = u(1) = 0, -\end{align} -for $0 < \eps \ll \eps_0$ and $b, c, f \in C([0,1])$ with the conditions -\begin{align} - c(x) \geq 0, \qquad b(x) \geq \beta > 0 \qquad x\in[0, 1] -\end{align} -We are to show that for all $x\in[0, 1)$ the reduced solution $u_0$ of the -above BVP satisfies -\begin{align} - \lim_{\eps \rightarrow 0} u_\eps(x) = u_0(x)))), -\end{align} -where the reduced solution $u_0$ is the solution to the following -differential equation -\begin{align} - b(x)u' + c(x)u = f(x), \quad u(0) = 0. -\end{align} -The hint was given: Set -\begin{align} - w_1(x) = e^{\beta x} \quad w_2(x) = e^{-\beta\frac{1-x}{\eps}}, -\end{align} -such that $Lw_1 \geq \gamma > 0$ for some suitable $\gamma$ and $Lw_2 \geq -0$. Then for -\begin{align} - v = \pm (u_\eps - u_0), \qquad w = A\eps w_1 + B\eps w_2, -\end{align} -for some suitable $A, B$. The following comparison principal is applicable: -IF -\begin{align} - &Lv(x) \leq Lw(x) \quad \forall x \in (0, 1) \label{eq:cond1}\\ - &v(0) \leq w(0) \label{eq:cond2}\\ - &v(1) \leq w(1) \label{eq:cond3}\\ -\end{align} -then -\begin{align} - \Longrightarrow v(x) \leq w(x) \quad \forall x\in(0, 1) -\end{align} -which holds for $u, v \in C^2((0, 1)) \cap C([0, 1])$. Thus a boundary layer -is possible only at $x=1$. On the other hand, for $b(x) \leq \beta < 0$ it -follows that the boundary layer is possible only at $x=0$. - -We shall go through the chronological order of the conditions\ref{eq:cond1}, -\ref{eq:cond2}, \ref{eq:cond3} and check them. So for \ref{eq:cond1} -we have that -\begin{align} - Lw(x) &= A\eps Lw_1(x) + B Lw_2(x) \\ - &\geq A\eps Lw_1(x) = A\eps e^{\beta x} \left(-\eps \beta^2 - - b(x)\beta+c(x)\right)\\ - &\geq A\eps \beta e^{\beta x} \left(1-\eps\right)\\ - &\geq \eps A\beta^2 e^{\beta}(1-\eps) = \gamma > 0 -\end{align} -And obviously -\begin{align} - Lv(x) \leq 0 , -\end{align} -by that we have that -\begin{align} - Lv(x) \leq \gamma \leq Lw(x). -\end{align} -For the condition \ref{eq:cond2} we have -\begin{align} - w(0) &= A\eps w_1(0) Bw_2(0) = Be^{-\frac{\beta}{\eps}},\\ - v(0) &= \pm\left(u_\eps(0) - u_0(0)\right) = 0. -\end{align} -By the simple choice $B \geq 0$ we satisfy the condition -\begin{align} - v(0) \leq w(0). -\end{align} -Now for the last condition \ref{eq:cond3} we have -\begin{align} - w(1) &= A\eps e^\beta + B \geq A\eps e^\beta,\\ - v(1) &= \mp u_0(1) = 0. -\end{align} -And choose $A = \frac{\pm u(1)}{\eps} e^{-\beta}$, which satisfies the last -condition -\begin{align} - v(1) \leq w(1). -\end{align} -Thereby we have -\begin{align} - &v(x) &\leq w(x)\\ - &\Rightarrow \lim_{\eps \rightarrow 0} v(x) &\leq \lim_{\eps \rightarrow - 0} w(x) = 0\\ - &\Rightarrow \lim_{\eps \rightarrow 0} v(x) = 0 -\end{align} -uniformly on $(0, 1)$. -\subsection{Problem 10} -Consider the following BVP -\begin{align} - -\eps u'' + (1 + x)u' + u = 2, \qquad u(0) = u(1) - 0, -\end{align} -for $0 < \eps \ll 1$. \textbf{Where can this problem have a boundary layer?} -To answer this question we need to look at the reduced problem -\begin{align} - -(1+x)u' + u = 2. -\end{align} -The solution to the equation is -\begin{align} - \bar{u}(x) = 2 + A(x+1). -\end{align} -According to the boundary conditions it is unclear what the value of the -constant is, according to $\bar{u}(0)=0$ we get $A = -2$ or according to -$\bar{u}(1)=0$ we get $A = -1$. Ultimately this means that there exists a -boundary layer near $x=1$ or $x=0$. We choose $x=0$ and according to this the -local variable $\xi = x\eps^{-\alpha}$ ($x = \xi \eps^{-\alpha}$). The -derivatives of $u$ are calculated using the chain rule -\begin{align} - \frac{du}{dx}&= \frac{du}{d\xi}\frac{d\xi}{dx} = \eps^{-\alpha} \dot{u}\\ - \frac{d^2u}{dx^2}&= \eps^{-\alpha} \frac{d^2u}{d\xi^2}\frac{d\xi}{dx} = - \eps^{-2\alpha} \ddot{u}. -\end{align} -The BVP transforms as follows -\begin{align} - -\eps^{1-\alpha}\ddot{u} - \dot{u} + \eps(u - \xi\dot{u} - 2) = - \begin{cases} - -\ddot{u} - \dot{u} = 0 \;\;\;\;\; \alpha=1\\ - -\dot{u} = 0 \;\;\;\;\;\;\;\; 0<\alpha<1 - \end{cases} -\end{align} -Choosing $\alpha = 1$ for a reasonable solution -\begin{align} - \hat{u}(\xi) = Be^{-\xi}, -\end{align} -which converges in the local limit (!). Thereby we have a asymptotic -representation up to the degree of $\eps$ -\begin{align} - u_\eps(x) &= \bar{u}(x) + \hat{u}(\psi) + O(\eps)\\ - &= 2 + A(1+x) + B e^{-\frac{x}{\eps}} + O(\eps) -\end{align} -And by the boundary conditions -\begin{align} - u_\eps(0) = 2+A+B=0, \qquad u_\eps(1) = 2+2A+B=0, -\end{align} -we get that the constants are -\begin{align} - A = -4, \qquad B = 2. -\end{align} -The asymptotic representation is thereby -\begin{align} - u_\eps(x) = 2 - 4(1+x) + 2 e^{-\frac{x}{\eps}} + O(\eps) -\end{align} -%\printbibliography -\end{document} diff --git a/appl_ana/sesh4/main.pdf b/appl_ana/sesh4/main.pdf Binary files differ. diff --git a/appl_ana/sesh4/main.tex b/appl_ana/sesh4/main.tex @@ -1,195 +0,0 @@ -\documentclass[a4paper]{article} - - -\usepackage[T1]{fontenc} -\usepackage[utf8]{inputenc} -\usepackage{mlmodern} - -%\usepackage{ngerman} % Sprachanpassung Deutsch - -\usepackage{graphicx} -\usepackage{geometry} -\geometry{a4paper, top=15mm} - -\usepackage{subcaption} -\usepackage[shortlabels]{enumitem} -\usepackage{amssymb} -\usepackage{amsthm} -\usepackage{mathtools} -\usepackage{braket} -\usepackage{bbm} -\usepackage{graphicx} -\usepackage{float} -\usepackage{yhmath} -\usepackage{tikz} -\usetikzlibrary{patterns,decorations.pathmorphing,positioning} -\usetikzlibrary{calc,decorations.markings} - -%\usepackage[backend=biber, sorting=none]{biblatex} -%\addbibresource{uni.bib} - -\usepackage[framemethod=TikZ]{mdframed} - -\tikzstyle{titlered} = - [draw=black, thick, fill=white,% - text=black, rectangle, - right, minimum height=.7cm] - - -\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} -\usepackage[parfill]{parskip} -\usepackage{lipsum} - - -\usepackage{tcolorbox} -\tcbuselibrary{skins,breakable} - -\pagestyle{myheadings} - -\markright{Popović\hfill Applied Analysis\hfill} - - -\title{University of Vienna\\ Faculty of Mathematics\\ -\vspace{1cm}Applied Analysis Problems -} -\author{Milutin Popovic} - -\begin{document} -\maketitle -\tableofcontents - -\section{Sheet 4} - -\subsection{Fourier Series} -The Fourier series of a $p$ periodic function $f$, integrable on -$[-\frac{p}{2}, \frac{p}{2}]$ is -\begin{align} - f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty \left(a_n \cos(\frac{2\pi n x}{p}) - b_n sin(\frac{2\pi n x}{p})\right). -\end{align} -The coefficients $a_n$ and $b_n$ are called the Fourier coefficients of $f$ -and are given by -\begin{align} - a_n &= \frac{2}{p} \int_{-\frac{p}{2}}^{\frac{p}{2}} f(x) \sin(\frac{2\pi - n x}{p}) dx, \;\;\;\;\; n\geq 0 \\ - b_n &= \frac{2}{p} \int_{-\frac{p}{2}}^{\frac{p}{2}} f(x) \cos(\frac{2\pi - n x}{p}) dx, \;\;\;\;\; n\geq 1 -\end{align} -Let us compute the Fourier series of $f(t) = t$ for $t \in [-\frac{1}{2}, -\frac{1}{2}]$. The Fourier coefficients are -\begin{align} - a_n &= 2\int_{-\frac{1}{2}}^{\frac{1}{2}} t \cos(2\pi n t)\ dt = 0 - \;\;\;\;\; \text{(odd: g(-t) = -g(t))},\\ - \nonumber\\ - b_n &= 2\int_{-\frac{1}{2}}^{\frac{1}{2}} t \sin(2\pi n t)\ dt = \\ - &= 2 \left(-\frac{1}{2\pi n} \cos(2\pi n - t)\bigg|_{-\frac{1}{2}}^{\frac{1}{2}} - +\int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2 \pi n}\cos(2\pi n t)\ dt - \right) =\\ - &= -\frac{1}{\pi n}\left( -\cos(\pi n) + \frac{1}{\pi n }\sin(\pi - n)\right) = - \frac{\sin(\pi n) - \pi n \cos(\pi n)}{(\pi n)^2}. -\end{align} -Thereby the Fourier series of $f(t) = t$ is -\begin{align} - f(t) = \sum_{n=1}^\infty \left(\frac{\sin(\pi n) - \pi n \cos(\pi n)}{(\pi - n)^2}\right) \sin(2\pi n t) = t -\end{align} -\subsection{Truncation Error} -The truncation error of the trigonometric polynomial $(Sf_N)$ of degree $N$ is -\begin{align} - \sum_{|k| > N} |\hat{f}(k)|^2 = \lVert f - S_N\rVert_2^2 = - \int_{-\frac{1}{2}}^{\frac{1}{2}} |E_N(t)|^2 dt. -\end{align} -Computations for $N = 3$ and $N = 9$ were done in python with a integration error of -around $10^{-15}$, resulting in the overall truncation errors of -\begin{align} - \sum_{|k| > 3} |\hat{f}(k)|^2 = 0.0053,\\ - \sum_{|k| > 9} |\hat{f}(k)|^2 = 0.0143. -\end{align} -To achieve $\lVert E_N\rVert^2_2 < 0.1 \lVert f \rVert^2_2$, the number of -coefficients needed are about $61$. This was done using a while loop and -evaluating $\lVert E_N\rVert^2_2$ for $N$ until the above condition is met. - -\subsection{Orthonormal Bases} -Here we will go through the most important properties of orthonormal bases. -So let $\{b_n\}_{n\in \mathbb{N}}$ be an ONB of a vector space $\mathcal{H}$, -then for every $x\in \mathcal{H}$ we may write -\begin{align} - x = \sum_{b_n} \langle b_n, x\rangle b_n, -\end{align} -and -\begin{align} - \lVert x \rVert^2 = \sum_{b_n} |\langle b_n, x\rangle|^2. -\end{align} -For any $x, y \in \mathcal{H}$ we can write the scalar product as -\begin{align} - \langle x, y\rangle = \sum_{b_n} \langle b_n, x\rangle \langle b_n, - y\rangle, -\end{align} -Furthermore there exists a linear projection $\Phi\ : \mathcal{H} -\rightarrow l^2(\{b_n\}_n)$ such that -\begin{align} - \langle \Phi(x), \Phi(y)\rangle = \langle x, y \rangle\;\;\; \forall x, y - \in \mathcal{H}. -\end{align} - -An example of an orthonormal basis, which spans $L^2([-\frac{p}{2}, -\frac{p}{2}])$ is $\mathcal{T}_p = \{e_n := \frac{e^{2\pi i -\frac{n}{p}x}}{\sqrt{p}}\}_{n\in\mathbb{Z}}$. The $e_n$'s are orthonormal in -$L^2$ which can be easily seen by using the scalar product of $L^2$, so for -$n, m \in \mathbb{Z}$ -\begin{align} - \langle e_n, e_m\rangle_{L^2([-\frac{p}{2}, \frac{p}{2})} &= - \frac{1}{p}\int_{[-\frac{p}{2}, \frac{p}{2}]}e_n \cdot e_m^* \ dx=\\ - &=\frac{1}{p}\int_{[-\frac{p}{2}, \frac{p}{2}]} e^{2\pi i \frac{(n-m)}{p} x} \ dx=\\ - &=\frac{\sin(\pi (n-m))}{\pi(n-m)} = - \begin{cases} - 0 \;\;\;\; n\neq m\\ - 1 \;\;\;\; n=m - \end{cases} -\end{align} -\subsection{Dirichlet Kernel} -The function -\begin{align} - D_t(x) := \sum_{\lVert k \rVert_\infty \leq t} e_k(x), \;\;\;\;\; x\in - \mathbb{R}^d -\end{align} -is called the Dirichlet Kernel. For $0 < t \in \mathbb{N}$ we have -\begin{align} - (S_tf)(x) = \int_{I^d} f(y) D_t(x-y) dy, -\end{align} -where $S_t$ represents the orthogonal projection onto the trigonometric -polynomials $\Pi_t$ of degree $t$, by -\begin{align} - &S_t:\ L^1(\mathbb{T}^d) \rightarrow \Pi_t \\ - &f \mapsto \sum_{\lVert k \rVert \leq t} \langle f, - e_k\rangle_{L^2(\mathbb{T}^d)} e_k \;\;\;\;\; k \in \mathbb{Z}^d -\end{align} -And furthermore the Dirichlet Kernel satisfies -\begin{align} - D_t(x) = \prod_{i=1}^d \frac{e_{t+1}(x_i) - e_{-t}(x_i)}{e_1(x_i) - 1} -\end{align} -To show the convolution property, we start off by applying the orthogonal -projection into the trigonometric polynomials $S_t$ onto a function $f \in -L(\mathbb{T}^d)$ -\begin{align} - (S_tf) &= \sum_{\lvert k\rVert_\infty \leq t} \int_{I^d} f(y) e^{-2\pi i - \langle k, y\rangle}\ dy\ e^{2\pi i\langle k, x\rangle} =\\ - &= \int_{I^d}f(y) \sum_{\lvert k\rVert_\infty \leq t} e^{2\pi i \langle - k, (x- y)\rangle}\ dy =\\ - &= (f * D_t) (x) = \int_{I^d} f(y) D_t(x - y)\ dy. -\end{align} -To show the reformulation of the Dirichlet kernel, we need to simply -calculate it directly -\begin{align} - \sum_{\lVert k \rVert_\infty \leq t} e^{2\pi i \langle k , x\rangle} &= - \prod_{j=1}^d \sum_{k_j = -t}^t e^{2\pi i k_j x_j} =\\ - &= \prod_{j=1}^d e^{-2\pi i t x_j} \sum_{k_j = 0}^{2t} e^{2\pi i k_j - x_j}=;\;\;\;\; \text{(trigonometric series)}\\ - &= \prod_{j=1}^d e^{-2\pi i t x_j} \frac{e^{2\pi i (2t + 1)x_j} - - 1}{e^{2\pi i x_j} - 1} =\\ - &= \prod_{j = 1} \frac{e_{t+1}(x_j) - e_{-t}(x_j)}{e_1(x_j) - 1}. -\end{align} -%\printbibliography -\end{document} diff --git a/appl_ana/sesh5/main.pdf b/appl_ana/sesh5/main.pdf Binary files differ. diff --git a/appl_ana/sesh5/main.tex b/appl_ana/sesh5/main.tex @@ -1,146 +0,0 @@ -\documentclass[a4paper]{article} - - -\usepackage[T1]{fontenc} -\usepackage[utf8]{inputenc} -\usepackage{mlmodern} - -%\usepackage{ngerman} % Sprachanpassung Deutsch - -\usepackage{graphicx} -\usepackage{geometry} -\geometry{a4paper, top=15mm} - -\usepackage{subcaption} -\usepackage[shortlabels]{enumitem} -\usepackage{amssymb} -\usepackage{amsthm} -\usepackage{mathtools} -\usepackage{braket} -\usepackage{bbm} -\usepackage{graphicx} -\usepackage{float} -\usepackage{yhmath} -\usepackage{tikz} -\usetikzlibrary{patterns,decorations.pathmorphing,positioning} -\usetikzlibrary{calc,decorations.markings} - -%\usepackage[backend=biber, sorting=none]{biblatex} -%\addbibresource{uni.bib} - -\usepackage[framemethod=TikZ]{mdframed} - -\tikzstyle{titlered} = - [draw=black, thick, fill=white,% - text=black, rectangle, - right, minimum height=.7cm] - - -\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} -\usepackage[parfill]{parskip} -\usepackage{lipsum} - - -\usepackage{tcolorbox} -\tcbuselibrary{skins,breakable} - -\pagestyle{myheadings} - -\markright{Popović\hfill Applied Analysis\hfill} - - -\title{University of Vienna\\ Faculty of Mathematics\\ -\vspace{1cm}Applied Analysis Problems -} -\author{Milutin Popovic} - -\begin{document} -\maketitle -\tableofcontents - -\section{Sheet 5} -\subsection{Fourier Transform} -In this section we prove the linearity of the Fourier Transform $\mathcal{F}$ on -$L^1(\mathbb{R}^d)$. For $f, g \in L^1(\mathbb{R}^d)$ and $\lambda, \mu \in -\mathbb{R}$ the linearity condition for $\mathcal{F}$ is the following -\begin{align} - \mathcal{F}(\lambda f + \mu g) = \lambda \mathcal{F}(f) + \mu - \mathcal{F}(g). -\end{align} -We start by using the Fourier transform definition for $x, \xi \in \mathbb{R}^d$ -\begin{align} - \mathcal{F}(\lambda f + \mu g)(\xi) &= \int_{\mathbb{R}^d} (\lambda f(x)+ - \mu g(x)) e^{-2\pi i \langle x, \xi\rangle}\ dx =\\ - &= \int_{\mathbb{R}^d} \lambda f(x) e^{-2\pi i\langle x,\xi\rangle} + \mu - g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\ - &= \int_{\mathbb{R}^d} \lambda f(x) e^{-2\pi i\langle x,\xi\rangle}\ dx+ - \int_{\mathbb{R}^d} \mu - g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\ - &= \lambda \int_{\mathbb{R}^d} f(x) e^{-2\pi i\langle x,\xi\rangle}\ dx+ - \mu \int_{\mathbb{R}^d} - g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\ - &= \lambda \mathcal{F}(f)(\xi) + \mu \mathcal{F}(g)(\xi) -\end{align} -\subsection{Identities of the Fourier transform} -The following are three identities of the Fourier transform - -\begin{table}[h!] -\centering -\begin{tabular}{| l | c | c |} -\hline - & $g(x)$ & $\hat{g}(\xi)$ \\ \hline \hline -(1) & $f(x-x_0)$ & $e^{-2\pi ix_0 \xi} \hat{f}(\xi)$ \\ \hline -(2) & $e^{2\pi i \xi_0 x} f(x)$ & $f(\xi - \xi_0)$ \\ \hline -(3) & $f(ax)$ & $\frac{1}{a} \hat{f}(\frac{\xi}{a})$\\ \hline -\end{tabular} - \caption{Identities of the Fourier transform for $a > 0, - \xi_0, x \in \mathbb{R}$} -\end{table} -We start with (1) -\begin{align} - \widehat{f(x-x_0)} - &= \int_\mathbb{R} f(x-x_0) e^{-2\pi i x \xi}\ dx= - \;\;\;\;\;\; (y = x-x_0)\\ - &= \int_\mathbb{R} f(y) e^{-2\pi i (y+x_0) \xi}\ - dy=\\ - &= e^{-2\pi i x_0 \xi} \int_\mathbb{R}f(y)e^{-2\pi i y - \xi}\ dy=\\ - &= e^{-2\pi i x_0 \xi} \hat{f}(\xi). -\end{align} -For (2) we have -\begin{align} - \widehat{e^{2\pi i x \xi_0} f(x)} - &= \int_\mathbb{R} e^{2\pi i x \xi_0} f(x) e^{-2\pi i x \xi}\ dx =\\ - &= \int_\mathbb{R} f(x) e^{-2\pi i x (\xi -\xi_0)}\ dx=\\ - &= \hat{f}(\xi - \xi_0). -\end{align} -For (3) we have -\begin{align} - \widehat{f(ax)} - &= \int_\mathbb{R} f(ax) e^{-2\pi i \xi x}\ dx = \qquad \text{sub: - $(y=ax)$}\\ - &= \int_\mathbb{R} \frac{1}{a}f(y) e^{-2\pi i \frac{\xi}{a} y}\ dy=\\ - &= \frac{1}{a} \hat{f}\left(\frac{\xi}{a}\right). -\end{align} -\subsection{The Box-Function} -Consider the following Box-Function -\begin{align} - \Pi(x) := - \begin{cases} - 1\;\;\;\;\;\; -\frac{3}{2} < x < \frac{1}{2}\\ - 0\;\;\;\;\; \text{else} - \end{cases} -\end{align} -The Fourier transform of this function is -\begin{align} - \widehat{\Pi(x)} - &= \int_\mathbb{R} \Pi(x) e^{-2\pi i x\xi}\ dx=\\ - &= \int_{-\frac{3}{2}}^{\frac{1}{2}} e^{-2\pi i x \xi}\ dx - =\frac{-1}{2\pi i \xi} e^{-2\pi i x\xi} - \bigg|_{-\frac{3}{2}}^{\frac{1}{2}}=\\ - &= \frac{1}{2\pi i \xi} \left(e^{3\pi i \xi} - e^{-\pi i \xi}\right)=\\ - &= \frac{e^{\pi i \xi}\sin(2\pi\xi)}{\pi \xi}. -\end{align} - -%\printbibliography -\end{document} diff --git a/appl_ana/sesh6/main.pdf b/appl_ana/sesh6/main.pdf Binary files differ. diff --git a/appl_ana/sesh6/main.tex b/appl_ana/sesh6/main.tex @@ -1,193 +0,0 @@ -\documentclass[a4paper]{article} - - -\usepackage[T1]{fontenc} -\usepackage[utf8]{inputenc} -\usepackage{mlmodern} - -%\usepackage{ngerman} % Sprachanpassung Deutsch - -\usepackage{graphicx} -\usepackage{geometry} -\geometry{a4paper, top=15mm} - -\usepackage{subcaption} -\usepackage[shortlabels]{enumitem} -\usepackage{amssymb} -\usepackage{amsthm} -\usepackage{mathtools} -\usepackage{braket} -\usepackage{bbm} -\usepackage{graphicx} -\usepackage{float} -\usepackage{yhmath} -\usepackage{tikz} -\usetikzlibrary{patterns,decorations.pathmorphing,positioning} -\usetikzlibrary{calc,decorations.markings} - -%\usepackage[backend=biber, sorting=none]{biblatex} -%\addbibresource{uni.bib} - -\usepackage[framemethod=TikZ]{mdframed} - -\tikzstyle{titlered} = - [draw=black, thick, fill=white,% - text=black, rectangle, - right, minimum height=.7cm] - - -\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} -\usepackage[parfill]{parskip} -\usepackage{lipsum} - - -\usepackage{tcolorbox} -\tcbuselibrary{skins,breakable} - -\pagestyle{myheadings} - -\markright{Popović\hfill Applied Analysis\hfill} - - -\title{University of Vienna\\ Faculty of Mathematics\\ -\vspace{1cm}Applied Analysis Problems -} -\author{Milutin Popovic} - -\begin{document} -\maketitle -\tableofcontents - -\section{Sheet 6} -\subsection{Fourier Transform of the convolution} -Consider the function $f(x)$, which has a Fourier Transform $\hat{f}(\xi)$, -now let us compute the Fourier transform of -\begin{align} - h(x) = f(3x-1) \sin(x) . -\end{align} -We know that the Fourier transform of the convolution is (we use somewhat of -the inverse convolution theorem). -\begin{align} - \widehat{(f(3x-1)*g(x))} = \widehat{f(3x-1)} \cdot \hat{g}(\xi). -\end{align} -The Fourier transform of $f(3x-1)$ is simply done by substituting a new -variable -\begin{align} - \widehat{f(3x-1)} = \frac{1}{3}e^{2\pi i\frac{\xi}{3}}\ - f\left(\frac{\xi}{3}\right). -\end{align} -The Fourier transform of $\sin(x)$ can be calculated when looking at the -Fourier transform of the Dirac-delta function -\begin{align} - \widehat{\delta(ax-b)} - &=\int_\mathbb{R} \delta(ax-b) e^{-2\pi i x \xi}\ dx - \;\;\;\;\;\;\; (y = ax-b)\\ - &=\int_\mathbb{R} \delta(y) e^{-2\pi i (y+b)\frac{\xi}{a}}\frac{dy}{a}\\ - &=\frac{1}{a} e^{-2\pi i \xi \frac{b}{a}}. -\end{align} -We may plug in $\sin(x)$ in the definition of the Fourier transformation and -observe where we can use the Dirac-delta to to the inverse Fourier transform -\begin{align} - \widehat{\sin(x)} - &=\int_\mathbb{R} \sin(x)e^{-2\pi i x\xi}\ dx=\\ - &=\frac{1}{2i}\int_\mathbb{R} (e^{ix} - e^{-ix})e^{-2\pi i \xi x}\ dx\\ - &=\frac{1}{2i}\left( - \int_\mathbb{R} e^{ix} e^{-2\pi i \xi x}\ dx+ - \int_\mathbb{R} e^{-ix} e^{-2\pi i \xi x}\ dx - \right). -\end{align} -Here we may use the above formula for the Fourier transform of the Dirac -delta. We choose $a=1$, $b= \pm \frac{1}{2\pi}$ and do some $y=-x$ -substitutions and thereby get the following result -\begin{align} - \widehat{\sin(x)} = \frac{1}{2i} \left( - \delta(\xi - \frac{1}{2\pi}) - -\delta(\xi + \frac{1}{2\pi}) - \right) -\end{align} -The whole result is thereby -\begin{align} - \widehat{f(3x-1)} * \widehat{sin(x)} - =& \frac{1}{6i} \bigg( - e^{2\pi - i(\frac{\xi}{3}-\frac{1}{6\pi})}\hat{f}\big(\frac{\xi}{3}-\frac{1}{6\pi}\big)- - e^{2\pi - i(\frac{\xi}{3}+\frac{1}{6\pi})}\hat{f}\big(\frac{\xi}{3}+\frac{1}{6\pi}\big) - \bigg) -\end{align} -\subsection{More Fourier Transforms} -Consider the function -\begin{align} - f(x) = e^{-|x|} -\end{align} -The Fourier transform of this function is -\begin{align} - \hat{f}(\xi) - &=\int_\mathbb{R} e^{-|x| e^{-2\pi i x \xi}}\ dx\\ - &= \int_{-\infty}^0 e^x e^{-2\pi i x \xi}\ dx - + \int_0^\infty e^{-x} e^{-2\pi i x \xi}\ dx=\\ - &= \frac{1}{1-2\pi i \xi} e^{(1-2\pi i \xi) x}\bigg|_{-\infty}^0+ - \frac{-1}{1+2\pi i \xi} e^{-(1+2\pi i \xi) x}\bigg|_{-\infty}^0 = \\ - &= \frac{1}{1-2\pi i \xi} + \frac{1}{1 + 2\pi i \xi} =\\ - &= \frac{2}{1+(2\pi \xi)^2}. -\end{align} -Let us use this result to solve the following integral -\begin{align} - \int_\mathbb{R} \frac{\cos(a\xi)}{(2\pi \xi)^2 + 1}\ d\xi = - \frac{1}{2}\int_\mathbb{R} \hat{f}(\xi) \text{Re}(e^{ia\xi})\ dx,\\ -\end{align} -where we used the fact that $\text{Re}(e^{ia\xi}) = \cos(a\xi)$ and -$\hat{f}(\xi) = \frac{2}{1+(2\pi \xi)^2}$, thereby -\begin{align} - \frac{1}{2}\int_\mathbb{R} \hat{f}(\xi) \text{Re}(e^{ia\xi})\ dx - &= \frac{1}{2}\text{Re}\left( - \int_\mathbb{R}\hat{f}(\xi)e^{ia\xi}\ d\xi - \right)=\\ - &= \frac{1}{2}\text{Re}\left( - \int_\mathbb{R} \hat{f}(\xi) e^{2\pi i \frac{a}{2\pi}\xi}\ d\xi - \right)=\\ - &= \frac{1}{2}\text{Re}\left(f(\frac{a}{2\pi})\right)=\\ - &= \frac{1}{2} e^{-\frac{|a|}{2\pi}}. -\end{align} -\subsection{Finite discrete Fourier transform} -Consider $s\in \mathbb{C}^N$ with entries -\begin{align} - s[n] = \sin\left(2\pi\xi_0\frac{n}{N}\right), -\end{align} -for same $0 < \xi_0 < N$. The finite discrete Fourier transform of $s$ is -\begin{align} - \hat{s}[k] &= \frac{1}{N} \sum_{n=0}^{N-1} \sin\left(2\pi\xi_0\frac{n}{N}\right) - e^{-2\pi i \frac{k}{N} n} =\\ - &=\frac{1}{2iN}\left( - \sum_{n=0}^{N-1}e^{2\pi i \frac{n}{N}(\xi_0 -k)} - e^{-2\pi i - \frac{n}{N}(\xi_0 +k)} - \right). -\end{align} -If we consider $\xi_0 \in \mathbb{Z}$, we have -\begin{align} - \hat{s}[k] = - \begin{cases} - \frac{1}{2i}\;\;\;\;\;\; \xi_0 = k\\ - -\frac{1}{2i}\;\;\;\;\;\; \xi_0 = -k\\ - 0 \;\;\;\;\;\; \text{else} - \end{cases} -\end{align} -\subsection{Discrete Matrix Notation} -The convolution of two vectors $f, g \in \mathbb{C}^N$, can be expressed by a -circulate matrix applied to f -\begin{align} - (f * g) [n] = \sum_{k=0}^{N-1} f[k] g[n-k]. -\end{align} -Consider $g=s$, then the matrix takes the following values -\begin{align} - s[n-k] = s_{nk} = \sin\left(2\pi \xi_0 \frac{n-k}{N}\right). -\end{align} -The convolution with an impulse input $f=\delta_{0k}$, a vector that is $1$ -for $k=0$ and else 0 reads -\begin{align} - \sum_k s_{nk}f_k &= \sum_k s_{nk} \delta_{0k} =\\ - &= \sin\left(2\pi \xi_0 \frac{n}{N}\right). -\end{align} - -%\printbibliography -\end{document} diff --git a/appl_ana/sesh7/main.pdf b/appl_ana/sesh7/main.pdf Binary files differ. diff --git a/appl_ana/sesh7/main.tex b/appl_ana/sesh7/main.tex @@ -1,195 +0,0 @@ -\documentclass[a4paper]{article} - - -\usepackage[T1]{fontenc} -\usepackage[utf8]{inputenc} -\usepackage{mlmodern} - -%\usepackage{ngerman} % Sprachanpassung Deutsch - -\usepackage{graphicx} -\usepackage{geometry} -\geometry{a4paper, top=15mm} - -\usepackage{subcaption} -\usepackage[shortlabels]{enumitem} -\usepackage{amssymb} -\usepackage{amsthm} -\usepackage{mathtools} -\usepackage{braket} -\usepackage{bbm} -\usepackage{graphicx} -\usepackage{float} -\usepackage{yhmath} -\usepackage{tikz} -\usetikzlibrary{patterns,decorations.pathmorphing,positioning} -\usetikzlibrary{calc,decorations.markings} - -%\usepackage[backend=biber, sorting=none]{biblatex} -%\addbibresource{uni.bib} - -\usepackage[framemethod=TikZ]{mdframed} - -\tikzstyle{titlered} = - [draw=black, thick, fill=white,% - text=black, rectangle, - right, minimum height=.7cm] - - -\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} -\usepackage[parfill]{parskip} -\usepackage{lipsum} - -\usepackage[OT2,T1]{fontenc} -\DeclareSymbolFont{cyrletters}{OT2}{wncyr}{m}{n} -\DeclareMathSymbol{\Sha}{\mathalpha}{cyrletters}{"58} - -\usepackage{tcolorbox} -\tcbuselibrary{skins,breakable} - -\pagestyle{myheadings} - -\markright{Popović\hfill Applied Analysis\hfill} - - -\title{University of Vienna\\ Faculty of Mathematics\\ -\vspace{1cm}Applied Analysis Problems -} -\author{Milutin Popovic} - -\begin{document} -\maketitle -\tableofcontents - -\section{Sheet 7} -\subsection{Dirac Comb} -The Dirac train or Dirac comb on defined in the following way -\begin{align} - \Sha_m[n] = - \begin{cases} - 1\;\;\;\;\;\; n = 0, \pm m, \pm 2m,\dots\\ - 0\;\;\;\;\;\; \text{else} - \end{cases} -\end{align} -The dirac comb can be represented in a series of discrete dirac delta's -\begin{align} - \Sha_m[n] = \sum_{l=-N}^N \delta[n - lm], -\end{align} -where $\delta[s] = 1$ if $s = 0$ else $0$, for $s \in \mathbb{Z}$. -The discrete Fourier transform of the Dirac comb in $\mathbb{C}^N$ is -\begin{align} - \widehat{\Sha_m[n]} - &=\frac{1}{N}\sum_{n=0}^{N-1} \Sha_m[n] e^{-2\pi i \frac{k}{N}n}=\\ - &=\frac{1}{N}\sum_{n=0}^{N-1} - \left( - \sum_{l=-N}^N \delta(n-lm) - \right) - e^{-2\pi i \frac{k}{N}n}, -\end{align} -where the summation happens exactly $\frac{N}{m}$ times, then -\begin{align} - &\frac{1}{m}\sum_{l=-N}^N e^{-2\pi i \frac{k}{N}lm}=\\ - &= \frac{1}{m} \sum_{l=-N}^N \delta[k - l\cdot \frac{N}{m}]\qquad - \text{(Poisson's summation formula)} \\ - &= \frac{1}{m}\Sha_{\frac{N}{m}}[k] -\end{align} -\subsection{Schwartz Space} -The Schwartz space $\mathcal{S}(\mathbb{R}^d)$, for $d \in \mathbb{N}$ is -defined as -\begin{align} - &\mathcal{S} := -\bigg\{ - f\in\mathcal{C}^\infty(\mathbb{R}^d): - \forall\alpha,\beta\in\mathbb{N}^d\;\; \lVert f \rVert_{\alpha,\beta} - < \infty -\bigg\},\\ -&\lVert f \rVert_{\alpha, \beta} := -\sup_{x\in\mathbb{R}^d}\left|x^\alpha (D^\beta f) (x) \right|. -\end{align} -Our aim is to show that if $f\in\mathcal{S}(\mathbb{R})$ then $\hat{f} \in -\mathcal{S}(\mathbb{R})$. The condition is obviously -\begin{align} - &\lVert \hat{f} \rVert_{\alpha, \beta} = - \sup_{\xi\in\mathbb{R}}\left|\xi^\alpha (D^\beta \hat{f}) (\xi) - \right|<\infty, -\end{align} -for all $\alpha, \beta \in \mathbb{N}$. -We can start with what we know about the Fourier transform -\begin{align} - \xi^\alpha \hat{f}(\xi) &= \mathcal{F}\left(\frac{1}{(2\pi - i)^\alpha}(D^{\alpha}f)(x)\right)\\ - D^{\beta}\hat{f}(\xi) &= \mathcal{F}\left( - (-2\pi i x)^\beta f(x) - \right). -\end{align} -Combining the two relations above we get -\begin{align} - \xi^\alpha (D^\beta \hat{f})(\xi) = - \mathcal{F}\left(\frac{(-2\pi i x)^\beta}{(2\pi - i)^\alpha}x^\beta(D^{\alpha}f)(x)\right)=: \mathcal{F}(g(x))\\ -\end{align} -If we call this function $g$, then $g\in\mathcal{S}(\mathbb{R})$ and -$g\in L^1(\mathbb{R})$. Applying the Riemann-Lebesgue Lemma we get -\begin{align} - \hat{g}(\xi) = \int_\mathbb{R} g(x) e^{-2\pi i x \xi}\ dx \longrightarrow 0 - \;\;\; \text{as $|\xi| \rightarrow \infty$ } -\end{align} -Thereby $\hat{g} \in \mathcal{S}(\mathbb{R})$ and thus $\hat{f} \in -\mathcal{S}(\mathbb{R})$. -\subsection{Tempered Distributions} -Tempered distributions are the elements of -\begin{align} - \mathcal{S}'(\mathbb{R}^d) := - \bigg\{ - L: \mathcal{S}(\mathbb{R}^d) \rightarrow \mathbb{C} | \text{$L$ is - linear and continuous} - \bigg\}. -\end{align} -Consider $\xi$ as a tempered distribution, buy acting on $\varphi \in -\mathcal{S}(\mathbb{R})$ we have -\begin{align} - \xi(\phi) = \int_\xi \xi \varphi(\xi)\ d\xi. -\end{align} -The Fourier transform of $\xi$ is -\begin{align} - \hat{\xi}(\varphi) - &=\xi(\hat{\varphi}) - = \int_\mathbb{R} \xi \hat{\varphi}(\xi)\ d\xi\\ - &= \int_{\mathbb{R}^2}\xi \varphi(x) e^{2\pi i\xi x}\ dxd\xi\\ - &= \int_{\mathbb{R}^2}\varphi(x) \xi e^{2\pi i \xi x}\ dxd\xi\\ - &=\int_{\mathbb{R}^2}\varphi(x)\frac{i}{2\pi} \frac{\partial}{\partial x} - e^{2\pi i \xi x}\ dxd\xi =\\ - &=\frac{i}{2\pi}\int_{\mathbb{R}^2}\varphi(x)\delta'(x)\ dx=\\ - &=\frac{i}{2\pi} \delta'(\varphi). -\end{align} -\subsection{Fourier transform of the Dirac Comb} -The general case of the Dirac Comb as a distribution is -\begin{align} - \Sha_T = \sum_{n \in \mathbb{Z}} \delta_{nT}. -\end{align} -The Fourier transform of the $\Sha_T$ distribution for $\varphi \in -\mathcal{S}(\mathbb{R})$ is -\begin{align} - \widehat{\Sha_T}(\varphi) - &= \sum_{n\in\mathbb{Z}} \hat{\delta}_{nT}(\varphi)\\ - &= \sum_{n\in\mathbb{Z}} \delta_{n\omega_0}(\varphi)\\ - &=\Sha_{\omega_0}(\varphi). -\end{align} -The Fourier transform, transforms the period of the combs. -\subsection{Shannon Sampling} -The Fourier transform of $1_{[-\frac{a}{2}, \frac{a}{2}]}(x)$ is -\begin{align} - \mathcal{F}\left(1_{[-\frac{a}{2}, \frac{a}{2}]}\right)(\xi) - &= \int_\mathbb{R} 1_{[-\frac{a}{2}, \frac{a}{2}]} e^{-2\pi i x \xi}\ - dx\\ - &= \int_{-\frac{a}{2}}^{\frac{a}{2}} e^{-2\pi i x\xi}\ dx\\ - &= \frac{-1}{2\pi i \xi} e^{-2\pi i x - \xi}\bigg|_{-\frac{a}{2}}^{\frac{a}{2}}\\ - &= \frac{1}{\pi \xi} \frac{1}{2i}\left( - e^{pi i a \xi} - e^{-\pi i a \xi} - \right)\\ - &= \frac{\sin(\pi \xi a)}{\pi \xi} -\end{align} - -%\printbibliography -\end{document} diff --git a/appl_ana/sesh8/main.pdf b/appl_ana/sesh8/main.pdf Binary files differ. diff --git a/appl_ana/sesh8/main.tex b/appl_ana/sesh8/main.tex @@ -1,215 +0,0 @@ -\documentclass[a4paper]{article} - - -\usepackage[T1]{fontenc} -\usepackage[utf8]{inputenc} -\usepackage{mlmodern} - -%\usepackage{ngerman} % Sprachanpassung Deutsch - -\usepackage{graphicx} -\usepackage{geometry} -\geometry{a4paper, top=15mm} - -\usepackage{subcaption} -\usepackage[shortlabels]{enumitem} -\usepackage{amssymb} -\usepackage{amsthm} -\usepackage{mathtools} -\usepackage{braket} -\usepackage{bbm} -\usepackage{graphicx} -\usepackage{float} -\usepackage{yhmath} -\usepackage{tikz} -\usetikzlibrary{patterns,decorations.pathmorphing,positioning} -\usetikzlibrary{calc,decorations.markings} - -%\usepackage[backend=biber, sorting=none]{biblatex} -%\addbibresource{uni.bib} - -\usepackage[framemethod=TikZ]{mdframed} - -\tikzstyle{titlered} = - [draw=black, thick, fill=white,% - text=black, rectangle, - right, minimum height=.7cm] - - -\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} -\usepackage[parfill]{parskip} -\usepackage{lipsum} - -\usepackage[OT2,T1]{fontenc} -\DeclareSymbolFont{cyrletters}{OT2}{wncyr}{m}{n} -\DeclareMathSymbol{\Sha}{\mathalpha}{cyrletters}{"58} - -\usepackage{tcolorbox} -\tcbuselibrary{skins,breakable} - -\pagestyle{myheadings} - -\markright{Popović\hfill Applied Analysis\hfill} - - -\title{University of Vienna\\ Faculty of Mathematics\\ -\vspace{1cm}Applied Analysis Problems -} -\author{Milutin Popovic} - -\begin{document} -\maketitle -\tableofcontents - -\section{Sheet 8} -\subsection{Finite Discrete Fourier Transform (FDFT)} -Consider the vector $\begin{pmatrix}a & b & c & d\end{pmatrix}^T \in -\mathbb{C}^4$ with a FDFT $\begin{pmatrix}A & B & C & D\end{pmatrix}^T$. We -can show that the vector -\begin{align} - \begin{pmatrix}a & 0 & b & 0 & c & 0 & d & 0\end{pmatrix}^T, -\end{align} -has the FDFT of -\begin{align} - \frac{1}{2}\begin{pmatrix}A & 0 & B & 0 & C & 0 & D & 0\end{pmatrix}^T. -\end{align} -For the $N=4$, $n\in\{0,\dots,3\}$ the coefficients $a, b, c, d$ are denoted in -$f[n]$. The FDFT is -\begin{align} - \hat{f}[k] &= \frac{1}{4} * \sum_{n=0}^3 f[n] e^{-2\pi i \frac{n}{4}k} \\ - &=\frac{1}{4}\left( - a + be^{-\pi i \frac{k}{2}} - + ce^{-\pi i k}+ de^{-\frac{3\pi i k}{2}} - \right) = \\ - (&=\begin{pmatrix}A & B & C & D\end{pmatrix}^T) -\end{align} -for $k \in \{0,\dots, 3\}$ accordingly. For the $N=8$, $\mathbb{C}^8$ case - we have $f_2[n]$ for $n \in \{0,\dots 7\}$, - \begin{align} - \hat{f}_2[k] &= \frac{1}{8} * \sum_{n=0}^7 f_2[n] e^{-2\pi i \frac{n}{8}k} \\ - &=\frac{1}{2}\frac{1}{4}\left( - a + be^{-\pi i \frac{k}{2}} - + ce^{-\pi i k}+ de^{-\frac{3\pi i k}{2}} - \right) = \\ - (&=\frac{1}{2}\begin{pmatrix}A & B & C & D & A & B & C & D\end{pmatrix}^T) - \end{align} -for $k \in \{0,\dots, 7\}$ accordingly. We may generalize now for -$\mathbb{C}^{4N}$, and the sequence for $a, b, c, d, 0$ represented by the -function $g[n]$ for $n \in \{0,\dots, 4N-1\}$, -\begin{align} - g[n] =\begin{cases} - f[n] \qquad n\in \{0, N, 2N, 3N\}\\ - 0 \qquad \text{else} - \end{cases}. -\end{align} -Now we can compute the FDFT for $k \in \{0,\dots, 4N-1\}$ -\begin{align} - \hat{g}[k] &= \frac{1}{4N}\sum_{n=0}^{4N-1} g[n]e^{-2\pi i - \frac{n}{4N}k}\\ - &=\frac{4}{N}\sum_{n=0}{3}f[n]e^{-2\pi i \frac{n}{4}k}\\ - &=\frac{1}{N}\left(\frac{1}{4}\sum_{n=0}^3 f[n] e^{-2\pi i - \frac{n}{4}k} \right) \\ - &= \frac{1}{N} \underbrace{\begin{pmatrix}A & B & C & D & \dots & - \dots & A & B & C & D\end{pmatrix}^T)}_{\text{$4N$ entries, $N$ - sequences}}. -\end{align} -\subsection{More FDFT} -Consider the discrete complex exponential with frequency of $1Hz$ in -$\mathbb{C}^8$, for $n \in \{0, \dots , 7\}$, -\begin{align} - \exp[n] = e^{2\pi i n/8}. -\end{align} -The FDFT for $k \in \{0, \dots, 7\}$ is -\begin{align} - \hat{\exp}[k] &= \frac{1}{8}\sum_{n=0}^7 e^{2\pi i \frac{n}{8}}e^{-2\pi i - n \frac{k}{8}} \\ - &= \frac{1}{8} \sum_{n=0}^7e^{-2\pi i (k-1)\frac{n}{8}}\\ - &= - \begin{cases} - 1\quad k=1\\ - 0 \qquad k\neq 1 - \end{cases}. -\end{align} -\begin{figure}[H] - \centering - \includegraphics[width=0.49\textwidth]{./fdft.png} - \includegraphics[width=0.49\textwidth]{./normal.png} - \caption{Test in Julia} -\end{figure} -\subsection{Sampling Sinusoids} -Consider the following continuous signal -\begin{align} - f(t) = sin(20\pi t) + sin(40\pi t) -\end{align} -with frequencies $\omega = 2\pi \nu$, $\nu_1 = 10\ \text{Hz}$ and $\nu_2 = 20\ -\text{Hz}$. Sketching its Fourier transform would be something like this -\begin{figure}[H] - \centering -\begin{tikzpicture}[ - axisline/.style={very thick, -stealth}, - xscale = 1.5, - yscale = 1.5 - ] - \draw[axisline] (-3,0)--(3,0) node[right]{$\nu$}; - \draw[axisline] (0,-1.5)--(0,1.5) node[above]{$\hat{f}$}; - \draw[->] (-1,0) -- (-1, -1) node[below] {$-\delta(\nu - 10)$}; - \draw[->] (-2,0) -- (-2, 1) node[above] {$\delta(\nu - 20)$}; - \draw[->] (1,0) -- (1, 1) node[above] {$\delta(\nu - 10)$}; - \draw[->] (2,0) -- (2, 1) node[above] {$\delta(\nu - 20)$}; -\end{tikzpicture} -\end{figure} -The Nyquist frequency for sampling would be -\begin{align} - \nu_{\text{Nyquist}} = 2\nu_\text{max} = 2\nu_2 = 40\ \text{Hz}, -\end{align} -If we choose $50\ \text{Hz}$ for sampling we would get aliasing with the -following frequencies -\begin{align} - n \cdot 50\ \text{Hz} - 20\ \text{Hz} = 30\ \text{Hz},80\ \text{Hz}, 130\ - \text{Hz}, \dots -\end{align} -\subsection{Short-Time Fourier Transform (STFT)} -The Definition of the STFT is -\begin{align} - \text{STFT}\{f\} &= S_\varphi f(\tau, \omega) = \int_\mathbb{R} f(t) - \overline{\text{M}_\omega \text{T}_\tau \varphi}dt \\ - &=\int_\mathbb{R} f(t) - \bar{\varphi}(t - \tau)e^{-2\pi i \omega t}\ dt \\ -\end{align} -Then we have the following identity -\begin{align} - S_\varphi(\text{T}_u\text{M}_\eta f)(x,\omega) - &= \int_\mathbb{R} - \left(\text{T}_u \text{M}_\eta f(t)\right) \bar{\varphi}(t-x) e^{-2\pi i - \omega t}\ dt\\ - &= \int_\mathbb{R} e^{2\pi i \eta(t-u)}f(t-u) e^{-2\pi i \omega - t}\bar{\varphi}(t-x)\ dt \qquad \text{(sub: $s = t-u$)}\\ - &= \int_\mathbb{R} f(s)\bar{\varphi}(s-(x-u))e^{2\pi i \eta s}e^{-2\pi i - \omega s} e^{-2\pi i \omega u}\ ds \\ - &=e^{-2\pi i \omega u}\int_\mathbb{R} f(s) \bar{\varphi}(s-(x-u))e^{-2\pi i - (\omega - \eta)s}\ ds\\ - &=e^{-2\pi i \omega u}\int_\mathbb{R} - f(s)\overline{ \text{M}_{(\omega-\eta)} \text{T}_{(x-u)}\varphi(s)}\ ds\\ - &=e^{-2\pi i \omega u} S_\varphi f\left(x-u,\ \omega -\eta\right). -\end{align} -The second identity we can show -\begin{align} - S_\varphi f(x, \omega) - &= \langle f, \overline{\text{M}_\omega \text{T}_x \varphi}\rangle \\ - &= \langle\mathcal{F} f, \mathcal{F} \overline{\text{M}_\omega \text{T}_x \varphi}\rangle \\ - &= \int_\xi \hat{f}(\xi)\int_t \overline{\text{M}_\omega \text{T}_x - \varphi}(t) e^{-2\pi i \xi t}\ dt\ d\xi \\ - &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(t-x) e^{2\pi i \omega - t} e^{-2\pi i \xi t}\ dt\ d\xi \\ - &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(t-x)e^{-2\pi i (\xi - -\omega)t}\ dt\ d\xi \qquad \text{sub $u=t-x$}\\ - &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(u)e^{-2\pi i (\xi - -\omega)u}e^{-2\pi i (\xi -\omega)x} \ dt\ d\xi\\ - &= \int_\xi \hat{f}(\xi)e^{-2\pi i (\xi -\omega)x}\int_t - \hat{\varphi}(u)e^{-2\pi i (\xi -\omega)u} \ dt\ d\xi\\ &= e^{2\pi i - \omega x}\int_\xi \hat{f}(\xi) \hat{\bar{\varphi}}(\xi - \omega) e^{-2\pi - i \xi x}d\xi\\ - &= e^{2\pi i \omega x} S_{\hat{\varphi}} \hat{f}(\omega, -x). -\end{align} -% printbibliography -\end{document} diff --git a/num_ana/build/prb1.pdf b/num_ana/build/prb1.pdf Binary files differ. diff --git a/num_ana/prb1.tex b/num_ana/prb1.tex @@ -0,0 +1,335 @@ +\include{preamble.tex} + +\usepackage{scratch} + +\begin{document} +\maketitle +\tableofcontents +\section{Sheet 1} +\subsection{Problem 1} +Consider the following two matrices $A, L_1 \in \mathbb{R}^{4 \times 4}$ +defined in as +\begin{align} + A := + \begin{pmatrix} + 2 & 1 & 1 & 0 \\ + 4 & 3 & 3 & 1 \\ + 8 & 7 & 9 & 5 \\ + 6 & 7 & 9 & 8 + \end{pmatrix}, + \qquad + L_1 := + \begin{pmatrix} + 1 & 0 & 0 & 0\\ + x & 1 & 0 & 0\\ + y & 0 & 1 & 0\\ + z & 0 & 0 & 1 + \end{pmatrix} +,\end{align} +for $x, y, z \mathbb{R}$. + +To show that $A$ is invertible, we need to show it has maximal rank, that +is $\text{rank}(A) = 4$. We can do this by doing Gaussian elimination +steps until $A$ is of the form of a upper triangular matrix +\begin{gather} + \begin{bmatrix} + 2 & 1 & 1 & 0 \\ + 4 & 3 & 3 & 1 \\ + 8 & 7 & 9 & 5 \\ + 6 & 7 & 9 & 8 + \end{bmatrix} + \begin{matrix} + \\ + -2 \cdot I\\ + -4 \cdot I\\ + -3 \cdot I + \end{matrix} \quad + \longrightarrow + \begin{bmatrix} + 2 & 1 & 1 & 0 \\ + 0 & 1 & 1 & 1 \\ + 0 & 3 & 5 & 5 \\ + 0 & 4 & 6 & 8 + \end{bmatrix} + \begin{matrix} + \\ + \\ + -3 \cdot II\\ + -4 \cdot II + \end{matrix} \quad + \longrightarrow + \begin{bmatrix} + 2 & 1 & 1 & 0 \\ + 0 & 1 & 1 & 1 \\ + 0 & 0 & 2 & 2 \\ + 0 & 0 & 2 & 4 + \end{bmatrix} + \begin{matrix} + \\ + \\ + \\ + -1 \cdot III + \end{matrix} \quad + \label{eq: gelim1} + \\ + \longrightarrow + \begin{bmatrix} + 2 & 1 & 1 & 0 \\ + 0 & 1 & 1 & 1 \\ + 0 & 0 & 2 & 2 \\ + 0 & 0 & 0 & 2 + \end{bmatrix} \quad + \underset{\text{det}}{\longrightarrow} \quad 8 + \label{eq: gelim2} +.\end{gather} + +Next we will determine $x, y$ and $z$, s.t. $(L_1A)_{\cdot, 1} = +\begin{pmatrix} 2 & 0 & 0 & 0 \end{pmatrix} $ by solving the linear +system +\begin{align} + L_1 A = + \begin{pmatrix} + 2 & 1 & 1 & 0 \\ + 2x+4 & x+3 & x+3 & 1\\ + 2y+8 & y+7 & y+9 & 5\\ + 2z+6 & z+7 & z+9 & 8\\ + \end{pmatrix} +,\end{align} +we get $x = -2$, $y = -4$ and $z=-3$ and thereby +\begin{align} + L_1 A = + \begin{pmatrix} + 1 & 0 & 0 & 0\\ + -2 & 1 & 0 & 0\\ + -4 & 0 & 1 & 0\\ + -3 & 0 & 0 & 1 + \end{pmatrix} + \begin{pmatrix} + 2 & 1 & 1 & 0 \\ + 4 & 3 & 3 & 1 \\ + 8 & 7 & 9 & 5 \\ + 6 & 7 & 9 & 8 + \end{pmatrix}= + \begin{pmatrix} + 2 & 1 & 1 & 0 \\ + 0 & 1 & 1 & 1\\ + 0 & 3 & 5 & 5\\ + 0 & 3 & 5 & 8\\ + \end{pmatrix} +.\end{align} +In an analogous structure we may define $L_2, L_3 \in \mathbb{R}^{4\times4}$, +s.t. +\begin{align} + L_3L_2L_1A=U, +\end{align} +where $U$ is an upper triangular matrix. We may notice that this is an LU +decompositions of a matrix and can be determined by the inversion of a +single step of Gaussian elimination. By that the three steps needed to +achieve the upper triangular by Gaussian elimination are introduced +in \ref{eq: gelim1} and \ref{eq: gelim2}, that is also why $-2, -4, -3$ aligns up with $L_1$. +To summarize, by looking at \ref{eq: gelim1} and \ref{eq: gelim2} the matrices $L_2, L_3$ are +the following +\begin{align} + L_2 = + \begin{pmatrix} + 1 & 0 & 0 & 0\\ + 0 & 1 & 0 & 0\\ + 0 & -3 & 1 & 0\\ + 0 & -4 & 0 & 1 + \end{pmatrix}, \qquad + L_3 = + \begin{pmatrix} + 1 & 0 & 0 & 0\\ + 0 & 1 & 0 & 0\\ + 0 & 0 & 1 & 0\\ + 0 & 0 & -1 & 1 + \end{pmatrix}. +\end{align} +And by no calculation we know that $U$ needs to be the upper triangular +found in \ref{eq: gelim2}, i.e. +\begin{align} + L_3L_2L_1A = U = + \begin{pmatrix} + 2 & 1 & 1 & 0 \\ + 0 & 1 & 1 & 1 \\ + 0 & 0 & 2 & 2 \\ + 0 & 0 & 0 & 2 + \end{pmatrix}. +\end{align} +We have indeed preformed an LU decomposition of $A$, which is indeed +useful for solving a linear system of the form +\begin{align} + A x &= b \qquad \text{and} \quad L_3L_2L_1A = U,\\ + (L_3L_2L_1A)x = Ux &= L_3L_2L_1b = y\\ + \Rightarrow Ux &= y, +\end{align} +where the system is recursively solvable as $U$ is the upper triangular +and no additional transformation steps are required only ''plug and +play``. +\subsection{Problem 2} +Next we consider $A_\varepsilon \in \mathbb{R}^{2 \times 2}$ defined as +\begin{align} + A_\varepsilon := + \begin{pmatrix} + \varepsilon & 1\\ + 1 & 1 + \end{pmatrix}, +\end{align} +for $\varepsilon > 0$. The inverse of $A_\varepsilon$ is +\begin{align} + A_\varepsilon^{-1} = \frac{1}{\text{det}(A_\varepsilon)} + \text{adj}(A_\varepsilon) = + \frac{1}{\varepsilon - 1} \begin{pmatrix} 1 & -1 \\ -1 & \varepsilon \end{pmatrix} +\end{align} +Now let $\|x\|_\infty = \max\{|x_1|, |x_2|\}$ be the maximum norm of $x \in +\mathbb{R}^{2}$, and $\|A_\varepsilon\|_\infty$ the induced matrix norm of +$A_\varepsilon$. We can show that +\begin{align} + \lim_{\varepsilon \to 0} K(A_\varepsilon) = 4, +\end{align} +where $K(A_\varepsilon) = \|A_\varepsilon\|_\infty +\|A_\varepsilon^{-1}\|_\infty$ is the condition number of $A_\varepsilon$. +\begin{align} + \|A_\varepsilon\|_\infty &= \|\begin{pmatrix} \varepsilon + 1 & 1 + 1 + \end{pmatrix} \|_\infty = 2\\ + \|A_\varepsilon^{-1}\|_\infty &= + \|\begin{pmatrix} \mid -\frac{2}{\varepsilon-1} \mid & 1 \end{pmatrix} \|_\infty + = \frac{2}{1-\varepsilon}, +\end{align} +and thereby +\begin{align} + \lim_{\varepsilon \to 0} K(A_\varepsilon)=\lim_{\varepsilon \to 0} 2\cdot + \frac{2}{1-\varepsilon} = 4 +\end{align} +If we preformed an LU decomposition of $A_\varepsilon$ like in the first +problem to get an upper diagonal the decompostion would be +\begin{align} + LA_\varepsilon &= + \begin{pmatrix} 1 & 0 \\ -\frac{1}{\varepsilon} & 1 \end{pmatrix} + \begin{pmatrix} \varepsilon & 1 \\ 1 & 1 \end{pmatrix} \\ + &= + \begin{pmatrix} \varepsilon & 1 \\ 0 & 1 - \frac{1}{\varepsilon} + \end{pmatrix} = U_\varepsilon, +\end{align} +with the inverse +\begin{align} + U_\varepsilon^{-1}= \frac{1}{\varepsilon -1} + \begin{pmatrix}1-\frac{1}{\varepsilon} & -1 \\ 0 & \varepsilon + \end{pmatrix} . +\end{align} +The condition number of the resulting upper triangular matrix +$U_\varepsilon$, $K(U_\varepsilon)$ as $\varepsilon \rightarrow 0$ is +\begin{align} + \|U_\varepsilon\|_\infty &= \|\begin{pmatrix} \varepsilon + 1 & + \mid 1-\frac{1}{\varepsilon} \mid \end{pmatrix} \|_\infty = \frac{1}{\varepsilon} - + 1\\ + \|U_\varepsilon^{-1}\|_\infty &= + \|\begin{pmatrix} \mid \frac{1- \frac{1}{\varepsilon}}{\varepsilon + -1} \mid & \mid\frac{\varepsilon}{\varepsilon-1} \mid \end{pmatrix} + \|_\infty = \frac{1}{\varepsilon(\varepsilon - 1)}\\ + \Longrightarrow + \lim_{\varepsilon \to 0}K(U_\varepsilon) &= \lim_{\varepsilon \to 0} + \frac{1-\varepsilon}{\varepsilon}\frac{1}{\varepsilon(1 - + \varepsilon)} = \infty. +\end{align} +But if we on the other hand considered a pivoting step in which we exchange +the rows of $A_\varepsilon$ +\begin{align} + PA_\varepsilon = A_\varepsilon' = + \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} + \begin{pmatrix} \varepsilon & 1 \\ 1 & 1 \end{pmatrix} + = + \begin{pmatrix}1 & 1 \\ \varepsilon & 1 \end{pmatrix} +\end{align} +Then the P-LU decomposition is +\begin{align} + L'A_\varepsilon' = + \begin{pmatrix} 1 & 0 \\ -\varepsilon & 1 \end{pmatrix} + \begin{pmatrix}1 & 1 \\ \varepsilon & 1 \end{pmatrix} + = + \begin{pmatrix}1 & 1 \\ 0 & 1 - \varepsilon \end{pmatrix} = + U_\varepsilon', +\end{align} +with the inverse +\begin{align} + (U_\varepsilon')^{-1} = \frac{1}{1-\varepsilon} + \begin{pmatrix} 1-\varepsilon & - 1\\ 0 & 1 \end{pmatrix}. +\end{align} +Then the condition number as $\varepsilon \rightarrow 0$ +\begin{align} + \|U_\varepsilon'\|_\infty + &= \|\begin{pmatrix} 2 & 1-\varepsilon \end{pmatrix} \|_\infty = 2\\ + \|\left(U_\varepsilon'\right)^{-1} \|_\infty + &= \|\begin{pmatrix} + \frac{1-\varepsilon + 1}{1 - \varepsilon} & \frac{1}{1-\varepsilon} + \end{pmatrix} \| = \frac{2-\varepsilon}{1-\varepsilon}\\ + \Longrightarrow + \lim_{\varepsilon \to 0}K(U_\varepsilon') &= \lim_{\varepsilon \to 0} + 2\cdot \frac{2-\varepsilon}{1-\varepsilon} = 2\cdot2 = 4 +\end{align} +\subsection{Problem 3} +Let $v \in \mathbb{R}^n$, $n \in \mathbb{N}$ and $v \neq 0$. We define the Housholder +matrix +\begin{align} + H = \text{Id} - \frac{2}{\langle v, v \rangle}v v^T. +\end{align} +Indeed $H$ is an orthogonal matrix, it satisfies $H H^T = H^T H = \text{Id}$. +\begin{align} + H H^T + &= + \left( \text{Id} - \frac{2}{\langle v, v \rangle}vv^T\right) + \left( \text{Id} - \frac{2}{\langle v, v \rangle}vv^T\right)^T\\ + &= + \left( \text{Id} - \frac{2}{\langle v, v \rangle}vv^T\right) + \left( \text{Id} - \frac{2}{\langle v, v \rangle}(vv^T)^T\right)\\ + &= + \left( \text{Id} - \frac{2}{\langle v, v \rangle}vv^T\right) + \left( \text{Id} - \frac{2}{\langle v, v \rangle}vv^T\right)\\ + &= \text{Id} - \frac{4}{\langle v, v \rangle} vv^T + \frac{4}{\langle v, + v \rangle^2} (v v^T)(v v^T)\\ + &= \text{Id} - \frac{4}{\langle v, v \rangle} vv^T + \frac{4}{\langle v, + v \rangle} (v v^T) = \text{Id} + \\ + \nonumber\\ + H^T H &= + \left( \text{Id} - \frac{2}{\langle v, v \rangle}vv^T\right) + \left( \text{Id} - \frac{2}{\langle v, v \rangle}vv^T\right)\\ + &= \text{Id} +\end{align} +Let us look at the projection of some $x \in \mathbb{R}^n$ onto $v$ +\begin{align} + x_v = x - \frac{\langle v, x \rangle}{\langle v, v \rangle} v, +\end{align} +to get the projective inversion onto $v$ we would have to subtract the vector +$\frac{\langle v, x \rangle}{\langle v, v \rangle} v$ twice, graphically it would look like this +\begin{figure}[H] + \centering + \begin{tikzpicture}[ + xscale = 1.5, + yscale = 1.5 + ] + \draw[->] (0, 0) -- (1, 1) node[right] {$x$}; + \draw[->] (0, 0) -- (2, 0) node[right] {$v$}; + \draw[dotted, very thick] (1, 1) -- (1, 0) node[below] {$x_v$}; + \draw[->] (0, 0) -- (1, 0) node[below] {$x_v$}; \draw[->] (0, 0) -- (-1, 0) node[below] {$-x_v$}; \end{tikzpicture} +\end{figure} +The Household matrix acting on a vector $x$, $Hx$ is exactly the above case +since vector multiplication is associative we have +\begin{align} + Hx &= x - \frac{2}{\langle v, v \rangle} vv^T x\\ + &= x - 2\frac{\langle v, x\rangle}{\langle v, v \rangle} v +\end{align} +The condition number of an orthogonal matrix $A$ in the $\|\cdot\|_2$ induced +norm is +\begin{align} + K(A) = \|A\|_2 \|A^{-1}\|_2 = 1, +\end{align} +because the orthogonal matrix preserves distance, i.e. $\|Ax\|_2 = \|x\|_2$ +for all $x$. Also $A^{-1} =A^T$ is orthogonal as well +\begin{align} + \|A\|_2 = \sup \frac{\|Ax\|_2}{\|x\|_2} = \sup \frac{\|x\|_2}{\|x\|_2} = + 1 +\end{align} +%\printbibliography +\end{document} + diff --git a/num_ana/preamble.tex b/num_ana/preamble.tex @@ -0,0 +1,59 @@ +\documentclass[a4paper]{article} + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} +\usepackage{mlmodern} + +%\usepackage{ngerman} % Sprachanpassung Deutsch + +\usepackage{graphicx} +\usepackage{geometry} +\geometry{a4paper, top=15mm} + +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{amssymb} +\usepackage{amsthm} +\usepackage{mathtools} +\usepackage{braket} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage{float} +\usepackage{yhmath} +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} +\usetikzlibrary{calc,decorations.markings} + +%\usepackage[backend=biber, sorting=none]{biblatex} +%\addbibresource{uni.bib} + +\usepackage[framemethod=TikZ]{mdframed} + +\tikzstyle{titlered} = + [draw=black, thick, fill=white,% + text=black, rectangle, + right, minimum height=.7cm] + + +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} +\usepackage{lipsum} + + +\usepackage{tcolorbox} +\tcbuselibrary{skins,breakable} + +\pagestyle{myheadings} + +\newcommand{\eps}{\varepsilon} +\usepackage[OT2,T1]{fontenc} +\DeclareSymbolFont{cyrletters}{OT2}{wncyr}{m}{n} +\DeclareMathSymbol{\Sha}{\mathalpha}{cyrletters}{"58} + +\markright{Popović\hfill Applied Analysis\hfill} + + +\title{University of Vienna\\ Faculty of Mathematics\\ +\vspace{1cm}Applied Analysis Problems +} +\author{Milutin Popovic} diff --git a/num_ana/sheets/sheet_1.pdf b/num_ana/sheets/sheet_1.pdf Binary files differ.